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Abstract: In this work, we investigated tessellating cellular (or lattice) structures for use in a low
thermal expansion machine frame. We proposed a concept for a lattice structure with tailorable
effective coefficient of thermal expansion (CTE). The design is an assembly of two parts: a lattice
outer part and a cylindrical inner part, which are made of homogenous materials with different
positive CTEs. Several lattice design variations were investigated and their thermal and mechanical
performance analysed using a finite element method. Our numerical models showed that a lattice
design using Nylon 12 and ultra-high molecular weight polyethylene could yield an effective in-plane
CTE of 1× 10−9 K−1 (cf. 109× 10−6 K−1 for solid Nylon 12). This paper showed that the combination
of design optimisation and additive manufacturing can be used to achieve low CTE structures and,
therefore, low thermal expansion machine frames of a few tens of centimetres in height.

Keywords: coefficient of thermal expansion; lattice structure; metrology frame; finite element
analysis; additive manufacturing

1. Introduction

Temperature fluctuations, even in controlled laboratory environments, can cause align-
ment drift in high-precision measuring machines, as their support frames undergo thermal
expansion and contraction [1]. This can lead to significant measurement uncertainty and,
therefore, represent a significant issue in precision engineering [2]. It is desirable to use
structures with low, or ideally zero, coefficient of thermal expansion (CTE) in such systems,
but low-CTE structures are difficult to design and fabricate [1]. The geometrical complexity
enabled by additive manufacturing (AM) provides new opportunities [3–7] for low-CTE
structures for precision measuring machines but, to the authors’ knowledge, there is no
established design route to achieve this.

The design of structures with low or tailorable CTE is a growing research topic,
with applications identified in aerospace, optical measurement systems, and precision
instruments [8–10]. For example, Sigmund et al. [11] proposed three-phase composites
(Invar, nickel and voids) using topology optimisation to design structures with positive,
zero, and negative CTE. Akihiro et al. [12] and Takezawa et al. [13] applied the same
approach to the internal geometry of porous composites, resulting in planar negative
CTE structures. Takezawa et al. [13] concluded that topology optimisation is the most
effective structural design method for minimising thermally induced stress and maximising
structural stiffness. Their structures had CTEs in the range of 300% to 1000% of those of the
constituent materials, thus demonstrating that advanced computer design techniques can
be used to create tailorable CTE structures [13].

Lakes, following another novel design route, based their tailorable-CTE structure on
a repeating hexagonal lattice with bi-material ribs [14]. The ribs were made of bonded
layers, resulting in bending under increasing temperature. From this concept, Lakes
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also proposed a tetrakaidecahedral foam cell, resulting in large positive, zero, and large
negative CTE structures. Wu et al. [15] similarly proposed two-dimensional (2D) and
three-dimensional (3D) lattices with bi-material elements. Their 2D lattices had aluminium
and copper as the constituent materials (with CTE = 2.3 × 10−5 K−1 and 1.85 × 10−5 K−1,
respectively), resulting in an effective CTE of −68.1 × 10−6 K−1 for the lattice structure.

An innovation in the design of low-CTE structures came from Jefferson et al. [16], who
proposed a lattice with two dissimilar materials and an assembly step, in which the voids of
a continuous honeycomb structure were filled with ‘inserts’ of a higher-CTE material; this
formed a hybrid structure with a predicted CTE of close to zero. Bi-material solutions for
low and tailorable CTE structures were examined extensively, with the results summarised
in Table 1. Based on Table 1, previous bi-material lattice designs have been fabricated in
a wide range of metals and polymers, and have provided effective CTE in the range of
−4 × 10−4 K−1 to 1 × 10−3 K−1.

The production of low-CTE bi-material lattice structures requires advanced manufac-
turing techniques or several sequential manufacturing steps. Such structures have been
fabricated previously using multi-material AM processes [12,13,15,17–19], conventional
manufacturing techniques followed by joining [15,17,20–22], and combinations of both
techniques [8,23]. From these publications, it is clear that the designer of a low-CTE bi-
material lattice needs to consider both the complexity and manufacturability of the lattice,
as well as the challenge of assembly. Our proposed approach is to simplify as far as possible
the design requirements for a low-CTE lattice by utilising high-CTE inserts of a simple
cylindrical geometry, which are made from a commonly available polymer.

In this paper, we proposed a new and practicable design method for structures which
provide low planar CTE, with an emphasis on meeting the performance requirements
of a precision instrument support frame. We described the low planar CTE bi-material
structural design concept, based on a repeating AM unit cell and high-CTE inserts. Our
numerical modelling showed that planar tailored thermal expansion can be achieved by
controlling the internal AM lattice geometry and through the suitable selection of the
fabrication materials.

Table 1. Summary of current tailored thermal expansion lattice structures.

Paper Reference Structure Type Material(s) Effective CTE (10−6 K−1)

[8] Lightweight cellular metal
composites Aluminium and Invar −14 to 17.1

[11] Composites with extremal CTEs
using topology optimisation Invar and nickel −4.97 to 35.0

[12] A porous material with planar
negative CTE

VeroWhitePlus and
TangoBlack Plus −434 to 396

[13] Porous composites with
tunable CTE

VeroWhitePlus and
TangoBlack Plus −300 to 1000

[14] A repeating hexagonal lattice
with bi-material ribs

Two materials with CTE
difference of 10−5 K−1

Large positive, zero, and
large negative

[24] A honeycomb lattice with
bi-material ribs Invar and steel Zero

[15] 2D and 3D lattices with
bi-material elements Aluminium and copper −68.1

[25] Planar chiral lattices and
cylindrical shells

Stainless steel 431 or Al7075,
and Invar −65.77 to 91.64

[16] A continuous honeycomb
structure with inserts Two different CTE materials Near-zero

[17] An Octet bi-materials Al6061 and Ti–6Al–4V 0.17
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Table 1. Cont.

Paper Reference Structure Type Material(s) Effective CTE (10−6 K−1)

[26]
2D metamaterials using

bi-material re-entrant planar
lattice structures

Stainless steel 431 or Al7075,
and Invar −3 to 2.5

[27]
3D metamaterials using

bi-material re-entrant planar
lattice structures

Stainless steel 431 or Al7075,
and Invar −8.69 to −5.22

[28] Micro-lattice composite structure Two different CTE materials Negative or zero

[20]
Stretch-dominated planar lattices

with the low CTE with
high stiffness

Al7075 and Ti–6Al–4V Zero with high stiffness

[23] Stretch-dominated planar lattices
in the micro-scale (thin film) Aluminium and titanium −0.6

[18]
1D to 3D multi-stable architected

materials with zero Poisson’s
ratio and controllable CTE

Polyamide 12 and glass beads
reinforced polyamide 12

Large positive, zero, and large
negative

[29] Lattice cylindrical shells with
tailorable axial and radial CTE

Stainless steel 431 or Al7075,
and Invar −64.6 to 88.0

2. Methodology
2.1. Motivation and Lattice Design Concept

The motivating application for this investigation is a machine frame to support preci-
sion measurement equipment (e.g., cameras and optical projection systems). Such a frame
would ultimately be used in a temperature-controlled metrology laboratory, with the tem-
perature range around 19–23 ◦C. Figure 1 shows an example of the use of the (40 × 20 × 30)
cm lattice with the precision measurement equipment. The thermal expansion of the
frame over this temperature range should not be greater than the resolution of the preci-
sion measurement equipment [30], so it does not dominate measurement uncertainty for
the instrument.
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Figure 1. Illustration of precision measurement equipment with the 8 × 4 × 6 lattice; an optical
vertical dilatometer.

To address the need of low planar CTE frames, lattice designs were developed and
examined for their ability to provide a minimal, or zero, planar thermal expansion. A single-
material lattice will generally possess similar CTE to a solid structure composed of the same
material [31]. Thus, we focused on multi-material design solutions to obtain tailorable
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thermal expansion. The principal challenge was how the internal lattice geometry could be
created to minimise the structure’s CTE using two different positive CTE materials with
void spaces.

Initial concept lattice designs were modelled using computer-aided design (CAD)
before being meshed and analysed using a finite element (FE) method. Mesh convergence
analyses were carried out to ensure that the mesh density was sufficient to accurately
predict the performance of the lattices. Using modelling and numerical analysis in this
way provides a relatively inexpensive tool for the examination (and elimination) of concept
designs in comparison with manufacture and physical testing. Finally, the most promis-
ing candidate design was examined in detail using computational methods prior to its
manufacture and assembly being demonstrated.

The low-CTE lattice design was created as a unit cell which was then tessellated into
a lattice structure (Figure 2). The unit cell was composed of a lattice outer part (marked
‘Low-CTE’ in Figure 2) and a cylindrical inner part (marked ‘High-CTE’). The lattice outer
part contained the CTE-minimising mechanism, and was intended to be made using an
AM process, particularly polymer laser powder bed fusion (LPBF). The cylindrical inner
part was selected from a range of conventional industrial materials and was, therefore, not
restricted by the limited materials selection associated with LPBF. Polyamide 12 (Nylon 12)
was chosen as a relatively low-CTE material for the lattice outer part because it processes
well by LPBF to enable complex parts to be manufactured with a good combination of
geometrical accuracy and mechanical performance [32]. Ultra-high-molecular-weight
polyethylene (UHMWPE) was chosen as a relatively high-CTE material for the cylindrical
inner part because it provides a high value of CTE, good impact resistance, very low
coefficient of friction, and self-lubricating performance [33], which is advantageous in the
assembly and performance of the proposed two-material structure. The two parts were
manufactured separately then hand assembled by inserting the cylindrical inner part into
the centre of the lattice outer part.
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Figure 2. A concept of a single-unit cell (a) and a 4 × 4 cell lattice structure (b).

The design of the lattice outer part is illustrated in Figure 3. The design comprised
four CTE-minimising layers, each connected to a load-bearing pillar along one of its edges.
The deformation mechanism section was designed as a hollow octagonal prism with eight
connecting struts, intended to bend when the inner part expanded in response to increased
temperature. This bending provides a complementary deformation that minimises the
structure’s planar CTE. The length of the hollow octagonal prism (in the Y-axis) was 0.94 L,
where L is the lattice side length. The prism is offset (in the Y-axis) by 0.03 L from both the
top and bottom surfaces. In addition, the lattice was designed to expand along the diagonal
directions, as shown in Figure 3b, providing more space for the load-bearing pillars at the
cell’s corners where they can be thicker and stiffer than they would be if they were placed
at the cell’s faces.

The four CTE-minimising layers had different orientations around the Y-axis: 0◦,
90◦, 180◦, and 270◦, as illustrated in Figure 3b. The layers formed two pairs, according
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to their connectivity with the load-bearing pillars along the cell’s edges. The two layers
connected to diagonally-opposite pillars were connected by the struts of the octagonal
prism discussed above.
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deformation movement of the lattice).

Tessellation of the unit cell in order to construct a lattice structure was then inves-
tigated. This posed a challenge because the unit cell was not rotationally symmetric in
the XZ plane, resulting in different CTEs in each direction; however, it is desirable to
engineer a structure with isotropic planar CTE. In Figure 4, the layers in the unit cell are
numbered according to the position of the load-bearing pillar (top view of Figure 4a).
Layers 1, 2, 3, and 4 (front view of Figure 4a) are the lowest layer, the second-lowest layer,
etc., respectively. The symbol ‘P’ was used to represent the orientation of the unit cell, as
shown in Figure 4b. Five potential patterns were selected and created by changing the
orientation around the Y-axis and combining them into 2 × 1 × 2 lattices, as shown in
Figure 4b. We investigated the 1st pattern to demonstrate the CTEs of a tessellated lattice
and the difference between the mean CTEs in the X- and Z-axes of each composed lattice.
A 1 × 1 × 1 lattice up to a 4 × 1 × 4 lattice (Figure 5) were chosen for this investigation.
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2.2. The Finite Element Method

Concept lattice designs were modelled in SolidWorks 2018 to obtain representative
CAD models, and their performances were simulated using the FE method implemented in
Abaqus 2018 and 2020. The initial lattice unit cell dimensions (i.e., in their un-heated state)
were (20 × 20 × 20) mm. The temperature of all elements in all models was raised from
19–23 ◦C, which represents the temperature variation in a typical temperature-controlled
metrology laboratory. All nodes on three of the lattice’s cubic edges were constrained in
space, as shown in Figure 6, to enable the calculation of thermally induced expansion.
The XSYMM (Symmetry about a plane X = constant (U1 = UR2 = UR3 = 0)), YSYMM
(Symmetry about a plane Y = constant (U2 = UR1 = UR3 = 0)), and ZSYMM (Symmetry
about a plane Z = constant (U3 = UR1 = UR2 = 0)) boundary conditions were applied to the
nodes on the surfaces of the YZ plane in the –X direction (labelled ‘YZ (−X)’ in Figure 6),
the XZ plane in the –Y direction (‘XZ (−Y)’), and the XY plane in the –Z direction (‘XY (−Z)’).
The thermal expansion of the lattice was calculated by examining the displacement of the
nodes on the surfaces opposite to those that were constrained. The in-plane CTE (αX,Z)
was found by taking the average of the CTEs in X-axis and Z-axis over four orientations of
the unit cell or lattice around the Y-axis: 0◦ (origin), 90◦, 180◦, and 270◦. In a preliminary
investigation, the CTE of a unit cell was calculated using the mesh dependency at different
mesh densities to determine the required mesh for accurate CTE modelling. The elements
used were ten-node tetrahedral elements (C3D10) because, in comparison with hexagonal
elements, they provided a more accurate description of the complex lattice geometry [34,35].
The number of elements per unit cell was increased from 200,000 to 1,100,000 as shown in
Figure 7. A mesh density of 440,000 elements per unit cell was sufficient to determine the
CTE of the lattice with a deviation of less than −0.4% from the 1,100,000 element result,
indicating the result is well converged. Figure 6 shows the unit cell model meshed with
440,000 elements.
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3. Results
3.1. Low Planar CTE Lattice Results

The concept design presented in the previous section has several design parameters
that may be varied to control the resulting structure’s CTE. These include the original
length of the lattice L, the original diameter of the cylindrical inner part D, and the ratio
between the CTEs of the cylindrical inner part material and the lattice outer part material
α2/α1. The ratios D/L and α2/α1 were varied, respectively, from 0.30 to 0.73 (the maximum
ratio that the lattice was designed) and from 1.10 to 2.20. Examples of the resulting lattice
cells are shown in Figure 8.
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Figure 9 shows that the concept lattice unit cell provides in-plane CTEs (αX,Z) from
approximately −62 × 10−6 K−1 to 96 × 10−6 K−1 by varying the design parameters. αX,Z
data were fitted with a first order polynomial surface function of the form

αX,Z = a + b
(

α2

α1

)
+ c

(
D
L

)
(1)
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which provides a guide allowing designers to customise the CTE of the proposed lattice
structure. The fit provides an accurate description of the data (with R2 = 0.994) over the
examined range of D/L and α2/α1.
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Figure 9. The low planar CTE lattice results and its surface fit, where L is the original length of the
lattice and D is the original diameter of the cylindrical inner part, and α2/α1 is the ratio of CTEs of
the cylindrical inner part material and the lattice outer part material.

The resulting fit parameters, with 95% confidence bounds, were found to be
a = (253 ± 10) × 10−6 K−1, b = (−132 ± 5) × 10−6 K−1, and c = (−20 ± 10) × 10−6 K−1,
which can henceforth be used to determine the D/L and α2/α1 parameters to achieve
a pre-defined CTE.

The CTEs of Nylon 12 and UHMWPE are 109 × 10−6 K−1 and 200 × 10−6 K−1 [36],
respectively. The ratio of α2/α1 for our chosen materials was, therefore, approximately 1.83,
meaning that a unit cell made of such materials can provide CTEs between 7.8 × 10−6 K−1

and 1 × 10−9 K−1.

3.2. Pattern Selection for Low-CTE Lattice Design

When a (20 × 20 × 20) mm single-unit cell was examined using the FE method de-
scribed in Section 2.2, there were differences between CTEs in the X- and Z-axes. This
anisotropic thermal expansion would be undesirable for the end-application of the preci-
sion machine frame, where predictable response is paramount. One solution to decrease
the differences between CTEs in the X- and Z-axes was to compose the unit cells in an
arrangement that compensated for the anisotropy. The in-plane CTE (in the XZ plane)
was investigated for five unique orientation patterns (see Figure 4). The 1st pattern lattice
provided the lowest in-plane CTE (5.4 × 10−8 K−1), while the 4th pattern gave the highest
in-plane CTE (29.0 × 10−8 K−1), as shown in Table 2.

Table 2. The in-plane coefficient of thermal expansion of designs of the 2 × 1 × 2 lattice.

Pattern In-Plane CTE (10−8 K−1)

1 5.4
2 12.8
3 8.9
4 29.0
5 9.5
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Table 2 shows the in-plane CTE results of five unique orientation patterns. The 1st
pattern was the lattice that was composed of the 0◦, 90◦, 180◦, and 270◦ counterclockwise
orientated unit cells in the top left, top right, bottom right, and bottom left cells, respectively.
The 1st pattern provided the lowest in-plane CTE because it was the only pattern with
connecting layers in a single plane (the XZ plane), see Figure 10c, so it means that the
displacement would occur only in the XZ plane. The deformation of the lattice due to
the expansion of the inner cylindrical part was, therefore, constrained to a single plane.
In Patterns 2 to 5, they provided higher in-plane CTEs because the arrangement of the
connecting layers were out of the XZ plane, resulting in displacements coming out of
the XZ plane (see Figure 10d). Moreover, when the 1st pattern lattice was tessellated
over a greater numbers of cells, it was observed that even numbers of unit cells provided
low CTE anisotropy (3 × 10−8 K−1 for the 2 × 1 × 2 lattice and 1 × 10−8 K−1 for the
4 × 1 × 4 lattice), as shown in Table 3, because they consisted of 2 × 1 × 2 lattices which
constrained the deformation to a single plane, e.g., 4 × 1 × 4 lattice was composed of four
sets of 2 × 1 × 2 lattice. However, this paper focuses on design concepts, and results from
larger lattices with more cells require considerably greater computational resources than
could be employed here.
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Figure 10. The effect of layer alignment on the deformation of the 2 × 1 × 2 lattice outer part. (a) shows an example of the
1st pattern; (b) shows an example of the cross-section of the 1st pattern; (c) shows an example of the cross-section of the 1st
pattern at Layer 2; and (d) shows any of the other patterns’ connecting layers.

Table 3. The in-plane coefficient of thermal expansion of designs.

Lattice In-Plane CTE (10−8 K−1) In-Plane CTE Anisotropy (10−8 K−1)

1 × 1 × 1 0.1 1379
2 × 1 × 2 5.4 3
3 × 1 × 3 8.7 149
4 × 1 × 4 0.03 1
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4. Discussion

The CTE results for the design in this paper showed that the planar CTE of the pro-
posed lattice design can be tailored by changing the ratios of D/L and α2/α1. The selection
of D and L was carried out by modifying the geometry with CAD software. The parameters
α1 and α2 were varied by the selection of the lattice outer part and the cylindrical inner
part materials. However, α2 should be greater than α1 to make the deformation mechanism
properly work.

Based on the relationship of the cylindrical inner part and the lattice outer part using
parametric constraints, when the size of the cylindrical inner part is increased, the internal
geometry of the outer part must increase to maintain physical contact. This leads to
varying quantities of material in each part, as shown in Figure 11. In turn, this will affect
the manufacturing cost of the lattice structure, since AM processes are relatively costly,
especially LPBF [7]. It is clear that the cost can be reduced by designing the lattice to have
a ratio of D/L as large as possible in this structure; however, for a target CTE of zero, this
places restrictions on the CTEs of the selecting materials.
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Figure 11. The total volume of the (10 × 10 × 10) mm unit cell by varying the ratio of D/L between
0.3 and 0.73.

Using a similar assembly technique to that examined here, Jefferson et al.’s struc-
ture [16] provided near-zero CTE, while the design in this paper can provide a wider range
of CTE including near-zero, achieved with D/L = 0.73 and α2/α1 = 1.83. Although other
polymer-based structures could provide wider ranges of CTEs than the lattice in this paper
(i.e., −434 × 10−6 K−1 to 396 × 10−6 K−1 from Akihiro et al. [12] and −300 × 10−6 K−1

to 1000 × 10−6 K−1 from Talezawa and Kobashi [13]), the internal geometries of those
structures were more complex, required additional topology optimisation software to
model the structures, and still needed an advanced multi-material AM process to fabricate.
The structure with the chosen parameters could provide a CTE of 1 × 10−9 K−1, which
was a much lower CTE than many commercial instruments, such as 23 × 10−6 K−1 for
aluminium 7075’s CTE and 10 × 10−6 K−1 for stainless steel 431′s CTE [25] of the working
surface of commercial optical breadboards.

Moreover, the 1st pattern cell tessellations composed of even numbers in both the X-
and Z-axis are recommended for low-CTE applications; however, further investigations are
required to identify and ideally exploit the cause. An added advantage of charactering CTE
via the fitted surface shown in Figure 9 is that adjustments can be made for variations in
material properties or geometrical accuracy with a small number of calibration experiments.
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5. Conclusions

The concept introduced in this paper aimed to create a planar near-zero thermal
expansion lattice structure and the designs showed that the thermal expansion could be
controlled, by the deformation mechanism in internal geometry, using a combination of
two positive homogenous materials. The design introduced the separation of load-bearing
sections and deformation mechanism sections and showed the optimised functions in the
sections of internal geometry to increase their performances. It was shown that the CTE
could theoretically be reduced to 1 × 10−9 K−1, which was the nearest to the near-zero
CTE that could be achieved from the design.

In summary, the designs illustrated how lattices could be created to obtain a wide
range of CTEs by changing the ratios of the diameter of the cylindrical inner part over the
length of the lattice, and the ratio between the CTEs of the cylindrical inner part material
and the lattice outer part material. Then, pattern selection was introduced to reduce
differences between CTEs in the X- and Z-axes of the lattices that compensated for the
anisotropy of the lattice.

6. Future Work

In future, the design will be fabricated using metal to prevent distortions of the frame
due to the weight of workpieces and precision measurement equipment [6]. Moreover, the
lattice needs to be tested in a physical experiment before being implemented in a real appli-
cation. Figure 12 shows examples of the optimised design specimens in (40 × 40 × 40) mm
and (50 × 50 × 50) mm. The lattice outer parts composed of Nylon 12 were fabricated
using an EOS Formiga P100 PBF machine. Cylindrical inner parts composed of UHMWPE
were manufactured and resized by conventional manufacturing processes.
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