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Abstract: This paper proposes event- and self-triggered control strategies to achieve distributed syn-
chronization for multiple Lur’e systems with unknown static nonlinearities. Firstly, the integral-type
edge-event-triggered function is designed here without Zeno behaviors. Compared to the traditional
event-triggered schemes, the considered algorithm has the advantages of reducing controller update
frequency and sensor energy consumption. Then, the integral-type self-triggered is further inves-
tigated, which implements discontinuous monitoring and discontinuous agent listening. Finally,
numerical simulations verified the effectiveness and superiority of our policies.

Keywords: synchronization; integral-type event-triggered control; Lur’e nonlinear system; self-
triggered control

1. Introduction

In recent years, distributed control of multi-agent systems has emerged as an essential
topic in the field of control theory [1–12], and it has been applied in more and more fields
such as the coordinated attitude of multiple spacecraft, formation cooperative control,
multi-drone coordination, and multiple robotic arms coordination. The main concern
on distributed control is how to coordinate all individuals to achieve synchronization
and consensus control under information interaction [1,2,5,6]. Generally, sampled-data
control is applied to the studies on synchronization and consensus analysis in actual digital
computers, among which the most common solution is periodic sampling based on a
time-triggered mechanism. However, consensus analysis and performance requirements
typically result in conservative choices of the sampling period (i.e., minimum), which
consume excessive system resources.

In contrast to specific time intervals, the other is event-triggered sampling control,
whose sampling instants are determined by preset triggering conditions [13–25]. Here,
these events are triggered at time points when the norm of a certain measurement error
becomes large to the norm of a designed function as time evolves. Earlier studies on
event-triggered control include a conference paper on event-triggered control of PID
controllers [13]. However, the application and development of event-triggered control
theories have not made a good progress for a long time. This is because Zeno behavior
often appears in event-triggered control systems, and its related theoretical problems have
not been well resolved. Until 2007, Tabuada [14] strictly proved that there is a minimum
time-bound between the interval of any two consecutive events to avoid Zeno behaviors,
in a class of nonlinear feedback control systems based on state-dependent event-triggered
control. Furthermore, self-triggered control strategies were developed in [26–30], in which
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each agent predicts its next triggering time at any event instant; that is, continuous or
periodic event detections can be avoided. Such schemes aim to replace the resource
consumption of all sensors with an increase in computational complexity.

The above event-triggered and self-triggered conditions are all designed to be state-
dependent or decaying exponential function-dependent, which demands that the mea-
surement error needs to meet these conditions at any time. To relax such conservative
settings, in [31], Girard designed an event-triggered control mechanism determined by a
dynamic differential equation. Subsequently, in [32], Mousavi et al. proposed an integral
event-triggered condition, which requires that the measurement error only needs to be
less than the given threshold function over a certain integration interval. Then, in [33,34],
Zhang et al. extend the integral-type method to first-order linear multi-agent systems.
The integral-type event-triggered control relaxed the requirement for measurement error
and also relaxed the requirement for decreasing Lyapunov functions, further reducing the
controller updates.

In this paper, we study the design problem of integral-type edge-event- and edge-self-
triggered control for Lur’e uncertain nonlinear systems with unknown static nonlinearities.
First, the research on synchronization of Lur’e systems has greatly promoted the devel-
opment of control theory [35–39]. Recently, distributed synchronization of multi-agent
systems with Lur’e node dynamics was investigated in Wen et al. (2013). Robust synchro-
nization of multi-agent systems with uncertain Lur’e-type nonlinear dynamics was studied
in Zhao et al. (2013). Then, most distributed event-triggered control policies require each
agent to gather its own information and then communicate with its neighbors to achieve
global control goals. In actual scenarios, the accurate measurement of self-state information
is often difficult to achieve. For instance, the individual’s own position, velocity, and other
information often need to be obtained with the help of GPS or inertial sensors using of
sophisticated algorithmic measurements. Here, it may be easier for agents to implement co-
ordinated control by using relative state information. Therefore, another state measurement
scheme is applied. The relative state information between itself and its neighbors, termed
edge state information, is measured by means of relative state sensors such as Lidar or
laser speedometer mounted on each individual to achieve the control goal. Quite a number
of studies on synchronization and consensus analysis for distributed edge-event-triggered
control have been represented [40–42].

Hinted by these observations, the integral-type edge-event- and edge-self-triggered
control strategies are developed for Lur’e uncertain nonlinear systems in this paper. In
the proposed event-triggered strategy, an integral-type triggering function is designed to
reduce the controller updates. Moreover, we accomplish the edge-self-triggered control
on the above system to avoiding continuous monitoring, in which each controller only
updates at certain sampling instants and can effectively reduce controller burden and
sensor energy consumption. The main contributions of this work are stated as follows:

1. The dominant motive of this work is to design integral-type edge-event- and edge-
self-triggered control strategies for Lur’e uncertain nonlinear systems to seek novel
scheduling policies of active sensors. Here, only relative states are employed, while
absolute state information is uninvolved. These combined edge-based control poli-
cies can provide another approach, where absolute state information is not easily
available [16,17,19,20,23].

2. A distributed integral-type edge-event-triggered control algorithm is designed in the
proposed control strategies, which relaxes the setting of the measurement error in the
traditional event-triggered strategy [13–17,19–23,25] that needs to meet the trigger
conditions at all times. The application of Barbalat’s Lemma in proof guarantees the
convergence. Compared to the studies on distributed integral-type event-triggered
control in [33,34], our results on edge states related to each agent are evaluated
asynchronously, based on nonlinear dynamic models.

3. The self-triggering condition does not require continuous or periodic detection of mea-
surement error information, which avoids the periodic monitoring of the
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sensor [13–17,19–23,25,32,33], further reducing the number of sensor measurement
samples and then saving system resources.

The remainder of this paper is organized as follows. Some preliminaries and the prob-
lem formulation are given in Section 2. The main results are presented in Sections 3 and 4.
Section 5 validates the obtained theoretical results using numerical simulations. Finally,
concluding remarks close the paper in Section 6.

2. Preliminaries
2.1. Preliminaries on Graph Theory

Consider an undirected graph G with N edges and N nodes, which is denoted by
G = (V , E) with node set V = {v1, v2, · · · , vn} and edge set E = {(vi, vj) : vi, vj ∈ V}. The
set of neighbours of node i is denoted by Ni = {vj ∈ V : (vj, vi) ∈ E}, and |Ni| denotes the
cardinality of Ni, ie. N = |N1|+ |N2|+ · · ·+ |NN |. Then the weighted adjacency matrix
A ∈ RN×N is used to describe the topology of system (2), in which self-loops and multiple
information links are not allowed, where aij > 0 if (vi, vj) ∈ E , while aij = 0, otherwise.
The graph Laplacian of G is defined as L = {lij} ∈ RN×N , in which lij = −aij if i 6= j, and
lij = ∑j∈Ni

aij otherwise. We now introduce several important matrices in the graph theory.
The matrix which relates the nodes to the edges is called incidence matrix, denoted by
H = {hki} ∈ RN×N [23]. By choosing arbitrary orientation for all edges for an undirected
graph, the entries of its incidence matrix are defined as hki = 1 if the kth edge sinks at
node i, or hki = −1 if the kth edge leaves node i, or hki = 0 otherwise. Therefore, the
corresponding Laplacian matrix is represented as L = HT H [4,43].

For the edge εp ∈ E with the orientation from agents vj to vi, let rp(t) = r(i,j)(t) =
xi(t) − xj(t) be the corresponding edge state. We say that system (2) reaches the state
synchronization if and only if limt→∞ ‖rp(t)‖ = 0, p = 1, 2, · · · ,N , for any initial values
rp(t0). The following assumption and lemma are presented:

Definition 1. [44] Let S1, S2 ∈ Rs×s be real symmetric matrices such that S1 is positive semi-
definite and S1 − S2 is positive definite, i.e., 0 ≤ S1 < S2. Then φ(·) is called sector bounded
within the sector [S1, S2] if it satisfies

(φ(y)− S1y)T(φ(y)− S2y) ≤ 0, (1)

for all y ∈ Rm.

Assumption 1. The interaction topology G of system (2) is connected.

Lemma 1. There is φ(·) called sector bounded within the sector [S1, S2], such that

‖φ(yi)− φ(yj)‖2 ≤ η‖yi − yj‖2 ≤ η‖C‖2‖xi − xj‖2.

ie. [(H ⊗ I)Φ(y)]T [(H ⊗ I)Φ(y)] ≤ η‖C‖2R(t)T R(t).

Proof. By (1), we have

φT(y)φ(y) < φT(y)(S1 + S2)y−
1
2

(
yT(S1S2 + S2S1)y

)
.

Using the fact −2φT(yi)φ(yj) ≤ φT(yi)φ(yi) + φT(yj)φ(yj), one gets
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‖φ(yi)− φ(yj)‖2 =
(
φ(yi)− φ(yj)

)T(
φ(yi)− φ(yj)

)
=φT(yi)φ(yi)− 2φT(yi)φ(yj) + φT(yj)φ(yj)

≤2
(

φT(yi)φ(yi) + φT(yj)φ(yj)
)

≤2φT(yi)(S1 + S2)yi − yT
i (S1S2 + S2S1)yi + 2φT(yj)(S1 + S2)yj − yT

j (S1S2 + S2S1)yj.

Then we derived that

‖φ(yi)− φ(yj)‖2 = YT


D3 0 −D2 0
0 D3 0 −D2
−D2 0 0 0

0 −D2 0 0

Y,

where D2 = −(S1 + S2), D3 = −(S1S2 + S2S1). Y = (yT
i , yT

j , φT(yi), φT(yj))
T . Then in

order to prove that ‖φ(yi) − φ(yj)‖2 ≤ η‖yi − yj‖2, we just need to find the positive
constant η that satisfies that

D3 0 −D2 0
0 D3 0 −D2
−D2 0 0 0

0 −D2 0 0

 ≤ η


I −I 0 0
−I I 0 0
0 0 0 0
0 0 0 0

,

i.e.,

S =


D1 −η I D2 0
−η I D1 0 D2
D2 0 0 0
0 D2 0 0

 ≥ 0,

where D1 = η I + (S1S2 + S2S1). The above matrix S is semi-positive definite if and only if
its contract matrix Ŝ is semi-positive definite.

Ŝ =


D1 −η I 0 0
−η I 0 0 0

0 0 0 0
0 0 0 0

,

based on the fact that D2, −η I are invertible matrices. The following, we take
η > λm(S1S2 + S2S1) with λm the maximum eigenvalue of the matrix S1S2 + S2S1, such
that D2 > 0.

Similarly, the Ŝ ≥ 0 is equivalent to
D1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ≥ 0.

Therefore, there’s an η here that makes ‖φ(yi)− φ(yj)‖2 ≤ η‖yi− yj‖2 true. This completes
the proof.
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2.2. Problem Formulation

We consider a event-triggered control of Lur’e systems.

x′i(t) = Axi(t) + Bui(t) + B1φ(yi(t)),

yi(t) = Cxi(t), i ∈ ν,
(2)

where xi(t) ∈ Rn is the state vector of the ith agent, ui(t) ∈ Rp is the control input, and
yi(t) ∈ Rm is the output. Let A, B, B1, and C be given constant matrices with appropriate
dimensions. The function φ(yi(t)) ∈ Rp is defined as follows.

To this end, the focal issue is how to design a distributed protocol ui according to an
edge-event-triggered rule, which will be detailed in the next section.

3. Integral-Type Edge-Event-Triggered Policy

Here, the control strategy will be introduced. The designed policy on combined
relative state measurements is given as follows:

ui(t) = −cKzi(ti
k), t ∈ [ti

k, ti
k+1), i = 1, 2, · · · , N, (3)

where zi(t) = ∑j∈Ni
aij
(
xi(t)− xj(t)

)
. Here, xi(t)− xj(t) with j ∈ Ni represent the relative

states between vi and all neighboring agents vj with j ∈ Ni.
We introduce the following integral-type triggering condition. Define the state mea-

surement error between the sampled state and the current state by

ei(t) = zi(ti
k)− zi(t), t ∈ [ti

k, ti+1
k ). (4)

Each triggering instant ti
k is determined by

ti
k+1 = inf

{
t > ti

k : fi(t) ≥ 0
}

, i ∈ N, (5)

where

fi(t) =
∫ t

ti

‖ei(s)‖2 ds−
∫ t

ti

ki‖zi(ti
k)‖

2 + βe−αs ds. (6)

Here, ki, β and α are positive constants to be designed.
Denote R(t) = {rp(t)}N×1 = (H⊗ I)x(t). Under protocol (3), the closed-loop system

can be represented by

R′(t) = (IN ⊗ A)R(t)− c(HHT ⊗ BK)R(t)− c(H ⊗ BK)e(t) + (H ⊗ B1)Φ(y)

y(t) = (IN ⊗ C)x(t),
(7)

where x(t) = (xT
1 (t), xT

2 (t), · · · , xT
N(t))

T , e(t) = (eT
1 (t), eT

2 (t), · · · , eT
N(t))

T , y(t) = (yT
1 (t),

yT
2 (t), · · · , yT

N(t))
T . We note that z(t) = (E⊗ In)R(t), E = {eij} ∈ RN×N . The entries of

matrix E are defined as eij = 1 if the jth entry of R(t) is ri(t)− r·(t), or eij = −1 if the
jth entry of R(t) is r·(t)− ri(t), or eij = 0 otherwise. ie. E = HT , z(t) = (HT ⊗ In)R(t).
According to (1), Φ(y) = (φT(y1), · · · , φT(yN))

T satisfies [Φ(y) − (IN ⊗ S1)y]T [Φ(y) −
(IN ⊗ S2)y] ≤ 0. Then Φ(·) is called sector bounded within the sector [IN ⊗ S1, IN ⊗ S2].

The following theorem presents some sufficient conditions for achieving synchronism
tracking of system (2) with integral event-triggered information.
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Theorem 1. For a given positive real constant a, η > λm(S1S2 + S2S1), γ = 2kmax
1−2kmax

, kmax < 1
2 ,

if there exists a symmetric positive definite X ∈ Rn×n, a matrix Y ∈ Rp×n and positive real
constants c, such that the linear matrix inequality

Ā + B̄ IN ⊗ X H ⊗ X IN ⊗ B1 H ⊗ BY
IN ⊗ X − 1

η‖C‖2 IN×n 0 0 0

HT ⊗ X 0 − 1
aγ IN×n 0 0

IN ⊗ BT
1 0 0 −IN×m 0

HT ⊗YT BT 0 0 0 − a
c2 IN ⊗ X̄

, (8)

is negative definite matrix, where Ā = IN ⊗ (XAT + AX), B̄ = −c[HHT ⊗ (BY + YT BT)],
X̄ = In− 2X, then the system (7) with K = YX−1 consensus tracking for sector bounded within the
sector [IN ⊗ S1, IN ⊗ S2] under the integral-type edge-event-triggering condition (6). Furthermore,
no Zeno behavior occurs for all t > t0.

Proof. Choose the following Lyapunov function:

V(t) = RT(t)(IN ⊗ P)R(t), (9)

where P is a positive-definite matrix with P = X−1. Then, taking the time derivative of
V(t) along the trajectory of (7) yields

V′(t) =RT(t)
(
(IN ⊗ AT P) + (IN ⊗ PA)− c(HHT ⊗ PBK)− c(HHT ⊗ KT BT P)

)
R(t)

− RT(t)(2c(H ⊗ PBK))e(t) + RT(t)(2(H ⊗ PB1))Φ(y)

≤RT(t)
(
(IN ⊗ AT P) + (IN ⊗ PA)− c(HHT ⊗ PBK)− c(HHT ⊗ KT BT P)

+
c2

a
(HHT ⊗ PBKKT BT P)

)
R(t) + aeT(t)e(t) + RT(t)[2(H ⊗ PB1)]Φ(y),

(10)

where we use the fact that −RT [2(H ⊗ PBK)]e ≤ 1
a RT(HHT ⊗ PBKKT BT P)]R + aeTe for

any positive real constant a to derive the above inequality. However, a has to be fixed due
to the product of a and X.

In addition, it follows from the event condition (6) that∫ t

t0

‖e(s)‖2 ds ≤ 1
1− 2kmax

∫ t

t0

2kmax‖z(s)‖2 + βNe−αs ds, (11)

Noting that kmax = maxi∈{1,2,...,N}ki <
1
2 and z(t) = (HT ⊗ In)R(t). Then, integrating (10)

from t0 to t, one gets

V(t)−V(t0) ≤
∫ t

t0

RT(s)
(
(IN ⊗ AT P) + (IN ⊗ PA)− c(HHT ⊗ PBK)− c(HHT ⊗ KT BT P)

+
c2

a
(HHT ⊗ PBKKT BT P)

)
R(s) + aeT(s)e(s) + RT(s)(2(H ⊗ PB1))Φ(y) ds

≤
∫ t

t0

RT(s)
(
(IN ⊗ AT P) + (IN ⊗ PA)− c(HHT ⊗ PBK)− c(HHT ⊗ KT BT P)

+
c2

a
(HHT ⊗ PBKKT BT P) +

2akmax

1− 2kmax
(ET E⊗ In)

)
R(s) + RT(s)(2(H ⊗ PB1))Φ(y)

+
aβN

1− 2kmax
e−αs ds.

(12)
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Similarly, by the fact that RT(2(H ⊗ PB1))Φ(y) ≤ RT(IN ⊗ PB1BT
1 P)R +

((H ⊗ Im)Φ(y))T((H ⊗ Im)Φ(y)), we have

V(t)−V(t0) ≤
∫ t

t0

RT(s)
(
(IN ⊗ AT P) + (IN ⊗ PA)− c(HHT ⊗ PBK)− c(HHT ⊗ KT BT P)

+
c2

a
(HHT ⊗ PBKKT BT P) +

2akmax

1− 2kmax
(HHT ⊗ In) + (IN ⊗ PB1BT

1 P)]
)

R(s)

+ ((H ⊗ Im)Φ(y))T((H ⊗ Im)Φ(y)) +
aβN

1− 2kmax
e−αs ds,

(13)

and then, based on Lemma 1, we get

V(t)−V(t0) ≤
∫ t

t0

RT(s)
(
((IN ⊗ AT P) + (IN ⊗ PA)− c(HHT ⊗ PBK)− c(HHT ⊗ KT BT P)

+
c2

a
(HHT ⊗ PBKKT BT P) +

2akmax

1− 2kmax
(HHT ⊗ In) + (IN ⊗ PB1BT

1 P)

+ η‖C‖2 IN×n

)
R(s) +

aβN
1− 2kmax

e−αs ds.

(14)

The following, we will prove that (IN ⊗ ATP) + (IN ⊗ PA)− c(HHT ⊗ PBK)− c(HHT ⊗
KTBTP)+ c2

a (HHT⊗PBKKTBTP)+ 2akmax
1−2kmax

(HHT⊗ In)+(IN ⊗PB1BT
1 P)+η‖C‖2IN×n < 0 holds.

On the other hand, from (8), we have that
Ā + B̄ IN ⊗ X H ⊗ X IN ⊗ B1 H ⊗ BY

IN ⊗ X − 1
η‖C‖2 IN×n 0 0 0

HT ⊗ X 0 − 1
aγ IN×n 0 0

IN ⊗ BT
1 0 0 −IN×m 0

HT ⊗YT BT 0 0 0 − a
c2 IN ⊗ X2

, (15)

is a negative definite matrix, due to the fact that −X2 ≤ In − 2X and (In − X)2 = In −
2X + X2 ≥ 0. By premultipling and postmultipling the matrix inequality with diag(IN ⊗
P, IN×n, IN×n, IN×m, IN ⊗ P), along with K = YX−1.

Â + B̂ IN×n H ⊗ In IN ⊗ PB1 H ⊗ PBK
IN×n − 1

η‖C‖2 IN×n 0 0 0

HT ⊗ In 0 − 1
aγ IN×n 0 0

IN ⊗ BT
1 P 0 0 −IN×m 0

HT ⊗ KT BT P 0 0 0 − a
c2 IN×n

, (16)

is negative definite, where Â = IN ⊗ AT P + PA, B̂ = −c[HHT ⊗ (PBK + KT BT P)].
Then, using the Schur complement lemma, we obtain that

Â + B̂ + Ĉ IN×n H ⊗ In IN ⊗ PB1
IN×n − 1

η‖C‖2 IN×n 0 0

HT ⊗ In 0 − 1
aγ IN×n 0

IN ⊗ BT
1 P 0 0 −IN×m

 < 0, (17)

where Ĉ = c2

a (HHT ⊗ PBKKT BT P). Similarly, we have that[
Â + B̂ + Ĉ + IN ⊗ PB1BT

1 P + aγ(HHT ⊗ In) 0
0 − 1

η‖C‖2 IN×n

]
< 0, (18)

being equivalent to Â + B̂ + Ĉ + IN ⊗ PB1BT
1 P + aγ(HHT ⊗ In) + η‖C‖2 IN×n < 0. i.e.,

(IN ⊗ AT P) + (IN ⊗ PA) − c(HHT ⊗ PBK) − c(HHT ⊗ KT BT P)
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+ c2

a (HHT ⊗ PBKKT BT P) + aγ(HHT ⊗ In) + (IN ⊗ PB1BT
1 P) + η‖C‖2 IN×n < 0. There-

fore, the above matrix is negative definite, with defined as −P̂. Then

V(t)−V(t0) ≤
∫ t

t0

−RT(s)P̂R(s) +
aβN

1− 2kmax
e−αs ds

≤
∫ t

t0

−λmin(P̂)‖R(s)‖2 +
aβN

1− 2kmax
e−αs ds

(19)

where λmin(P̂) is the minimum eigenvalue of the matrix P̂. Inequality (19) yields

∫ t

t0

‖R(s)‖2 ds ≤ V(t0)α(1− 2kmax) + aβNe−αt0

α(1− 2kmax)λmin(P̂)
(20)

based on the fact that V(t) ≥ 0, e−αt > 0, As a result,
∫ t

t0
‖R(s)‖2 ds has an upper bound.

Furthermore, we implies that V(t) is bounded, and hence, V′(t) is also bounded. Thus, we
can further have that d2

dt2

∫ t
t0
‖R(s)‖2 ds is bounded. According to Barbalat’s Lemma, one

has that

lim
t→∞

d
dt

∫ t

t0

‖R(s)‖2 ds = lim
t→∞
‖R(s)‖2 = 0. (21)

Therefore, the synchronization is achieved.
Next, we show that no Zone behavior occurs. If there is a lower bound on the inter-

event intervals of any agent in the integral-type event condition (6), Zeno-free behavior
can be assured. Let us consider the derivative of ei(t) over the interval [ti

k, ti
k+1).

e′i(t) =− z′i(t)

=− ∑
j∈Ni

(x′i(t)− x′j(t))

=− Azi(t) + cBK ∑
j∈Ni

(
zi(ti

k)− zj(t
j
k(t))

)
− B1 ∑

j∈Ni

(
φ(yi)− φ(yj)

)
≤‖A‖‖ei(t)‖+ Ξi

k,

(22)

where tj
k(t) denotes the latest triggering time instant of agent j for t < ti

k, with

Ξi
k = maxt∈[ti

k ,ti
k+1)
‖−Azi(ti

k) + cBK ∑j∈Ni
[zi(ti

k)− zj(t
j
k(t))]‖ + ∆. The matrix

B1 ∑j∈Ni
[φ(yi)− φ(yj)] is bounded by ∆, since φ(yi)− φ(yj) goes to zero as t→ ∞.

Then, the derivative of ‖ei(t)‖2 satisfies

d
dt
‖ei(t)‖2 ≤2‖ei(t)‖‖e′i(t)‖

≤2‖ei(t)‖
(
‖A‖‖ei(t)‖+ Ξi

k

)
≤(2‖A‖+ 1)‖ei(t)‖2 + (Ξi

k)
2,

(23)

Using the comparison principle, one can further obtain that

‖ei(t)‖2 ≤(Ξi
k)

2
∫ t

ti
k

e(2‖A‖+1)(t−s) ds

≤(Ξi
k)

2(t− ti
k)e

(2‖A‖+1)(t−ti
k).

(24)
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On the other hand, when triggering condition (6) is satisfied, the next event time ti
k+1 is

obtained from fi(t) = 0. The sufficient condition is obtained to guarantee
fi(t) ≤ 0, t ∈ [ti

k, ti
k+1):∫ t

ti
k

‖ei(s)‖2 ds ≤(Ξi
k)

2
∫ t

ti
k

(s− ti
k)e

(2‖A‖+1)(s−ti
k) ds

≤
(Ξi

k)
2

2‖A‖+ 1
(t− ti

k)
(

e(2‖A‖+1)(t−ti
k) − 1

)
,

(25)

Accordingly, with Equation (25), one obtains

∫ t

ti
k

‖ei(s)‖2 ds ≤
(Ξi

k)
2

2‖A‖+ 1
(t− ti

k)
(

e(2‖A‖+1)(t−ti
k) − 1

)
≤ki‖zi(ti

k)‖
2(t− ti

k)

≤
∫ t

ti
k

ki‖zi(ti
k)‖

2 + βe−αs ds,

(26)

Letting τi = t− ti
k and combining with the condition (26), one gets

(Ξi
k)

2

2‖A‖+ 1

(
e(2‖A‖+1)τi − 1

)
= ki‖zi(ti

k)‖
2. (27)

In order to show τi > 0, we proceed by contradiction. Suppose that τi < 0, the left
side of (27) is negative, whereas the right side of (27) is positive. Furthermore, if τi = 0, the
left side of (27) is zero, which is not equal to ki‖zi(ti

k)‖
2. Equation (27) implicitly defines τi

as a positive lower bound between any two consecutive event instants. Hence, no Zeno
behavior occurs. The proof is completed.

Remark 1. To select the appropriate parameters a, η > λm(S1S2 + S2S1), γ = 2kmax
1−2kmax

, kmax < 1
2

to guarantee the condition (8), we analyze the matrix. Let a = c2 and γ = 1
c3 i.e., k = 1

2c3+2 < 1
2 .

It follows that matrix (8) can be represented as
Ā + B̄ IN ⊗ X H ⊗ X IN ⊗ B1 H ⊗ BY

IN ⊗ X − 1
η‖C‖2 IN×n 0 0 0

HT ⊗ X 0 −cIN×n 0 0
IN ⊗ BT

1 0 0 −IN×m 0
HT ⊗YT BT 0 0 0 −IN ⊗ X̄

. (28)

Therefore, only the sufficiently large c and η > λm(S1S2 + S2S1) are needed to ensure that the
inequality holds.

Remark 2. For the triggering condition (6), only the integral of ‖ei(t)‖2 from each triggering
instant ti

k to the time t, needs to be less than a designed variable in time intervals, and ‖ei(t)‖2 does
not need to be less than a given variable at any time. That is, the proposed mechanism relaxes the
requirement in traditional event-triggered control [13–17,19–23,25]. Then, we design the following
nonintegral-type event condition

ti
k′+1 = inf

{
t > ti

k′ : f ′i (t) ≥ 0
}

, i ∈ N,

f ′i (t) = ‖ei(t)‖2 − ‖zi(ti
k)‖

2 − βe−αt ≥ 0.
(29)

where {ti
k′}k′∈Z≥0

represents the triggering instant sequence of agent vi. Under the system (2) and
control protocol (3), it can achieve synchronization asymptotically, and its minimum inter-event
interval is less than Theorem 1.
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Remark 3. The triggering function (6) has a hybrid form, which contains time-dependent item∫ t
ti
k

βe−αs ds and state-dependent item
∫ t

ti
k
‖zi(ti

k)‖
2 ds. By (19) and (20),

∫ t
ti
k

βe−αs ds ensures a
positive lower bound of the inter-event intervals. There are two parameters β and α influencing the
convergence rate of agents’ states. Sufficiently small β and sufficiently large α can reduce the lower
bound of the inter-event intervals, but make it converge quickly. Then, using technically studies on
these influences, we can qualitatively adjust these parameters in practical applications.

Remark 4. The proposed Lyapunov function is positive, while its derivative is not negative all the
times. Moreover, the integral

∫ t
t0

dV(s)
ds ds is nonnegative at some time due to the existence of the

time-dependent item
∫ t

ti
k

βe−αs ds in the proposed triggering function, which is different from the
results on single nonlinear systems. Therefore, the application of Barbalat’s Lemma can guarantee
the convergence results.

4. Integral-Type Edge-Self-Triggered Policy

In the event-triggered formulation, it becomes apparent that continuous monitoring
of the measurement error norm ‖e(t)‖ is required to check condition (6). In the following
self-trigged control, this requirement is relaxed. Specifically, the next time ti

k+1 at which
control law is updated is predetermined at the previous event time ti

k and no state or error
measurement is required in between the control updates. Define an increasing positive
sequence ki

0, ki
1, · · · , ki

q̄, taking into account the effects of neighboring agent updates, with
ti
k = tki

0
and tki

q̄
≤ ti

k+1. By the inequality (22), the measurement error ei(t) satisfies

‖ei(t)‖ ≤ A‖ei(t)‖+ Ξi
ki

q
, (30)

where

Ξi
ki

q
=
∥∥∥−Azi(ti

k) + cBK ∑
j∈Ni

(
zi(ti

k)− zj(tki
q
)
)∥∥∥+ ∆, (31)

and A = ‖A‖. Solving such inequality in t ∈ [tki
q
, tki

q+1
], q = 0, 1, · · · , q̄− 1, we have

‖e′i(t)‖2 ≤e2At
(
Mi

ki
q

)2
+ 2Mi

ki
q
Ξi

ki
q

(
e
A(2t−t

ki
q
)
− eAt

)
+

(Ξi
ki

q
)2
(

e
A(t−t

ki
q
)
− 1
)2

A2 ,
(32)

where

Mi
ki

q
=

q−1

∑
r=0

Ξi
ki

r

(
e−Aki

r − e−Aki
r+1

)
A . (33)
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Here, Ξi
ki

q
and Mi

ki
q

are fix up for any t ∈ [tki
q
, tki

q+1
], q = 0, 1, · · · , q̄− 1. Defined a

variable τi
k = τi

k(t) = t− ti
k, we can now compute

∫ ti
k+τi

k

ti
k

‖ei(s)‖2 ds ≤
(Ξi

ki
q
)2

A2 (τi
k)

2 +
(

e2A(ti
k+τi

k) − e2Ati
k

)
 (Mi

ki
q
)2

2A +
Mi

ki
q
Ξi

ki
q
e
−At

ki
q

A +
(Ξi

ki
q
)2e
−2At

ki
q

2A3



−
(

eA(t
i
k+τi

k) − eAti
k

)2Mi
ki

q
Ξi

ki
q

A +
2(Ξi

ki
q
)2e
−At

ki
q

A3

,

(34)

By (6) and (34), the self-triggered function is as follows:

f̃ (τi
k) =

(Ξi
ki

q
)2

A2 (τi
k)

2 +
(

e2A(ti
k+τi

k) − e2Ati
k

) (Mi
ki

q
)2

2A +
Mi

ki
q
Ξi

ki
q
e
−At

ki
q

A +
(Ξi

ki
q
)2e
−2At

ki
q

2A3



−
(

eA(t
i
k+τi

k)−eAti
k

)2Mi
ki

q
Ξi

ki
q

A +
2(Ξi

ki
q
)2e
−At

ki
q

A3

− ki‖zi(ti
k)‖

2τi
k−

β

α
e−αti

k

(
1−e−ατi

k

)
,

(35)

For each i = 1, 2, · · · , N the self-triggered ruling defines the next update time as
following: if there is a τi

k > 0 such that f̃ (τi
k) = 0, the next update time ti

k+1 take place
at most τi

k time units after ti
k. Agent vi also checks the condition (35) when its neighbors

updated. Otherwise, if the inequality f̃ (τi
k) < 0 holds for all τi

k > 0, then agent vi waits
until the next update of the control law of one of its neighbors to recheck its condition.

According to the above analysis, we give Algorithm 1 as follows:

Algorithm 1 Integral-Type Edge-Self-Triggered Control Algorithm

Step 1. Set the algorithm execution time T . At initial time t = t0, let k = 0, ti
k = t0, q = 0

and ki
q = 0. Let zi(t) = zi(t0); update ui(t0) = −cBKzi(t0); compute Ξi

ki
q

andMi
ki

q

by (31) and (33); compute maximum allowable value τi
k by (35) such that f̃ (τi

k) = 0.
Step 2. When 0 < t ≤ T , check the events related to agents vi, vj; perform the following

steps:
i. If any agent updated before ti

k + τi
k, let q = q + 1; recompute Ξi

ki
q

andMi
ki

q
by

(31) and (33), such that f̃ (τi
k) = 0;

ii. If there is no agent updated before ti
k + τi

k, the event related to agent vj,
occurs at ti

k + τi
k; let k = k + 1; update the event instant ti

k; let zi(t) = zi(ti
k);

update ui(ti
k) = −cBKzi(ti

k); let q = 0; compute Ξi
ki

q
andMi

ki
q

by (31) and (33);

compute maximum allowable value τi
k by (35) such that f̃ (τi

k) = 0.

Step 3. When t > T , jump out of Algorithm 1.

Theorem 2. Under the assumptions and conditions in Theorem 1, the system (2) with the control
law (3) and Algorithm 1 can achieve synchronization for any initial condition in RN . Furthermore,
no Zeno behavior occurs for all t > t0.
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Remark 5. The designed distributed integral-type edge-event-triggered policy still requires contin-
uous monitoring of measurement errors. The self-triggered control can solve this problem. That
is, the equipped sensors only perform intermittent sampling, which can further reduce the num-
ber of sensor measurement samples and then save system resources. Based on the self-triggered
policies [26–28], a distributed integral-type edge-self-triggered algorithm is proposed in this paper.
This algorithm, in addition to intermittent updates, schedules sensors measurements intermittently.

5. Simulations

In this section, we use an example to illustrate the effectiveness of the results developed
in above sections. We consider Chua’s circuit, which is described by the following system:

x′1(t) = −h(m1 + 1)x1 + hx2 + f (x1),

x′2(t) = x1 − x2 + x3,

x′3(t) = −gx2,

(36)

where x1, x2, x3 ∈ R. f (x1) = −h(m2 − m1)(|x1 + 1| − |x1 − 1|), belonging to the sector
[0, 2], represents the change in resistance vs. Choosing the parameters as h = 0.25, g = 1,
m1 = 3, and m2 = −1. Then, we can rewrite (36) in the form of a Lur’e system with control
input u ∈ R3 

x′(t) = Ax + Bu + B1z,

y = Cx,

z = φ(y),

(37)

with x = [x1, x2, x3]
T , A =

 −1 0.25 0
1 −1 1
0 −1 0

, B =

 1
0
0

, B1 =

 1
0
0

, C = [1 0 0], and

φ(y) = |y + 1| − |y− 1|. Its Lur’e-type nonlinearity satisfies the sector bounded condition
φ(y)(φ(y) − 2y) ≤ 0 with S1 = 0 and S2 = 2. Taking (37) as each agent dynamics,
a network of five such agents is shown in Figure 1. The interconnection topology is
undirected and connected.

Figure 1. Communication topology.

Let Y = [1, 0, 0] and η = 1. By using the Matlab LMI Control Toolbox to make the
matrix (8) negative, we can compute the symmetric positive definite matrix

X =

 0.4995 −0.0058 0.0074
−0.0058 0.4346 0.0833
0.0074 0.0833 0.3940

,

and c = 1.0004, respectively. Take ki = 0.1 ∗ 0.01i < 1
2 , β = 0.11, and α = 1.85. Here, all

the above parameters satisfy the conditions in Theorem 1. The results of the nonintegral-
type edge-event-triggered policy (under condition (29)), the integral-type edge-event-
triggered policy (under condition (5)) and the integral-type edge-self-triggered policy
(under Algorithm 1) are shown in Figures 2–4, respectively. Tables 1 and 2 are the event
numbers and average sampling intervals under the triggering mechanisms (5), (29), and
Algorithm 1. Obviously, compared with the nonintegral-type event-triggered control
in (29), the integral-type edge-event-triggered control can reduce sampling frequency,
thereby reducing system resource consumption. Moreover, the integral-type edge-self-
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triggered control avoids continuous monitoring of all measurement errors, which further
reduces sensor resource consumption at the expense of increased sampling frequency.

Figure 2. Nonintegral–type edge-event-triggered policy in (29).

Figure 3. Integral–type edge-event-triggered policy in (5).

Figure 4. Integral–type edge-self-triggered policy in Algorithm 1.
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Table 1. The event numbers under the triggering mechanisms (29), (5), and Algorithm 1.

Agents v1 v2 v3 v4 Total Numbers

The mechanism in (29) 230 200 258 156 844
The mechanism in (5) 86 86 127 53 352
Algorithm 1 131 138 132 128 529

Table 2. The average sampling intervals under the triggering mechanisms (29), (5), and Algorithm 1.

Agents v1 v2 v3 v4 Total Numbers

The mechanism in (29) 0.087 0.100 0.078 0.128 0.095
The mechanism in (5) 0.233 0.233 0.157 0.377 0.227
Algorithm 1 0.153 0.145 0.152 0.156 0.151

6. Conclusions

In this paper, the synchronization problem of multi-agent systems with Lur’e nonlinear
dynamics has been studied via integral-type edge-event- and edge-self-triggered policies.
In event-triggered control, the provided LMI condition ensures the convergence of the
considered system. Additionally, Zeno-free triggering has also been strictly proven. This
study relaxes the conditions of the traditional event-triggered mechanism, thereby resulting
in lower sampling frequencies. Besides, the integral-type self-triggering is further designed
to avoid continuous monitoring required in integral-type edge-event-triggered control,
thereby saving sensor resources. Further studies involve directed graphs, prescribed
performance control, and reinforcement learning.
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