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Abstract: Breast cancer is still considered a high-incidence disease, and numerous are the research
efforts for the development of new useful and effective therapies. Among anticancer drugs, carbazole
compounds are largely studied for their anticancer properties and their ability to interfere with
specific targets, such as microtubule components. The latter are involved in vital cellular functions,
and the perturbation of their dynamics leads to cell cycle arrest and subsequent apoptosis. In this
context, we report the anticancer activity of a series of carbazole analogues 1–8. Among them,
2-nitrocarbazole 1 exhibited the best cytotoxic profile, showing good anticancer activity against two
breast cancer cell lines, namely MCF-7 and MDA-MB-231, with IC50 values of 7 ± 1.0 and 11.6 ± 0.8
µM, respectively. Furthermore, compound 1 did not interfere with the growth of the normal cell line
MCF-10A, contrarily to Ellipticine, a well-known carbazole derivative used as a reference molecule.
Finally, in vitro immunofluorescence analysis and in silico studies allowed us to demonstrate the
ability of compound 1 to interfere with tubulin organization, similarly to vinblastine: a feature that
results in triggering MCF-7 cell death by apoptosis, as demonstrated using a TUNEL assay.

Keywords: carbazoles; ellipticine; tubulin; breast cancer; apoptosis; docking simulations

1. Introduction

Despite many research efforts, breast cancer incidence is constantly growing and
remains a serious health emergency [1]. Indeed, breast cancer represents, to date, the main
cancer-related cause of disease for women, and its diagnosis and mortality frequencies
have risen worldwide in recent years [2]. Among the estimated 19.3 million new cancer
cases worldwide in 2020, 11.7% represents female breast cancer, correlated with a mortality
of 6.9% [3].

Clinically, breast cancers are classified according to specific subtypes defined by
their histopathological features, and their expression of hormone receptors and growth
factors, such as estrogen receptor (ER), progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2). ER-positive breast cancer is increasing in incidence,
while the triple negative causes concern about its aggressiveness and ability to give rise to
metastases [4,5].
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The use of cytotoxic chemotherapy in breast cancer has made significant progress
in recent years due to the use of drugs able to interfere with the numerous biological
pathways involved in cancer cell growth. However, the numerous side effects related to
current therapies often overshadow their benefits. This spurred the need for research and
development of new potent anticancer agents. Currently, medical attention has primarily
focused on naturally occurring molecules with anticancer properties. Among them, the
carbazole scaffold represents an important structural motif of many natural and/or syn-
thetic pharmacologically active compounds [6]. They have been found in a large variety of
organisms, including bacteria, fungi, plants, and animals and represent an important class
of heterocycles, which exhibits innumerable biological activities [7]. Ellipticine is an alka-
loid considered the first lead compound with anticancer activity belonging to the carbazole
class [8]. It was first obtained in 1959 from the leaves of Ochrosia elliptica (Apocynacae),
while now, it is prepared by entirely synthetic procedures [9]. Considering the biological
importance of this molecule together with its demonstrated high toxicity [10], many Ellip-
ticine derivatives with antioxidant, anticancer, anti-inflammatory, antibacterial, antiviral,
and antidiabetic properties have been synthesized in recent decades [7,11–16]. Numerous
in vitro studies, supported by docking simulations, demonstrated that some carbazole
derivatives and analogues significantly disrupt the microtubule network, arresting the cell
cycle and inducing cell apoptosis [17–20].

Considering these exciting data [17–20], the goal of this work was to evaluate the
anticancer activity of a series of carbazole derivatives (1–8, Figure 1) against two human
breast cancer cell lines, namely ER(+) MCF-7 cells and triple-negative MDA-MB-231 cells.
The obtained data showed that nitrocarbazoles 1–3 exhibited the best anticancer activity on
both the breast cancer cell lines used. However, 3-nitrocarbazole 2 and 2,3-dinitrocarbazole
3 showed strong cytotoxicity on the normal MCF-10A cell line, while 2-nitrocarbazole 1 did
not interfere with the growth of the same cell line. Cytotoxicity of compounds on normal
cells may be influenced by the position of the nitro group(s) on the aromatic ring. These
interesting results pushed us to further understand the mechanism of action of the most
active and safe nitrocarbazole 1 in depth. Immunofluorescence analysis demonstrated
that compound 1 perturbs microtubule networks, inducing disorganization of the tubulin
filaments and their accumulation around cell nuclei. The disruption of microtubules
dynamics led to cancer cell death by apoptosis. The in vitro results, confirmed by in silico
studies, suggest that 2-nitrocarbazole 1 represents an interesting tool in cancer treatment as
a microtubule-targeting agent. These results are an important starting point in medicinal
chemistry for the development of targeted therapy able to reduce the numerous toxic
effects typically associated with traditional therapeutic approaches.
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2. Materials and Methods
2.1. Chemistry

The synthesis and characterization of compounds 1–3 [21], 4 and 5 [22], and 6–8 [23]
has already been reported; details are provided in Scheme 1 below.
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tion) procedure.

2.2. Biology
2.2.1. Cell Culture

The three cell lines employed in this work (MCF-7, MDA-MB-231, and MCF-10A)
were purchased from American Type Culture Collection (ATCC, Manassas, VA, USA) and
cultured as already described [15].

2.2.2. MTT Assay

The in vitro anticancer activity of all of the studied compounds were detected us-
ing the MTT (Sigma) assay [24,25]. In brief, cells were seeded in a 48-well plate, then
starved in serum-free medium, and incubated with the target compounds dissolved in
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DMSO at six differing concentrations (0.1, 1, 5, 10, 100, and 200 µM) for 72 h, as already
described [24]. After this period of time, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide) was incubated for 2 h at 37 ◦C (final concentration 0.5 mg/mL). Then,
the formazan crystals were dissolved in DMSO and the optical density was measured at
570 nm using a microplate reader. All of the calculations were performed in triplicate, and
the results were represented as the percent (%) of basal. The IC50 values were calculated
using curve-fitting GraphPad Prism 9 software (GraphPad Software, La Jolla, CA, USA)
with nonlinear regression. The values represent the mean ± standard deviation (n = 3).

2.2.3. Immunofluorescence Analysis

The cells were seeded in 48-well culture plates containing glass slides, then serum-
deprived for 24 h, and incubated with the most active compound for 24 h (concentration
equal to its IC50 value). Then, the methanol-fixed cells were incubated with the primary
antibody (mouse anti-β-tubulin, Santa Cruz Biotechnology, Dallas, TX, USA) and then the
secondary antibody (Alexa Fluor® 568 conjugate goat-anti-mouse, Thermo Fisher Scientific,
MA, USA), as previously described [26]. Then, the Nuclei were stained using DAPI (Sigma
Aldrich, Milan, Italy). Fluorescence was detected using a fluorescence microscope (Leica
DM 6000, 20× magnification). LAS-X software was used to acquire and process all images.
The images are representative of three independent experiments.

2.2.4. Docking Studies

The crystal structures of the quaternary assembly of human tubulin (αβαβ) in a
complex with stathmin and vinblastine [27] (PDB code 5J2T) has been used as a target
for our molecular docking simulations. We built the three-dimensional structures of
compounds 1, 2, and 3 using the MarvinSketch program (ChemAxon ltd, Budapest, Hu),
and once the atomic charges were assigned, we minimized all of them. As described in our
previous work [15], we used the Autodock program v. 4.2.2 [28] to evaluate the possible
binding modes of our ligands and to evaluate the binding energies of different derivatives
to these proteins. We adopted a “blind docking” strategy: docking simulations of small
molecules to the targets were conducted without a priori knowledge of the position of
the binding site by the system. All of the simulations were performed by adopting the
standard default values and by utilizing the same procedures described in several previous
work by our group [29–31]. The figures were drawn using the program Chimera [32].

2.2.5. TUNEL Assay

The ability of the most active compound to induce cell death by apoptosis was detected
using the TUNEL assay using the CFTM488A TUNEL Assay Apoptosis Detection Kit
(Biotium, Hayward, CA, USA). The cells were grown on glass coverslips and then treated
with the tested compound. Then, the methanol-fixed cells were incubated with the enzyme
terminal deoxynucleotidyl transferase (TdT) for 2 h at 37 ◦C, as previously described [24].
The nuclei were stained using DAPI 0.2 mg/mL (Sigma Aldrich, Milan, Italy). Finally, the
cells were observed under a fluorescence microscope (Leica DM6000; 20x magnification).
The images are demonstrative of three separate experiments.

3. Results and Discussion
3.1. Chemistry

Although structurally different, compounds 1–8 share a synthetic protocol whereby
a nitrobutadiene (12–14), deriving from the initial ring-opening of a suitably substituted
3-nitrothiophene (9) [33–35], acts as a benzannulating agent towards indole [21], pyr-
role [22], or 2-aminopyridine [23] (Scheme 1).

Evaluation of the anticancer activity of compounds 1–8 follows a long-standing engage-
ment by the Genoa research group in the synthesis of pharmacologically active nitroderiva-
tives from the initial ring-opening of nitrothiophenes 9 [36–44], an effort that has resulted
in a number of positive results in both in vitro and in vivo experiments. For instance,
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appreciable antitumor activity has been found for either some modified 13 [36,38–42] or
some selected 14 [36,37,39,40,42]; furthermore, α-glucosidase inhibition [43] or antibacterial
activity [44] has, on the one hand, exhibited in nitroheterocycles obtained from our ni-
trobutadiene building-blocks. On the other hand, the Cosenza research group has, in turn,
recently highlighted the efficacy of a nitrocarbazole as an anti-HIV agent [11]. Coupled
with the abovementioned results, the outcomes herein surely contribute to assessing the
nitro goup’s significance as a valuable pharmacophore.

3.2. Biology
3.2.1. Anticancer Activity

The anticancer activity of all the compounds against two breast cancer cell lines,
namely ER(+) MCF-7 and triple-negative MDA-MB-231, were evaluated by MTT assay,
and the IC50 values, derived from the experimental data, are summarized in Table 1.

Table 1. IC50 values of compounds 1–8 and Ellipticine, expressed in µM. The means ± standard
deviations are shown. The experiments were performed in triplicate.

Compound MDA-MB-231 MCF-7 MCF-10A

1 11.6 ± 0.8 7.0 ± 1.0 >200
2 12.2 ± 1.2 3.4 ± 1.3 23.6 ± 0.7
3 14.4 ± 0.9 5.4 ± 1.1 3.7 ± 0.6
4 >200 162.5 ± 1.4 110.5 ± 0.9
5 1.2 ± 1.1 1.7 ± 0.6 27.8 ± 1.0
6 >200 >200 >200
7 >200 >200 143.3 ± 1.1
8 >200 >200 >200

Ellipticine 1.3 ± 0.9 1.9 ± 0.5 1.2 ± 0.7

After the breast cancer cells were incubated in the presence of compounds 1–8 for
72 h, the IC50 values indicated that some of them exhibited, in different degrees, a good
anticancer activity against both cell lines.

The most promising compound was 2-nitrocarbazole 1, which exerted good anticancer
activity against both breast cancer cell lines used in this assay, with IC50 values of 7.0 ± 1.0
and 11.6 ± 0.8 µM on MCF-7 and MDA-MB-231, respectively. Carbazoles 2, 3, and 5 showed
much higher cytotoxicity than the other compounds on both of the cell lines screened.
Indeed, the IC50 values of compounds 2, 3, and 5 were 3.4 ± 1.3, 5.4 ± 1.1, and 1.7 ± 0.6 µM
against MCF-7 cells, respectively, and 12.2 ± 1.2, 14.4 ± 0.9, and 1.2 ± 1.1 µM towards
MDA-MB-231 cells, respectively. Unfortunately, together with their good anticancer activity,
2, 3, and 5 also exhibited severe cytotoxicity on the normal human mammary epithelial
cells MCF-10A, with IC50 values of 23.6 ± 0.7, 3.7 ± 0.6, and 27.8 ± 1.0 µM, respectively.

Instead, 1 did not interfere with the growth of the normal cell lines, showing an IC50
value higher than 200 µM on the same normal cells. Moreover, compounds 4 and 6–8
exhibited a lower, or no, anticancer activity against both breast cancer cell lines. Ellipticine,
used as a reference molecule in this assay, exhibited strong anticancer activity against
MCF-7 and MDA-MB-231 cells with IC50 values of 1.9 ± 0.5 and 1.3 ± 0.9 µM, respectively,
together with a dramatic inhibition of normal cell growth (the IC50 on MCF-10A was
1.2 ± 0.7 µM). Concerning the structure–activity relationships, the nitrocarbazoles 1–3
resulted in the most active compounds, indicating that the presence of the nitro group
could positively affect their anticancer activity. However, it seems clear that the position
of the nitro group on the aromatic ring influences the cytotoxicity of the compounds on
the normal cells. Indeed, if present in the 2-position (2-nitrocarbazole 1), it does not affect
the growth of normal cells MCF-10A (IC50 > 200 µM), at least at the concentrations and
under the conditions used, while in the 3-position, it makes compound 2 responsible for
the strong cytotoxic effect on the same non-tumoral cells (IC50 = 23.6 ± 0.7 µM). Moreover,
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the presence of two nitro groups in the 2,3-positions on the aromatic ring gives a higher
toxicity to compound 3 (IC50 = 3.7 ± 0.6 µM) than to 2.

Regarding the 8-methylpyrrolo[3,2-c]carbazole 4, it did not show an anticancer effect
on the breast cancer cells used, whereas the replacement of the methyl group with a chlorine
makes the 8-chloropyrrolo[3,2-c]carbazole 5 more active (IC50 = 1.7 ± 0.6 µM on MCF-7
and 1.2 ± 1.1 µM on MDA-MB-231) and highly cytotoxic on the normal cells MCF-10A
(IC50 = 27.8 ± 1.0 µM). Finally, imidazopyridine 6–8 were inactive as anticancer agents on
both breast cancer cell lines.

Summing up, among the tested compounds, the 2-nitrocarbazole 1 possesses the best
anticancer profile, causing a growth reduction in both breast cancer cells used, even if less
active than the reference molecule Ellipticine. However, contrary to the other analogues of
the series and to Ellipticine, the 2-nitrocarbazole 1 did not exert any cytotoxicity against
normal human mammary epithelial cells MCF-10A.

3.2.2. Induction of Cell Cytoskeleton Destabilization

Microtubule-targeting agents are widespread drugs useful in cancer treatment due to
their ability to interfere with critical cellular functions, such as mitosis, cell migration, and
cell signaling [45].

The efficacy of microtubule-targeting drugs has been evidenced by the use of some
Vinca alkaloids and taxanes for the treatment of a large panel of human cancers [46]. Based
on the mechanism of action, microtubule-targeting agents are classified into two categories:
microtubule-destabilizing agents, such as the Vinca alkaloids, that inhibit the polymer-
ization reaction; destabilizing microtubules and decreasing tubulin polymer filaments;
and microtubule-stabilizing agents, such as taxanes which, contrarily, promote tubulin
polymerization-stabilizing microtubules [47]. While these agents are highly effective in
cancer treatment, the onset of resistance represents the principal clinical issue that limits
their use [48]. Moreover, their effectiveness has been impaired by the presence of systemic
toxicity and, often, the absence of bioavailability [49]. Thus, in recent years, research efforts
have been focused on the development of more active and safe new compounds that could
target microtubule organization [50–52].

With the aim to understand the role of compound 1 in cytoskeleton dynamics, we
carried out immunofluorescence studies using MCF-7 cells as models, since they represent
the cell line on which the 2-nitrocarbazole 1 was more active. Cells treated only with
the vehicle (DMSO and CTRL) showed normal organization of the microtubule network
in which tubulin filaments are regularly spread into the MCF-7 cell cytoplasm (Figure 2,
Panel B, CTRL). Contrarily, exposure of the same cells to vinblastine as well as to com-
pound 1 caused microtubule disorganization (Figure 2, panels B, vinblastine and 1). Indeed,
tubulin filaments become irregular and accumulate around cell nuclei (see the white ar-
rows). These results indicate that, similar to vinblastine, 2-nitrocarbazole 1 could act as a
tubulin-polymerization inhibitor.

3.2.3. Docking Studies

To study the possible binding modes of our compounds to the quaternary assembly
of human tubulin and to calculate a binding energy of the complexes, we carried over
molecular docking simulation runs using the crystallographic coordinates of the complex
formed between tubulin α, tubulin β, and stathmin4 (PDB code 5J2T) as a protein target [27],
eventually comparing our results with the binding modes of vinblastine. For all our
compounds, we adopted a “blind docking” strategy: i.e., the docking of our small molecules
to their targets was performed without a priori knowledge of the binding site of the
ligand. This strategy was first tested and validated by repositioning vinblastine in the
protein binding site with its correct binding mode, displaying a root-mean-square deviation
(RMSD) of less than 0.2 Å, compared with the one determined by X-ray crystallography.
This guarantees the reliability of our docking simulations. Further on, we tested our
compounds and found two different binding zones: one for molecules 1 and 3, within
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the interface between subunits β and α in proximity to the vinblastine binding zone, and
a second for 2, at the interface between subunit α and β, in proximity to the Colchicine
binding site (Figure 3). Table 2 illustrates the amino acids involved in ligand interactions
and the binding energies of all of the complexes formed by tubulin and our compounds.
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molecule, (IC50 values) or with a vehicle (CTRL) for 24 h. After treatment, the cells were incubated with primary and
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zoom-in of the overlay channels is shown on the right. Images are representative of three independent experiments.

Table 2. Energies of the complexes formed by tubulin and compounds 1, 2, and 3, and protein residues interacting with
the ligands.

Compound Binding Energy
(Kcal/mol) Ki (nM) * Atoms Involved in Binding §

Protein residue Distance (Å)
Residues involved in hydrophobic

interactions

1 −9.76 70.4
Glnβ11 3.01

Alaβ99, Leuβ141, Proβ173, Valβ177Serβ40 3.0
Thrβ145 2.42

2 −10.65 15.56
Argα221 2.9

Valα172, Tyrα224, Leuβ248, Valβ335Proα222 3.2
Thrβ353 2.87

3 −9.49 110.58
Lysβ176 2.76 Leuα248, Proα325, Alaα330, Tyrβ210,

Proβ222, Tyrβ224Tyrβ219 2.66
Thrβ221 2.92

* Ki values as calculated by the Autodock algorithm: Ki = exp(∆G/(R*T). § Residues involved in hydrogen bonding are listed in bold.
Hydrophobic contacts are listed in italic.
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trigger apoptosis using TUNEL assay, which allows the formation of DNA fragments to 
be detected. 

Figure 3. (A) A cartoon representation of the tubulin (cyan ribbons) interface between subunits beta and alpha, with
vinblastine (VLB, yellow sticks) and guanosyndiphosphate (GDP, red sticks) reported. (B) Binding modes of molecules 1
(purple sticks) and 3 (pink) to the beta-alpha interface of tubulin, in the same three-dimensional orientation as (A). (C,D) The
position of compounds 1 (purple) and 3 (pink), respectively, within the same binding site. (E) The crystallographic structure
of a guanosyntriphosphate (GTP) molecule (drawn in purple) bound to the alpha–beta interface of the protein. (F) The pose
of compound 2 (green sticks) within the same binding site. We showed and labelled the residues involved in the interactions
of the three molecules in the tubulin quaternary structure.

3.2.4. TUNEL Assay

The perturbation of microtubule dynamics leads to disruption of the mitotic spindle
in dividing cells, causing cell cycle arrest and, as a last step, the induction of subsequent
cell death by apoptosis [53,54]. Thus, we determined whether 2-nitrocarbazole 1 is able to
trigger apoptosis using TUNEL assay, which allows the formation of DNA fragments to
be detected.

When compared with the vehicle-treated cells (CTRL), a detectable level of green
fluorescence, related to the formation of DNA fragments, was evident in MCF-7 cells after
24 h treatment with compound 1 at its IC50 value (Figure 4). This evidence indicates that
this compound is able to induce MCF-7 cell death by triggering apoptosis, and this effect is
probably linked to its ability to perturb microtubule dynamics.
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Figure 4. MCF-7 cells were exposed to compound 1 at its IC50 value or with the vehicle DMSO (CTRL) for 24 h. Then,
cells were incubated with the TdT enzyme and observed under an inverted fluorescence microscope at 20× magnification.
Apoptotic cells are indicated by a clear green nuclear fluorescence in compound 1-treated cells. (A) DAPI (CTRL and 1)
λex/em = 350 nm/460 nm. (B) CFTM488A (CTRL and 1) λex/em = 490 nm/515 nm. (C) A merge. Fields are representative of
three separate experiments.

4. Conclusions

In this paper, we reported the evaluation of the anticancer properties of some nitro-
carbazoles in in silico and in vitro studies. The lead compound showed a good cytotoxic
profile, being active mostly against MCF-7 cells. Moreover, docking simulations and im-
munofluorescence studies suggest a role in perturbing the MCF-7 cell microtubule network
and triggering cancer cell death by apoptosis.
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