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Abstract: Chinese walnuts have extraordinary nutritional and organoleptic qualities, and counterfeit
Chinese walnut products are pervasive in the market. The aim of this study was to investigate the
feasibility of hyperspectral imaging (HSI) technique to accurately identify and visualize Chinese
walnut varieties. Hyperspectral images of 400 Chinese walnuts including 200 samples of Ningguo
variety and 200 samples of Lin’an variety were acquired in range of 400–1000 nm. Spectra were
extracted from representative regions of interest (ROIs), and principal component analysis (PCA) of
spectra showed that the characteristic second principal component (PC2) was potentially effective in
variety identification. The PC transformation was also conducted to hyperspectral images to make
an exploratory visualization according to pixel-wise PC scores. Three different modeling methods
including partial least squares-discriminant analysis (PLS-DA), k-nearest neighbor (KNN), and
support vector machine (SVM) were individually employed to develop classification models. Results
indicated that raw full spectra constructed PLS-DA model performed best with correct classification
rates (CCRs) of 97.33%, 95.33%, and 92.00% in calibration, cross-validation, and prediction sets,
respectively. Successful projects algorithm (SPA), competitive adaptive reweighted sampling (CARS),
and PC loadings were individually used for effective wavelengths selection. Subsequently, simplified
PLS-DA model based on wavelengths selected by CARS yielded the best 96.33%, 95.67% and 91.00%
CCRs in the three sets. This optimal CARS-PLS-DA model acquired a sensitivity of 93.62%, a
specificity of 88.68%, the area under the receiver operating characteristic curve (AUC) value of
0.91, and Kappa coefficient of 0.82 in prediction set. Classification maps were finally generated by
classifying the varieties of each pixel in multispectral images at CARS-selected wavelengths, and the
general variety was then readily discernible. These results demonstrated that features extracted from
HSI had outstanding ability, and could be applied as a reliable tool for the further development of an
on-line identification system for Chinese walnut variety.

Keywords: hyperspectral imaging; Chinese walnuts; variety classification; identification models;
visualization

1. Introduction

Walnuts are nutrient-dense foods, which are extremely rich in unsaturated fatty
acids and phytochemicals like proteins and antioxidants [1]. Moreover, several studies
have demonstrated that the consumption of walnuts is closely related to the reduction of
metabolic syndrome and heart disease risk [2,3]. In the human diet, walnuts are widely
consumed or used to produce liquor or oil. In addition, they are often used as food additives
in a variety of foods such as baked items, ice cream, pastries, etc. [4]. The health benefits
and extensive consumption of walnuts have led to the establishment of an important
walnut market.

Appl. Sci. 2021, 11, 9124. https://doi.org/10.3390/app11199124 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4023-7999
https://orcid.org/0000-0002-2928-9798
https://doi.org/10.3390/app11199124
https://doi.org/10.3390/app11199124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11199124
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11199124?type=check_update&version=2


Appl. Sci. 2021, 11, 9124 2 of 15

Chinese walnuts (Carya cathayensis Sarg.) are more and more popular among con-
sumers due to their special organoleptic characteristics and benefits to human health.
Quality characteristics are strongly influenced by the Chinese walnut varieties. Certain
Chinese walnuts from small harvesting areas such as the Lin’an walnut (Lin’an city is
known as the capital of Chinese walnut) have high nutrient values, delicious taste and
commonly fetch high prices. The different prices based on different varieties provide a
financial incentive for undeclared adulteration or variety substitution by unscrupulous
businessmen [5]. Therefore, the identification of Chinese walnut varieties is becoming a
very important task to provide consumers exact information about the Chinese walnut
products they purchase.

Morphological detection based on appearance features is frequently used in identify-
ing walnut varieties. However, this method is not only subjective but also time-consuming.
Several other methods have been proved to be feasible in the identification, such as gas
chromatography (GC) [6], high performance liquid chromatography (HPLC) [7], nuclear
magnetic resonance (NMR) [8], etc. However, these above techniques often require long-
time sample preparation, and are high-cost, laborious and difficult for performance inter-
pretation.

In recent years, fast imaging and spectroscopic techniques have been applied as
non-destructive alternatives to detect various quality and safety traits of agricultural
products [9–11]. Among them, visible and near-infrared spectroscopy (NIRS) has been
widely investigated as an effective tool in evaluating the quality of nuts [1,12]. Yi et al. [13]
collected the NIR reflectance spectra of walnut kernel, and successfully predicted the
contents of moisture, fat, and protein. Wang et al. [14] investigated the feasibility of NIR
spectral data to detect the internal moisture of freshly harvested in-shell walnuts during
drying, and results showed that NIRS could be used to sort the walnuts into different
moisture degrees. However, one of the main shortcomings is that NIRS is specially limited
to the single-point detection of pre-selected areas in homogeneous products, which can
hardly represent the whole nut sample [15].

The hyperspectral imaging (HSI) technique simultaneously integrates conventional
spectroscopy and imaging to provide both spectral and spatial information from one
target [16]. The hyperspectral image consists of a large amount of information (a 3D
hypercube) which can be used to characterize the food more reliably than single imaging
or spectroscopy technique. This leads to its special ability for visualizing the category or
chemical composition distribution. In the last decades, HSI has received ample attention
in agricultural products including meats [17,18], cereals [19], fruits [20], vegetables [21],
and nuts [22]. In the nut industry, HSI technique has been successfully applied to assess
mildew damage [23], fungal contamination [24], moisture [25], and internal damage [26].
Recently, the quantitative or qualitative analysis of HSI mostly needs to be combined with
chemometrics [27,28]. With the application of chemometrics such as modeling, spectral
preprocessing, and image processing, the performance may be improved [29]. However,
to best of our knowledge, little work has been executed on identifying or authenticating
different Chinese walnut varieties using this rapid and non-destructive HSI tool combined
with chemometrics.

Therefore, the specific objectives of this study are to develop and optimize methodol-
ogy for identifying Ningguo and Lin’an Chinese walnut varieties by using a HSI system in
the range of 400–1000 nm. Moreover, different chemometric methods including spectral
pretreatments, wavelengths selection and modeling algorithms, will be tested to obtain a
robust, reliable but simplified model with the optimal discriminatory ability. Consequently,
the optimal simplified model will be attempted to apply back to visualize the classification
maps of Chinese walnut varieties.
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2. Materials and Methods
2.1. Chinese Walnut Samples

Samples of two typical Chinese walnut varieties, Lin’an and Ningguo, were pre-
pared. The reason was that Ningguo walnuts are similar to Lin’an walnuts in both size
and color, and hard to distinguish by the naked eye. The Lin’an walnuts were harvested
from the Lin’an district, Hangzhou city in Zhejiang Province in China, and the Ningguo
walnuts were harvested at Ningguo city in Anhui Province in China. In order to be sure
about the authenticity of walnuts, Lin’an walnuts were directly purchased from farmers
in Shichangcheng village (Qingliangfeng town, Lin’an district, Hangzhou city, 30.14◦ N,
118.95◦ E), and Ningguo walnuts were purchased directly from farmers in Jiaxiang Moun-
tain (Ningguo city, 30.67◦ N, 119.14◦ E). Defective specimens, including insect-damaged
samples, were picked out and eliminated in the study. A total of 400 samples including
200 Ningguo walnuts and 200 Lin’an walnuts harvested in September 2020 were randomly
collected. Then, the randomly selected 300 samples including 150 samples for each variety
(150 samples × 2 groups = 300 samples) were used to calibrate and cross-validate the
classification models, and the residual 100 samples (50 samples × 2 groups = 100 samples)
were used as a prediction set to verify the models. After the samples were transported
to our laboratory, they were individually sealed in plastic sealing bags and labeled by
corresponding number of 1 to 400 for convenient recording. All the samples were stored at
0–4 ◦C in the refrigerator until their hyperspectral images were captured.

2.2. Hyperspectral Images Collection

In this study, hyperspectral images were acquired using a Headwall Hyperspec MV.X
instrument at NBL Imaging System Ltd. (Guangzhou, China). The push-broom line-scan
hyperspectral system was composed of a 12-bit CMOS detector, a conveyor motivated by
a motor with a speed controller, a uniform illumination unit, a computer, and an image
collection software. The spectral sampling interval was 1.75 nm/pixel, and the number of
spatial pixels was 1024. The protection level was IP67, and the onboard hardware included
8 GB RAM and 128 GB SSD. All the collected hyperspectral images contained 301 channels
with a spectral resolution of 2 nm.

Prior to the images capture, walnut samples were gently rubbed with soft tissues to
remove any residues of dust or soil possibly present. The walnut samples were then neatly
placed on a dark non-reflective conveyor first. After that, hyperspectral images will be
captured with the movement of a platform from left to right. In order to eliminate the
noise generated by the system and the influence of surrounding environmental factors
such as humidity, white and black reference images collection was conducted before the
hyperspectral images were captured. A white reference image (W) was acquired using
a white Teflon with the reflectivity close to 100%. Dark reference image (close to 0%
reflectance, D) was obtained by completely closing camera lens with its own opaque cap.
After raw hyperspectral images were collected, the calibrated hyperspectral image (C) was
calculated using the following equation:

C = (R − D)/(W − D)× 100% (1)

where C and R indicate the calibrated and raw hyperspectral image, respectively, D denotes
the dark reference image, and W represents the white reference image. The subsequent
analyses were conducted based on the calibrated hyperspectral image, that is, the above C.

2.3. Regions of Interest Identification

In order to extract pure spectral information of Chinese walnut samples, a region of
interest (ROI) was constructed to accurately isolate the sample from background. First,
channels with very high (950 nm) and very low (416 nm) reflectance intensity were selected.
After that, a resulting image was formed by subtracting image at 416 nm (band 1) from
image at 950 nm (band 2) using ‘Band Math’ function in ENVI (Vision 5.1, ITT Visual
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Information Solutions, Boulder, CO, USA) software. In the resulting image, walnut sample
with strong contrast in background was shown. Secondly, ‘Build Mask’ function was
achieved in this image to build a binary mask based on a simple threshold segmentation at
constant value of 0.08. The mask was subsequently applied to corresponding hyperspectral
image to segment the whole sample without the background. Finally, the average spectrum
of each sample was extracted by repeating the above steps. As a result, a total of 400 spectra
were obtained to form a 400 × 301 spectral data cube. All the above processes were
performed and analyzed in the ENVI environment.

2.4. Principal Component Analysis

Principal component analysis (PCA) is a powerful method in solving multi-collinearity
or eliminating potential collinearity hidden in spectral data. In this step, PCA is applied
to decompose raw spectra into a series of new variables named principal components
(PCs) which are orthogonally projected. Then, the first few PCs with high interpretation
representing most of the samples’ information will be considered. Data variability will be
observed to analyze the distribution of sample data. PC loading lines are also commonly
used to investigate the relationship among the variables.

In current study, PCA was first employed to visualize the spectral data in different
groups. Characteristic PC loading lines were drawn to see the useful wavelengths in iden-
tifying Chinese walnut varieties. In addition, PCA was also applied to the hyperspectral
images to select the corresponding characteristic images by implementing PC transforma-
tion to the spectra of each pixel. After that, transformed PC score values of each pixel were
obtained, and thus pixel-wise PC score images were formed. As a result, similarities, and
differences among different samples were observed in effective PC score images. Spectra
PCA was conducted in Matlab (Vision 2013b, The Mathworks Inc., Natick, MA, USA), and
PC transformation was carried out in the ENVI software.

2.5. Spectral Preprocessing

The extracted raw full spectra contained external noises including scatter and trans-
mitted light variations due to uneven particle size which were unrelated to the chemical
compositions. Therefore, five appropriate different preprocessing methods were indepen-
dently applied to the raw full spectra, namely standard normal variate (SNV), detrending,
normalization, first-order derivative (1st derivative), and second-order derivative (2nd
derivative). SNV was used to eliminate the solid particle size, surface scattering, and the
change of optical path of diffuse reflection spectra [30]. Normalization was applied to elim-
inate multiplicative spectral effects by transforming the spectral vector into unit length [31].
Detrending was used to suppress the curvilinearity and baseline shifting following SNV
application. Derivatives (1st and 2nd derivatives) were conducted to remove baseline shifts
and improve resolution based on Savitzky-Golay smoothing algorithm with a gap of five
points. The aim of spectral preprocessing herein was to remove phenomena in spectra, and
improve the subsequent classification performance. All the preprocessings were conducted
employing the Unscrambler X10.1 software (CAMO, Trondheim, Norway).

2.6. Feature Variables Screening

Two different effective methods below for feature variables screening were employed
in our work. Successful projects algorithm (SPA) is a variable selection algorithm designed
to eliminate the collinearity by selecting new variables with minimal redundancy [32].
Optimal wavelengths will be chosen based on the smallest root mean squared error (RMSE)
of calibration set. In the SPA vector space, variables with the largest projection value on the
orthogonal subspace will be retained.

Competitive adaptive reweighted sampling (CARS) selects effective wavelengths
based on Monte-Carlo sampling and regression coefficients (RC) in partial least squares
regression (PLSR) model [33]. In each iteration, CARS evaluates the significance of each
wavelength based on absolute RC values in the PLSR model. The wavelengths with little
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effect will be removed, and next iteration will start with the remaining variables until all
the iterations are finished.

2.7. Modeling Methods

Partial least squares-discriminant analysis (PLS-DA) is a supervised learning feature
extraction method frequently used in spectral analysis. PLS-DA predicts the class for
each sample based on PLSR step [34]. The optimum number of latent variables (LVs) at
minimum value of the corresponding prediction errors of sum of squares (PRESS) will
be selected. In current study, to reduce the overfitting risk, calibration and prediction
sets were randomly divided based on the ratio of 3:1 (300 samples vs. 100 samples). The
optimized number of LVs in developed PLS-DA models were determined based on the
value of RMSE under two-fold ‘venetian blinds’ cross-validation. The variety values herein
were replaced using pseudo-variables of 1 and 2 (1 for Ningguo walnut, and 2 for Lin’an
walnut).

The k-nearest neighbor (KNN) algorithm is a commonly used supervised pattern
recognition method, which automatically describes nonlinear relationship according to
the K values [35]. The general steps are (1) evaluate the distance between the sample to
be classified and other samples in calibration set, (2) look for the K samples closest to the
targeted sample, (3) see the classification performance of these K samples, and finally (4)
take the group with the most occurrences as the category of the sample to be classified. In
our study, Euclidean distance evaluation method was employed, and the range of K values
was set from 1 to 10 with a cross-validation step of two based on ‘venetian blinds’ method.

Support vector machine (SVM) is a kernel-based nonlinear method which has been
proven to exhibit good performance in spectral modeling. In SVM classification, a hyper-
plane is explored to segment nonlinear spectral data of prepared samples [36]. In this study,
radial basis function (RBF) was used as the kernel function of SVM, which has strong ability
in addressing nonlinear problems. The parameters of c (the penalty coefficient) and g (the
radial width of the kernel function) for RBF-SVM were chosen in automatic optimization
process. The value ranges were set to 2−8 to 28 for both c and g searching. All the three
modeling procedures were performed in Matlab software with PLS-DA, KNN and SVM
toolboxes.

2.8. Model Performance Assessment

Performance of classification model was assessed using correct classification rate
(CCR) calculated using the following equation:

CCR =
N1

N2
(2)

where CCR indicates correct classification rate, N1 is the number of precisely sorted samples
in calibration, cross-validation, or prediction set, and N2 represents the corresponding total
number of samples in calibration, cross-validation, or prediction set.

To further evaluate the results of selected models, other indicators including sensitivity,
specificity, and Kappa coefficient were included in this study. The definitions of sensitivity
and specificity are listed below:

Sensitivity =
True Positives

True Positives + False Negatives
(3)

Specificity =
True Negatives

True Negatives + False Positives
(4)

Kappa coefficient is used to indicate the differences between reference and predicted
categories in the confusion matrix, which ranges from −1 to 1. The higher the Kappa
coefficient is, the more reliable the classification model is. Furthermore, receiver operating
characteristic (ROC) curve is usually constructed to assess and visualize the classification
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performance [37]. The area under the ROC curve (AUC) is also employed as an index
to estimate the robustness of models. Generally, a model with AUC values between 0.5
to 1 indicates that a good classification model is obtained. If the AUC is lower than 0.5,
the classification involves a random guess. The above evaluative indicators of models
were record and analyzed using the SPSS v21.0 software (Statistical Product and Service
Solutions, IBM Corporation, Armonk, NY, USA).

3. Results and Discussion
3.1. Spectral Properties

The variation of the average reflectance spectra in the spectral range of 400–1000 nm
with their individual standard deviation (SD) is illustrated in Figure 1. It could be noticed
that there were similar profiles of spectral curves between the two Chinese walnut varieties,
but spectral intensity differed especially in rang of 800–1000 nm. The general similar
spectral curves should be derived from their similar tissue composition, structure, and
color presentation in the sample surface. The intensity differences were mainly due to the
small differences in contents of surface chemical compositions (such as chlorophyll content,
water content, etc.). However, spectral reflectivity was overlapped between different
groups, so further data-driven analysis should be conducted to make a clear classification.

Figure 1. The average reflectance spectral curves of Chinese walnut samples of Ningguo and Lin’an
varieties with standard deviation (SD).

In detail, the reflectance valley at 416 nm was associated with the Soret absorption
band, which was closely related to the contents of porphyrins in chlorophyll [38]. The clear
downwards wavelength at 980 nm corresponded to the 2nd O-H stretching overtone of
water [18,39]. Another weak valley at 676 nm was responsible for chlorophyll-a [40]. As
shown in sub-windows in Figure 1, differences at these three wavelengths could be further
applied to be a basis for classifying samples of different varieties.

3.2. Exploratory Analysis

PCA was applied to visualize the spectral similarities and differences of samples of
different varieties. The PCA results based on raw spectra showed that the first two PCs
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accounted for a total of 98.19% of the cumulative spectral variances (86.16% for PC1 and
12.03% for PC2). These two PCs together showed great potential in differentiating the
two Chinese walnut varieties, so only PC1 and PC2 were retained in this study. The total
400 samples are plotted in Figure 2 based on their first two PC scores. Figure 2a shows
the score plot of PC1 vs. PC2 in the PC space, this preliminary evaluation indicated that
there was a separable observation of samples of the two different varieties. Ellipses were
drawn herein to denote their covered regions to intuitively see the distribution. Although
there was little overlap, the samples in these two groups tended to gather, respectively.
That is, Ningguo samples tended to have positive PC2 values, while Lin’an samples had
negative PC2 values. PC1 and PC2 loading lines are further shown in Figure 2b. Peaks and
valleys with high absolute coefficients were deemed to be effective. This comprehensive
analysis showed that wavelengths centered at 676 nm, 760 nm, and 980 nm can be selected
as effective wavelengths. The wavelengths of 676 nm and 980 nm were consistent with
the ones selected in spectral analysis in Section 3.1. The band at 760 nm was related to the
third stretching O-H overtone of water [41].

Figure 2. Spectra PCA for Chinese walnut samples of different varieties. (a) Score plot of PC1 against PC2, (b) PC1 and PC2

loading lines. PCA: principal component analysis; PC1: first principal component; PC2: second principal component.

As PC1 and PC2 were able to represent a total of 98.19% spectral variations, the
corresponding score images were introduced to visualize and identify the inherent rules
in spectra. Figure 3 shows the first two PC score images that transformed from calibrated
hyperspectral images ranging from 400 to 1000 nm. Pixels were given different PC score
values and displayed in different colors. It could be seen that there was no obvious
difference between Ningguo and Lin’an walnuts in PC1 score images. That is, the PC1 score
image can hardly be used for Chinese walnut varieties classification. This observation is
consistent with the results presented in spectra PCA in Figure 2a. As is also can be observed
that samples of these two varieties presented slightly different colors in PC2 score image.
The PCA and score images have demonstrated the potential separability between Ningguo
and Lin’an Chinese walnuts. A high misclassification rate was also observed due to the
similar spectral curves, and more accurate identification methods were still required.
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Figure 3. First two PC score images of Ningguo and Lin’an Chinese walnuts. PC: principal component; PC1: first principal
component; PC2: second principal component.

3.3. Performance of Classification Models Based on Full Spectra

The performance of developed PLS-DA, KNN, and RBF-SVM models with their
optimal parameters are shown in Table 1. These models were established based on raw
or preprocessed spectra (400–1000 nm) including SNV, SNV+detrending, normalization,
1st, and 2nd derivatives, respectively. Results showed that raw full spectra performed
not worse than other preprocessed spectra, and the 2nd derivative slightly decreased the
performance. The developed optimal KNN model, which had the advantage of simple
implementation, was capable in performing not bad identification with CCR of 79.00% in
the prediction set. It could be also observed that PLS-DA and RBF-SVM models presented
overall better results than KNN models with predicted CCRs above 89% in all sets. Among
them, the PLS-DA model based on raw full spectra was found to perform best with the
optimal LVs number of 13, calibration set CCR of 97.33%, cross-validation set CCR of
95.33%, and prediction set CCR of 92.00%.

As for different preprocessing methods, they were tentatively used for each model
to reduce spectral noise and scatter effects, and the preprocessing method with the best
results can be the most suitable one. The overall results implied that raw spectra were
informative enough and any extra spectral preprocessing steps done to the raw spectral
data was not necessary. Raw full spectra constructed PLS-DA and RBF-SVM models gave
both the best results compared to other preprocessed full spectra. Furthermore, since the
absolute difference among the three sets was small, PLS-DA model developed by raw full
spectra was a more robust one than the RBF-SVM model. Therefore, the PLS-DA modeling
method developed by raw spectra was chosen for further evaluation.

To further assess the capabilities of the optimal models, confusion matrices exhibiting
the specific group characteristics and affinity are presented in Table 2. As for the selected
PLS-DA model, Ningguo walnuts seemed to be more easily misclassified into Lin’an variety.
There were 5, 8, and 6 Ningguo walnuts being misclassified as Lin’an in calibration, cross-
validation, and prediction set, respectively, while the numbers that Lin’an misclassified as
Ningguo were 3, 6, and 2. The RBF-SVM models also performed better for Lin’an variety
identification than Ningguo variety in different sets. Especially in prediction set, RBF-SVM
model gave the same classification results with the PLS-DA model.
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Table 1. Performance of established classification models developed by full spectra with or without preprocessings.

Modeling
Methods

Preprocessings
Corrected Classification Rate (%)

Parameters
Calibration Set Cross-Validation

Set Prediction Set

PLS-DA

None 97.33 95.33 92.00 LVs = 13
SNV 98.67 96.00 91.00 LVs = 12

SNV + detrend 98.00 96.00 92.00 LVs = 11
Normalization 96.33 93.00 90.00 LVs = 13
1st derivative 97.67 96.00 92.00 LVs = 8
2nd derivative 96.33 88.00 86.00 LVs = 5

KNN

None 78.67 77.00 72.00 K = 6
SNV 81.67 76.67 70.00 K = 3

SNV + detrend 90.00 86.67 79.00 K = 4
Normalization 76.67 73.33 69.00 K = 7
1st derivative 87.67 84.33 70.00 K = 5
2nd derivative 72.67 69.67 62.00 K = 6

RBF-SVM

None 99.67 90.00 92.00 /
SNV 99.33 89.67 92.00 /

SNV + detrend 100.00 89.33 89.00 /
Normalization 99.67 89.33 89.00 /
1st derivative 99.33 95.00 91.00 /
2nd derivative 99.00 89.67 89.00 /

PLS-DA: partial least squares-discriminant analysis; KNN: k-nearest neighbor; RBF-SVM: radial basis function-support vector machine;
SNV: standard normal variate; LVs: latent variables.

Table 2. Confusion matrices of the optimal PLS-DA, SVM and KNN models based on full spectra.

Models Group
Calibration Set Cross-Validation Set Prediction Set

Ningguo Lin’an Total Ningguo Lin’an Total Ningguo Lin’an Total

PLS-DA
Ningguo 145 5

97.33%
142 8

95.33%
44 6

92.00%Lin’an 3 147 6 144 2 48

KNN
Ningguo 135 15

90.00%
129 21

86.67%
43 7

79.00%Lin’an 15 135 19 131 14 36

RBF-
SVM

Ningguo 150 0
99.33%

139 11
89.67%

44 6
92.00%Lin’an 2 148 20 130 2 48

PLS-DA: partial least squares-discriminant analysis; KNN: k-nearest neighbor; RBF-SVM: radial basis function-support vector machine.

3.4. Effective Wavelengths Extraction

The usage of full spectra may bring the risk of overfitting, noise and nonlinearities that
result in models with low accuracy [17]. Thus, effective wavelength selection from the full
spectra (301 bands) was carried out to search for the wavelengths carrying feature informa-
tion for the identification. In this study, SPA and CARS algorithms were individually used,
and the results are shown in Figure 4. For SPA method, the minimum and the maximum
numbers were individually set to 5 and 30 based on experiences [42]. The RMSE plot is
presented in Figure 4a, and the RMSE reduced to 0.2948 when the number of variables
reached 10. As a result, by comprehensively considering the number of variables and RMSE
values, 10 wavelengths including 960, 930, 994, 472, 790, 906, 404, 402, 416, and 588 nm
were retained in order of importance. In further steps, these 10 variables were applied as
inputs to establish SPA-PLS-DA model. As indicated in Figure 4b, a total of 15 sensitive
wavelengths selected by CARS had particular importance for the variety identification.
Specifically, in the first subplot in Figure 4b, the number of sampled variables decreased
as the sampling runs increased. It could be observed that the number began with the
largest drop, and then tapered off gradually. Redundant variables in the full spectra were
gradually eliminated in this step. In the second subplot, the RMSE value in cross-validation
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(RMSECV) was used as an evaluation indicator for the number of sampling runs. The
RMSECV value continued to decrease until the lowest value reached 296 and thereafter,
the value increased. Consequently, the minimum RMSECV value at the 296th sampling
run was used to denote a combination of effective variables. The third subplot shows
the regression coefficients path of all the 301 variables at different sampling runs. As the
RMSECV values changed, the coefficient of variables that dropped to 0 could be considered
as a feature wavelength. Therefore, based on CARS, 15 (402, 456, 458, 472, 474, 650, 812,
842, 868, 932, 952, 956, 962, 968, and 996 nm) out of 301 variables were selected. Further
classification of Chinese walnut varieties will be performed using PLS-DA based on SPA-
and CARS-selected wavelengths.

Figure 4. Wavelengths selection using SPA and CARS algorithms, (a) distribution maps of feature wavelengths selected
by SPA; (b) parameter changes with sampling runs in wavelengths selection by CARS. RMSE: root mean squared error;
RMSECV: root mean squared error in cross-validation; SPA: successful projects algorithm; CARS: competitive adaptive
reweighted sampling.

3.5. Models Developed Using Feature Wavelengths

Table 3 displays the variety identification results of the simplified models based
on selected wavelengths using three different methods. As shown, PC-PLS-DA model
exhibited the worst performance, and the main reason was that a small number of only
three variables could hardly contained all the valid information in the identification. When
SPA-PLS-DA was considered, not bad classification results were obtained that CCRs
equaled to 91.33%, 92.00%, and 89.00% in calibration, cross-validation, and prediction
sets, respectively. Our study indicated that variable selection methods for Chinese walnut
variety identification obtained different results. Similar results of using different variable
selection methods for optimal wavelength selection could be found in the literature [43].
The optimal variable selection methods would be determined and used for identifying
the variety. Moreover, previous study related to identify walnut varieties using NIRS
showed that only a total classification accuracy of 77.00% ± 1.60% was achieved based
on models developed by selected wavelengths [5]. This study showed good classification
performances using both full spectra and selected wavelengths.
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Table 3. The optimal PLS-DA modeling results developed by selected wavelengths based on different methods.

Models Number LVs
Corrected Classification Rate (%)

Calibration Set Cross-Validation Set Prediction Set

PC-PLS-DA 3 2 68.67 65.00 66.00
CARS-PLS-DA 15 11 96.33 95.67 91.00
SPA-PLS-DA 10 7 91.33 92.00 89.00

PC: principal component; PLS-DA: partial least squares-discriminant analysis; CARS: competitive adaptive reweighted sampling; SPA:
successful projects algorithm; LVs: latent variables.

Above all, the PLS-DA model using CARS features achieved best performance with
the CCRs of 96.33%, 95.67%, and 91.00% in calibration, cross-validation, and prediction
sets. To further assess the performance, the confusion matrix is shown in Table 4. The
CARS-PLS-DA model yielded a sensitivity of 93.62%, a specificity of 88.68%, AUC of 0.91,
and Kappa coefficient of 0.82 in prediction set. These results suggested that CARS-PLS-DA
model had great potential to identify Chinese walnut varieties without any chemical or
physical information.

Table 4. Confusion matrix in the three sets predicted using the optimal simplified model.

Calibration Set Cross-Validation Set Prediction Set

Ningguo Lin’an Ningguo Lin’an Ningguo Lin’an

Ningguo 146 4 143 7 44 6
Lin’an 7 143 6 144 3 47

Sensitivity 97.28% 95.42% 95.36% 95.97% 88.68% 93.62%
Specificity 95.42% 97.28% 95.97% 95.36% 93.62% 88.68%

3.6. Classification Visualization of Chinese Walnut Varieties

The advantage of HSI to acquire both spatial and spectral information makes it possible
to show the classification results of Chinese walnuts using intuitive classification maps. In
our study, the simplified CARS-PLS-DA model was transferred to predict the varieties of
each pixel. Compared to original hyperspectral images, the visual classification map could
be eventually formed. The original false-color images of Ningguo and Lin’an walnuts are
shown in Figure 5a,b. It could be seen that most of the walnuts differed little in texture or
morphology characteristics. It was difficult to discriminate different varieties by naked eye.
As shown in Figure 5c,d, the corresponding predicted varieties were marked using different
colors (red for Ningguo walnuts, green for Lin’an walnuts, and black for background). The
misclassified and well-classified pixels were clearly displayed in the classification maps.
Most of the pixels within one sample were accurately classified, however, a distribution
structured in band misclassification could be seen especially for Lin’an variety. The main
reason was that samples shook slightly as the conveyor belt slipped, and noise was brought
into the line-scanning images. Further application will focus on holding the walnuts with a
belt with sockets in images collection procedure to obtain more accurate results. Anyway,
the sample-level varieties were successfully identified with 100% accuracy, and more than
75% of the pixels were correctly identified. The visualization results indicated that HSI
together with the optimal CARS-PLS-DA model also had great potential in visualizing the
Chinese walnut varieties. This methodology was expected to be applied in modern nut
industry as a powerful tool for large-scale qualitative detection of walnuts.
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Figure 5. Classification visualization of Ningguo and Lin’an walnut varieties, (a) false-color images of Ningguo walnuts,
(b) false-color images of Lin’an walnuts, (c) classification maps of Ningguo walnuts, and (d) classification maps of Lin’an
walnuts.

The overall results indicated that HSI could become a good way for identifying
Chinese walnut varieties. Coincidentally, a recent work [44] related to this subject also
confirmed that walnut varieties can be evaluated by HSI technique. However, no attempts
of HSI-based classification visualization have been conducted previously. Our study shows
the potential of HSI for visualizing the variety categorization of Chinese walnuts. It
provides a good example for widespread application of this technique on different kinds of
nuts. The nut industry will benefit from this visual and rapid method to categorize nut
according to their variety, and direct the nut of different varieties to appropriate end-uses.

4. Conclusions

Since the traditional methods for identifying the Chinese walnut varieties are highly
time-consuming, destructive, or subjective, a method based on the hyperspectral imag-
ing (HSI) technique coupled with chemometrics was successfully applied for classifying
Ningguo and Lin’an Chinese walnuts. The first two principal component (PC) score plots
and transformed PC score visualization images were drawn to clearly show the differences
between Ningguo and Lin’an varieties. The partial least squares-discriminant analysis
(PLS-DA) based models showed strong ability for varieties classification (accuracies of
97.33%, 95.33% and 92.00% in calibration set, cross-validation set, and prediction set).
In order to reduce data dimensionality and further reduce the modeling time, the most
effective 15 wavelengths selected by competitive adaptive reweighted sampling (CARS)
were used to build a new PLS-DA model yielding 96.33%, 95.67%, and 91.00% accuracies
in the three sets. These 15 wavelengths can be likely the most potential ones in further
developing a multispectral instrument to discriminate Chinese walnut varieties rapidly
and non-destructively. Final visualization map was successfully generated to observe the
specific variety of each sample in an intuitive way. Visual differences between walnut
samples of different varieties as well as different areas of the same sample were clearly
displayed. In summary, all the results showed that HSI was feasible and beneficial in
further building online large-scale Chinese walnut varieties identification system. More
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Chinese walnuts originated from different planting areas will be further considered to
improve the models’ robustness.
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