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Abstract: Aerial continuum manipulation systems (ACMSs) were newly introduced by integrat-
ing a continuum robot (CR) into an aerial vehicle to address a few issues of conventional aerial
manipulation systems such as safety, dexterity, flexibility and compatibility with objects. Despite
the earlier work on decoupled dynamic modeling of ACMSs, their coupled dynamic modeling still
remains intact. Nonlinearity and complexity of CR modeling make it difficult to design a coupled
ACMS model suitable for practical applications. This paper presents a coupled dynamic modeling
for ACMSs based on the Euler–Lagrange formulation to deal with CR and the aerial vehicle as a
unified system. For this purpose, a general vertical take-off and landing vehicle equipped with a
tendon-driven continuum arm is considered to increase the dexterity and compliance of interactions
with the environment. The presented model is independent of the motor’s configuration and tilt
angles and can be applied to model any under/fully actuated ACMS. The modeling approach is com-
plemented with a Lyapunov-wise stable adaptive sliding mode control technique to demonstrate the
validity of the proposed method for such a complex system. Simulation results in free flight motion
scenarios are reported to verify the effectiveness of the proposed modeling and control techniques.

Keywords: aerial manipulation; continuum robot; Euler–Lagrange; modeling and control

1. Introduction

Aerial manipulations systems (AMSs) have drawn significant attention due to their nu-
merous applications ranging from inspection and maintenance to structure assembly [1,2].
In particular, aerial manipulation brings several advantages over ground-based manipu-
lation such as mobility, access and reachability [3]. The platforms of AMSs are naturally
rotor-type [2]. For instance, both quadrotors [4–6] and hexrotors [7] are popular choices
for such unmanned aerial vehicles (UAVs) in the literature. The used arms in AMSs are
typically rigid-link manipulators with limited degrees-of-freedom (DOFs) [8–14].

In the presence of established methods, the dynamics of AMSs with rigid manipulators
(AMS-RMs) have already been analyzed [8–10] and a number of control methods ([7,8,15–19])
have been proposed. However, AMS-RMs have several issues, highlighted in Table 1.
For instance, AMS-RMs are not compliant with their environment or shape of the objects,
hence requiring exact information about the object shape and position, environmental
constraints, and so on [20]. Therefore, AMS-RMs are often operated at a reduced speed
to ensure successful grasps [21]. Accordingly, preference is given to manipulators with
few DOFs, limiting their capability to compensate for disturbances caused by the vehicle
positioning errors. Moreover, external contact forces are avoided as much as possible
in order to maintain stability [21]. Such conventional AMSs can hardly be utilized for
interactive missions in confined and unstructured environments [22]. As a remedy for the
aforementioned issues, AMS with continuum robotic (CR) arms, namely aerial continuum
manipulation system (ACMS), [20] (Figure 1) and soft robots [21] have been introduced in
the literature. The advantages of CRs and ACMSs have been highlighted in Table 1 and the
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recent report [20]. For instance, mechanical compliance of ACMS can boost safety when
manipulators physically interact with the environment [23–25]. Despite the preliminary
analysis of ACMSs in [20], there are still many open problems related to their modeling.
For example, a previously reported modeling approach [20] for the continuum arm and
UAV platform was based on the decoupled dynamics assumption, which decreases the
accuracy of the model and introduces certain challenges to the whole ACMS control design.
In addition, some simplifications become unavoidable within a decoupled approach when
considering the effects of the arm on UAV and vice versa. The focus of this work will
be placed on coupled modeling of ACMS dynamics. While coupled modeling of AMS-
RMs can be found in the literature ([16,26]), coupled dynamic modeling of ACMS and its
verification remain to be done and constitute the main contribution of this paper.

Generally, there are four methods for dynamic modeling of continuum arms in the
literature including those relying on models of Cosserat rod [27], constant deformation [28],
center of gravity [29] and Lagrangian [30–32]. Our previous published paper on decoupled
modeling and control of ACMS [20] was based on Cosserat rod theory. Although this
method can be considered as an accurate modeling approach for continuum robots, it
is computationally expensive because it needs an iterative solver to satisfy the robot’s
boundary conditions at each iteration of the program. Therefore, its hardware and software
implementation for real time purposes is really problematic. Furthermore, previously
proposed Cosserat rod-based controllers in the literature [33–35] can only control the robot
in x and/or y directions using two tendons per each direction. Thus, the previous method
could not handle 3D motion control of the arm. In addition, the previous Cosserat rod-
based work can only model the arm. Therefore, Cosserat rod theory cannot be chosen for
ACMS coupled dynamic modeling.

As highlighted in [29], control design for Cosserat rod theory is really challenging
and only a few papers [33–35] have been published to address the control design of the
continuum arm using this method. Writing continuum robots formulations to facilitate
the control design process is one of the main motivations of introducing a constant defor-
mation method [29]. Recently, some control approaches utilized this method to control
continuum arms [36–38]. However, we used this method earlier to model the continuum
arm and noticed that it is even computationally more expensive than Cosserat rod theory.
Furthermore, similar to the Cosserat rod theory, it is presented for arm modeling. Therefore,
it can be selected for decoupled ACMS modeling design not for coupled approach. Finally,
the center of gravity approach [29] has the same assumption as our method. However, pre-
sented formulations for this method are too complicated, resulting in difficulty of adding
the effects of the arm on UAV and vice versa. Therefore, it can be concluded that in the
first three continuum arm modeling methods, execution time, hardware implementation,
real time 3D control and coupling with UAV are problematic. The only remaining method
that is also suitable for coupled modeling is the Lagrangian method. However, existing
Lagrangian techniques [30–32] did not present a general formulation and mostly used
Taylor expansion and many curve fittings to simplify equations. Therefore, an appropriate
Lagrangian method is needed to address these CR modelling problems in the first step.
Additionally, the coupling effect within an aerial manipulation platform should be consid-
ered to derive the whole dynamic model of ACMSs. Our previous work [20] focused on
the decoupled modelling and control of ACMSs with quadcopters as the base platform.
Within this research, we concentrated on the decoupled modelling approach, which did
not consider all interactions between the arm and its base platform. To solve this limitation
and to provide a more accurate and general dynamic model, here we consider coupled
modelling of ACMS with a multi-rotor-based platform.

Another limitation of the previous work relates to the type of UAV used in modeling.
Commonly used UAVs, in general, and quadrotors, in particular, are non-holonomic and
underactuated. These multi rotors with parallel thrusts cannot independently control
UAV’s position and orientation (pose) simultaneously [39]. Moreover, they cannot be
used for dexterous application with arbitrary generalized forces [40]. Therefore, using an
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under-actuation platform may degrade the performance of the ACMS missions. To tackle
this issue, one strategy is to exploit tilt rotors to achieve non-parallel thrust vectors besides
having at least six actuators. A fully actuated UAV has capacity to instantaneously resist
arbitrary forces and torques [39] besides the ability to hover at arbitrary orientations [41].
For aerial manipulation tasks, resisting any arbitrary wrench with fast response of exerting
forces is a significant factor. Since variable tilting propellers may not be fast enough to
deal with external wrenches [39], in this work, fixed-angle propellers are selected for aerial
continuum manipulation. While most of previous works on dexterous aerial platforms
adopted six propellers, we formulated a general model for a dexterous multirotor platform
that is independent of the number and angles of propellers.

Table 1. Comparison of rigid, continuum [20] and soft arms.

Characters Rigid Robots Continuum
Robots Soft Robots

DOF Small Infinite Infinite
Material strain Non Low High

Actuators Finite Continuous Continuous
Accuracy High High Low

Load capacity High Low Low
Safety Low High High

Dexterity Low High High
Flexibility Low High High

Working environment Structured Unstructured Unstructured
Compatibility with obstacles None Good Very Good

Manipulable objects Fixed size Variable size Variable size
Controllability Easy Hard Hard
Path planning Easy Hard Hard

Positioning Easy Hard Hard
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In this work, the modeling approach is complemented with a control technique to
demonstrate the effectiveness of the proposed modeling technique for not only dynamic
simulations but also control purposes. It is a commonly held view that AMS models, even
for rigid robotic arms, are highly nonlinear, coupled and complex. Additional complication
comes from the integration of continuum arm models that are costly for real-time control.
As highlighted in Table 1, control of CRs alone is more difficult than rigid arms and CR’s
modeling and control are currently defined as a pending challenge in the robotics com-
munity. Therefore, the coupled control of ACMSs with these high levels of nonlinearities
and uncertainties are quite challenging and can broaden a new horizon and subject of
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research to the robotic community. In this paper, we also developed an adaptive sliding
mode method for the coupled dynamic model to enable coupled control of ACMSs. The
control emphasis is on the free motion control with no grasped object to enable coordinated
position control of CRs and UAV for reaching the defined target. The designed controller
enables incorporating several advantages such as low level of complexity, ease of imple-
mentation, whole dynamic consideration, proper execution time, stability and accuracy.
Finally, the proposed modeling and control techniques are verified through simulations.

The rest of the paper is organized as follows. The coupled kinematic model of an
ACMS is presented in Section 2 while Sections 3 and 4 include coupled nonlinear dynamic
model of ACMS using the Euler–Lagrange method. In Section 5, the suggested controller
is discussed. Simulation results are presented in Section 6. Finally, Section 7 concludes
the work.

2. Kinematic Modeling

A tendon driven continuum arm attached to the center of a multi-rotor UAV is con-
sidered as the ACMS (Figure 2). The CR arm contains an elastic continuum backbone, a
number of tendon spacer disks, and a number of tendons, which can be in the form of
cables or wires. The spacer disks are fixed to the elastic backbone and the pinholes on them
are required to actuate the tendons. By pulling the tendons, the backbone bends toward
the contracted tendon.

To describe the ACMS motion, different coordinate frames are introduced (Figure 1),
with the inertial reference frame FI : {XI , YI , ZI} having the origin OI while
Fq :

{
Xq , Yq , Zq

}
possessing the origin Oq indicates the body frame attached to the

center of mass of the multi-rotor.
The position of the multi-rotor with respect to FI is indicated by pq, while its attitude

is described by Euler angles, φq =
[

ϕ θ ψ
]T containing roll, pitch, and yaw angles,

respectively. The relationship between the linear velocity of multi-rotor with respect to FI ,.
pq, and its linear velocity with respect to Fq,

.
pq

q, is defined as:

.
pq = Rq

.
pq

q, (1)

where Rq is a rotation matrix of Fq with respect to FI . The angular velocity of the multi-
rotor with respect to FI , ωq, can be determined based on the derivative of Euler angles, i.e.,

ωq = Tq
.

φq. (2)
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Using a rotation matrix and the relationship between angular velocity in the FI
coordinate system and the derivative of Euler angles given in Equation (2), the angular
velocity of the multi-rotor with respect to Fq, ω

q
q , can be found as

ω
q
q = RT

q ωq = RT
q Tq

.
φq = Q

.
φq, (3)

where Q = RT
q Tq. In addition, q =

[
q1 q2

]T is the angle vector for the arm’s end-
effector with respect to the UAV. As shown in Figure 1, the end-effector’s position can be
found using two angles, q1 and q2, where q2 is the angle of the end-effector with respect
to the Xq in the UAV’s horizontal plane (XqYq plane), and q1 denotes the angle of CR’s
end-effector with respect to the Zq perpendicular to the UAV’s horizontal plane. Thus, the
generalized states of the ACMS, ξ, can be expressed using UAV’s position and attitude and
CR’s end-effector angles as:

ξ =
[

pT
q φT

q q1 q2

]T
. (4)

To calculate the absolute position of each point of the continuum arm at section s in
FI (where s ∈

[
0 l

]
denotes the arc length of each section and l is the length of CR), the

following equation holds, indicating that the absolute position of that special point of the
arm equals the summation of the multi-rotor’s position in FI and the relative position of
that point of arm with respect to the center of mass of the multi-rotor in FI ,

ps = pq + Rqpq
qs, (5)

where pq
qs is the relative position of each section (point) of arm with respect to Fq, which

can be found from forward kinematics of the continuum arm [42]. By calculating the
position Jacobian matrix at each section (Jp(s)), the linear velocity of the arm at section s in
Fq can be determined as:

.
pq

qs = Jp(s)
.
q. (6)

In addition, the rotation matrix between the arm point at section s and the multi-
rotor, Rq

s , can be found in [42] and expressed as [30]

Rq
s =

[
ns bs ts

]
, (7)

where ns, bs and ts are columns of the rotation matrix of Rq
s . Having the rotation matrix,

the angular velocity of each section of the arm in Fq , ω
q
qs, is calculated as follows [30]

ω
q
qs = Skew(ts)

.
ts = Jo(s)

.
q. (8)

Here, Jo(s) is the contribution of the Jacobian matrix relative to the angular velocity of the
arm at each section in the Fq and Skew is the skew symmetric matrix of the vector.

Finally, the absolute linear velocity of the arm for each section,
.
ps, can be calculated

by taking the derivate of Equation (5) as:

.
ps =

.
pq − Skew

(
Rqpq

qs

)
ωq + RqJp(s)

.
q. (9)

Similarly, the angular velocity of the arm for each section in the FI frame is demon-
strated in Equation (10), based on the angular velocity of the multi-rotor and relative
angular velocity of the arm with respect to the multi-rotor.

ωs = ωq + RqJo(s)
.
q. (10)
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3. Dynamic Modeling

To derive the coupled dynamic model of ACMS, the Euler–Lagrange formulation
must be considered. The Lagrangian, L, is defined based on the total kinetic energy, K, and
potential energies, U, of the system as [43]

L = K−U. (11)

Since the damping effect in continuum arm modelling is not negligible, the modified
Euler–Lagrange equation [43] is applied as:

d
dt

∂L

∂
.
ξ i

− ∂L
∂ξi

+
∂D

∂
.
ξ i

= ui, (12)

in which i = 1, . . . , 8 and ξ i is the i-th generalized coordinate, while ui is the i-th general-
ized force. In addition, D is the viscous damper, which is assumed linearly as D = 1

2 µ
.
ξ 2,

where µ =
[

0 0 0 0 0 0 µ1 µ2
]
. Here, µ1 and µ2 are CR’s damping coefficients.

Total kinetic energy of the ACMS, K, is composed of the contribution of three kinetic
energy components related to the multi-rotor, Kq, main backbone, Km.b, and disks, Kd.
The total kinetic energy and its components are calculated in Equations (13)–(16). In
Equation (14), the kinetic energy of the multi-rotor is computed, while in Equation (15), that
of the main backbone for each section is presented. Therefore, total kinetic energy for the
backbone is determined by integration of Equation (15) along the length of the continuum
arm. From Equation (16), the kinetic energy for the j-th disk of the continuum arm is
obtained. As a result, the total kinetic energy for whole disks is the superposition of energy
for each disk. The equations in Equation (17) indicate that position, rotational velocity
and rotation matrix of each disk are the same as those of each section of the continuum
arm where disks are fixed to the main backbone. Finally, total kinetic energy of the whole
system is determined in Equation (18).

K = Kq + Km.b + Kd, (13)

Kq =
1
2

mq
.
pT

q
.
pq +

1
2

ωT
q RqIqRT

q ωq =
1
2

mq
.
pT

q
.
pq +

1
2

.
φ

T
q QTIqQ

.
φq, (14)

Km.b(s) =
1
2

ρs As
.
pT

s
.
ps +

1
2

ωT
s RqRq

s IsR
q
s

TRT
q ωs, (15)

Kd(j) =
1
2

md
.
pT

d
.
pd +

1
2

ωT
d RqRq

dIdRq
d

TRT
q ωd, (16)

pd = ps|s=jh, j = 1, 2, 3, . . . , n
ωd = ωs|s=jh,

Rq
d = Rq

s

∣∣∣
s=jh

,
(17)

K = Kq +
∫ l

0
Km.b(s)ds + ∑n

j=1 Kd(j). (18)

Here, mq is the mass of the multi-rotor, while md denotes the mass of each disk. In addition,
ωd, pd and Rq

d are angular velocity, position and rotation matrix of each disk, respectively.
Here, Is and Id present the moment of inertia for the main backbone at each section and
that for each disk, respectively, while Iq denotes the moment of inertia for the multi-rotor.
Moreover, ρs denotes the density of the main backbone at section s, while As is the cross-
section area for each section of the continuum arm. Furthermore, n is the number of disks
and h is the distance between disks. Here, the assumption is that the distance between all
disks is equal.
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By considering Equation (1), Equations (9) and (10), and Equations (13)–(18), the total
kinetic energy of the ACMS determined in Equation (18) can be expressed as

K =
1
2

.
ξ

T
B

.
ξ, B =

 B11 B12 B13
BT

12 B22 B23
BT

13 BT
23 B33

, (19)

where B is the positive definite symmetric inertia matrix with elements as follows.

B11 =
(

mq + mm.b + ∑n
j=1 md(j)

)
I3×3,

B22 = QTIqQ +
∫ l

0

(
ρs AsTq

TwTwTq + QTRq
s IsR

q
s

TQ
)

ds+

∑n
j=1

(
md(j)Tq

TwTwTq + QTRq
dIdRq

d
TQ
)∣∣∣

s=jh
,

B33 =
∫ l

0

(
ρs As JT

p (s)Jp(s) + JT
o (s)R

q
s IsR

q
s

TJo(s)
)

ds+

∑n
j=1

(
md(j) JT

p (s)Jp(s) + JT
o (s)R

q
dIdRq

d
TJo(s)

)∣∣∣
s=jh

,

B12 = −
∫ l

0

(
ρs AswTq

)
ds−∑n

j=1
(
md(j)wTq

)∣∣
s=jh,

B13 =
∫ l

0

(
ρs As RqJp(s)

)
ds + ∑n

j=1

(
md(j) RqJp(s)

)∣∣∣
s=jh

,

B23 =
∫ l

0

(
QTRq

s IsR
q
s

TJo(s)− ρs AsTq
TwTRqJp(s)

)
ds+

∑n
j=1

(
QTRq

dIdRq
d

TJo(s)−md(j)Tq
TwTRqJp(s)

)∣∣∣
s=jh

,

where I3×3 is the identical matrix of size three and w = Skew
(

Rqpq
qs

)
.

Similar to the kinetic energy, total potential energy, U, reserved in the system is
composed of the contributions of potential energy related to the multi-rotor, Uq, main
backbone, Um.b, and disks, Ud, as follows.

U = Uq + Um.b + Ud. (20)

The potential energy for the multi-rotor is calculated as Equation (21), while potential
energy related to the main backbone and disks are given in Equations (22) and (23),
respectively. Main back bone potential energy consists of the gravitational potential energy
and its elastic potential energy [30].

Uq = mqgeT
3 pq, (21)

Um.b =
∫ l

0

(
ρs AsgeT

3

(
pq + Rqpq

qs

))
ds +

2Es Is

l
q2

1, (22)

Ud = ∑n
j=1

(
md(j)geT

3

(
pq + Rqpq

qs

))∣∣∣
s=jh

, (23)

where g is the gravity acceleration and Es denotes Young’s modulus of the main backbone,
while e3 is a 3 by 1 unit vector indicating the direction of gravity acceleration with respect
to the FI .

Finally, having the total kinetic energy (Equation (19)) and total potential energy
(Equation (20)) of the system, and using the Euler–Lagrange equation (Equation (12)), the
whole dynamic of the ACMS can be written as

B(ξ)
..
ξ + C

(
ξ,

.
ξ
) .

ξ + G(ξ) = uACMS + uext, (24)
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where u is the generalized force, while uext is the external force exerted on the system. In
addition, G(ξ) and the elements of matrix C are given as [22]

G(ξ) =

(
∂U(ξ)

∂ξ

)T
, (25)

Cij =
1
2 ∑nξ

k=1

(
∂Bij

∂ξk
+

∂Bik
∂ξ j
−

∂Bkj

∂ξi

)
.
ξk, i , j = 1, . . . , 8. (26)

The only remaining term in Equation (24) is matrix uACMS, which can be determined based
on the actuation model. Here, uACMS =

[
upos uatt uten

]T , where upos, uatt and uten are
control signals for UAV position and its attitude, and tension of tendons for the continuum
arm, respectively. These terms can be determined as:

upos = RqFpos , (27)

uatt = Q−1τatt , (28)

uten = DtenFten, (29)

where Fpos and τatt are forces and torques for UAV motors in Fq, respectively, while Ften is
the tension vector for tendons of the continuum arm. These matrices and matrix Dten will
be defined in the next section.

4. Actuation Modeling

In this section, an actuation mechanism for a general n-rotor UAV with an attached
tendon-driven continuum arm is presented.

As discussed in the introduction, 6 DOFs’ control of multi-rotors can be achieved
using a nonparallel thrust configuration. In such configurations, each propeller is rotated
a cant angle, φi, around its radius. As shown in Figure 1, φi is the angle between the
normal vector of each propeller plane and UAV’s vertical plane. These rotors are laid out
along the edge of the disk canted tangentially to the edge of the disk [41]. This means that
motors with odd and even numbers are rotated toward the left and right side of their radii,
respectively. The position of n motors and their rotations and forces in the horizontal plane
of the UAV are defined in Figure 3. In the body reference frame, it is assumed that the nth

motor is located at the front of the UAV on the Xq axis of the body frame. The other motors
are located at angles ϑ, 2ϑ, 3ϑ, . . . , (nm − 1)ϑ with respect to the Xq axis. Angle ϑ depends
on the number of motors (nm) and is given by ϑ = 2π

nm
.

To control the torque applied to the system, motors with odd numbers are rotating
clockwise, while motors with even numbers are rotating counterclockwise [44]. Torque
produced by each motor can be expressed as τi = kTi, where Ti is the thrust of the i-th
motor, and k is the ratio of the torque to thrust produced by each motor.

To compute the net force/torque acting on the UAV from all thrusters, first each
motor’s thrust and torque is decomposed into components on the body frame as given in
Equation (30). Then the total force/torque for motors can be obtained [44].

Fposi =

 −Γsin(ϑi)sin(φi)
Γcos(ϑi)sin(φi)

cos(φi)

[Ti],

τatti =

 sin(ϑi)[dcos(φi)− ksin(φi)]
cos(ϑi)[−cos(φi) + ksin(φi)]

Γ[dsin(φi) + kcos(φi)]

[Ti],

(30)

where φi is the cant angle from vertical, and ϑi represents the rotor’s position in the
horizontal UAV frame and equals iϑ. In addition, d is the distance from the rotor center to
the central axis of UAV (the radius of the n rotor). Moreover, Γ is a sign parameter that is
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+1 for even motors and −1 for odd motors. If all cant angles (φi) are equal to zero, it means
that all motors are perpendicular to the UAV horizontal plane and the generalized model
will reduce to a conventional multi-rotors model.
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After decomposition of force/torque produced by each motor, the net force and torque
of the n-rotor UAV can be computed as Fpos = ∑n

i=1 Fposi and τatt = ∑n
i=1 τatti , respectively.

The only remaining term is uten, which is discussed in the following lines.
Here, the assumption is that we have three tendons for actuation of the continuum

robot. The first tendon’s actuator is located on the Xq of the horizontal body reference
frame of the multirotor and two others are located with ± 2π

3 radians with respect to the
first one. To control the end effector, two tendons out of three should be actuated at the
same time depending on the q2 angle [31]. Table 2 shows the tendon’s actuation policy.

Table 2. Tendon actuation policy.

q2 Range (deg) Tendon I Tendon II Tendon III

0 ≤ q2 ≤ 120 X X
120 ≤ q2 ≤ 240 X X
240 ≤ q2 ≤ 360 X X

The displacement of each tendon with respect to the main backbone can be found
by [32].

∆L1 = rq1cosq2, (31)

∆L2 = rq1cos
(
−q2 +

2π

3

)
, (32)

∆L3 = rq1cos
(

q2 +
2π

3

)
, (33)

where r is the distance between each tendon actuator and the main backbone. If each
tendon is actuated with tension Fi, i = 1, 2, 3, then the generalized force can be obtained
depending on which tendon is activated based on Table 2, i.e., if tendons 1 and 2 are
actuated, one can obtain

G1 = F1
∂∆L1

∂q1
+ F2

∂∆L2

∂q1
, (34)
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G2 = F1
∂∆L1

∂q2
+ F2

∂∆L2

∂q2
. (35)

Finally, generalized force for tendons, uten , can be rewritten as

uten =
[

G1 G2
]T

=

[
∂∆L1
∂q1

∂∆L2
∂q1

∂∆L1
∂q2

∂∆L2
∂q2

][
F1
F2

]
= DtenFten.

5. Control Design

The formulated controller is based on the adaptive sliding mode approach, which
considers the whole dynamics of ACMS and is robust against modeling uncertainties and
external disturbances.

In the control design process, the error vector e, sliding surface S, and the reference
signal rate

.
ξr are considered as:

e = ξ − ξd, (36)
.
ξr =

.
ξd −Λe, (37)

S =
.
ξ −

.
ξr =

.
e + Λe, (38)

where ξd and
.
ξd are the desired states for ACMS and their desired derivatives, and Λ is a

positive diagonal matrix. With these definitions, the control signal can be proposed as:

uACMS = B̂
..
ξr + Ĉ

.
ξr + Ĝ− kv

.
e− kpe + ∆̂ , (39)

where ˆ shows the nominal values of matrices while kp and kv are positive definite gain
matrices. In addition, ∆̂ represents the estimated uncertainty, which is calculated using the

adaptation law by updating
.
∆̂ as:

.
∆̂ = −kΠS, (40)

where kΠ is a positive definite gain. Substituting the adaptive sliding mode control law
of Equation (39) into the ACMS dynamics Equation (24), the closed loop dynamics of the
system can be found as:

B̂
.
S + ĈS + kv

.
e + kpe = ∆̃ , (41)

where ∼ is the error on the modeling and uncertainty estimation. Stability analysis of the
formulated control for ACMS with coupled dynamics can be conducted using a Lyapunov
candidate function as follows.

L =
1
2

{
STB̂S + ∆̃

T
Π∆̃+ eT(Πkv + kp

)
e
}
> 0, (42)

where Π = k−1
Π . The derivative of the Equation (42) can be found as

.
L = STB̂

.
S +

1
2

ST
.
B̂S + ∆̃

T
Π

.
∆̃+ eT(Πkv + kp

) .
e. (43)

By using the closed loop dynamics of Equation (41) and the skew symmetricity feature

of
.
B̂− 2Ĉ, the derivative of the Lyapunov function can be written as

.
L = ST

(
−kv

.
e− kpe + ∆̃

)
+ ∆̃

T
Π

.
∆̃+ eT(Πkv + kp

) .
e.

Considering the definition of sliding surface, the above equation can be rearranged as

.
L = − .

eTkv
.
e− eTΠkpe + ∆̃

T
(

Π
.
∆̃+ S

)
. (44)
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Substitution of the adaptive law of Equation (40) into the previous Lyapunov deriva-

tive with the assumption that ∆ changes slower than ∆̂ and consequently,
.
∆̃ ≈

.
∆̂, one

can obtain .
L = − .

eTkv
.
e− eTΠkpe ≤ 0. (45)

Being a positive definite of Equation (42) and a negative semi-definite of Equation (45)
means that e, S and ∆̃ are bounded. Therefore,

.
e is bounded because

.
e = S−Λe. Fur-

thermore, using Equation (41), it can be shown that
.
S and

..
e =

.
S−Λ

.
e are bounded as

well. Taking derivation of Equation (45),
..
L can be found as

..
L = −2

..
eTkv

.
e− 2

.
eT

Πkpe. Since

all terms of the right-hand side of the
..
L equation are bounded,

..
L is bounded and

.
L is

uniformly continous. Therefore, according to the Barbalat’s lemma,
.
L converges to zero.

As a result, e,
.
e and S converge to zero. According to Equation (41), if

..
e remains regulated

by the controller and
.
S remains close to zero, it can be concluded that ∆̃ approches zero.

6. Experimental Simulation Results

In this section, the developed coupled dynamic modeling approach for the considered
ACMS configurations (a fully actuated octa-rotor [45] with a tendon driven continuum arm
actuated by three tendons [20]) is validated using experimental simulation results to verify
dynamics and control methods. In this regard, first, the dynamic model of the coupled
ACMS is derived using the MATLAB 2020a symbolic toolbox. Then, the ACMS model and
control are implemented in MATLAB 2020a, while sampling time is chosen as 0.01 s and a
5th order Runge Kutta solver was used.

The objective of the experimental simulation scenario is to verify the performance of
the control method designed for the coupled system dynamics in free flight motions when
there is not any interaction with the environment. For this purpose, similar to [22], we
analyzed two scenarios: (1) tracking a helix trajectory while the continuum arm is fixed,
and (2) tracking an agile infinity trajectory while the arm moves.

In these two control cases, an octa-rotor with the capability of carrying 3 motors
required for arm actuation, i.e., Dynamixel MX-28-AT geared servo motor (ROBOTIS,
Lake Forest, CA, USA), each with a mass of 91 gr was considered. The selected octa-
rotor weight was 3.2 kg [45] with a cant angle of 25 deg and the selected continuum arm
specifications were the same as [20].

For the first case, we assumed that the arm was fixed in the desired position with
respect to the UAV (q1 = π/2 rad and q2 = π/4 rad) while the UAV tracks a helical
trajectory of

[
4cos

( 2π
15 t
)
− 4 4sin

( 2π
15 t
)

0.2t
]T(all in m) with zero desired Euler angles.

Since a fully actuated UAV is selected, it should be able to control its position and attitude
independently. That is why desired Euler angles are considered zero.

In the second case, UAV was driven to follow an agile infinite path of[
2.5sin t

4 2.5sin t
2 2

]T(all in m) with zero desired Euler angles while the end effec-
tor of the arm had a circular motion of (q1 = π

2 rad and q2 = 2π
17 t rad) with respect to the

UAV. The initial condition of the arm was q1 = π
18 rad and q2 = π

18 rad in all cases while

the initial condition of UAV in the first case was
[

0 0 0 0 0 0
]T
(in m and rad)

and that of the second case was
[

0 0 2 0 0 0
]T

(in m and rad). A minimal pose
representation with position and RPY Euler angles was used here. Figure 4 illustrates the
trajectories of the drone for these two simulation cases.

For the first control case, the helical trajectory with fixed arm angles, the states of
ACMS and their desired values are shown in Figure 5. In this figure, ACMS states are
shown by blue lines while red lines illustrate desired values of states. As shown in Figure 5,
ACMS effectively tracked desired values. Figure 6 presents tracking error for this case,
which is around 0.1 m for position and zero for attitude tracking. Octa-rotor thrusts to track
the given helical trajectory and required tension of tendons to reach their fixed desired
values are illustrated in Figures 7 and 8, respectively. Figures 7 and 8 show that UAV motor
thrusts had an oscillatory behavior around 5 N to produce the required force and moments
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in all directions to track the desired helical trajectory with zero Euler angles. In addition,
only tendons 1 and 2 were actuated because q2 is between 0 and 120 deg.
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Figure 4. UAV trajectory: (a) helical trajectory, (b) infinity trajectory.

Figures 9–12 present those results for the second control case, i.e., an infinity trajectory
with a moving arm. Figure 9 illustrates ACMS states and their desired values. As it can
be concluded from Figures 9 and 10, similar to the previous case, ACMS tracks its desired
values with a reasonable error. The error for tracking desired X is around 0.1 m while those
of Y and Z directions are around 0.2 m and zero, respectively. Like the previous simulation
scenario, UAV’s motors have to oscillate to generate required thrust to track the given
infinity trajectory since desired Euler angles are considered zero. However, motor numbers
6 and 8 oscillate less than other motors according to Figure 11. Finally, required tensions of
tendons to track a circular motion are presented in Figure 12. As expected from the tendon
actuation policy (Table 2), only two tendons are activated at the same time depending on
q2 values.

As shown in two control scenarios, Figures 5–12, the proposed control method can
successfully control the ACMS with the coupled dynamic model.
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Although the coupled model is more complicated than the decoupled model, the
simulation took 0.02 s per iteration using a PC with an intel core i7-8700 processor, 3.2 GHz,
and 16 GB RAM, within MATLAB 2020a, which is 10 times faster than decoupled model
execution time. This is in large part due to the fact that the coupled model is not based
on the iterative solver used for the decoupled approach. For real-time implementation, a
real-time computing language such as C must be used, which could reduce execution time
up to 500 times [46].

7. Conclusions

This paper presents the first coupled dynamic modeling for aerial continuum manipu-
lation systems (ACMSs), which considers both UAV and the continuum arm as a unified
system. The proposed model was developed using a modified Euler–Lagrange framework
to take into account damping and elasticity effects of the arm. The approach is enriched
by considering a general tiltrotor UAV with fix tilt angles as a base platform, which can
model both under-actuated and fully actuated ACMSs. The integrated continuum arm
attached to the underneath of the UAV is a general tendon-driven type with three tendon
actuators. The model can be extended to different continuum arm configurations such as
series, parallel and collaborative types. Furthermore, in the future, the actuating mecha-
nism can be replaced with other methods such as pneumatics actuators in concentric tube
continuum arms. A nonlinear adaptive sliding mode control method was also formulated
to assess the behavior of a fully actuated ACMS model with an octa-rotor base platform
in free flight missions when there is no interaction with the environment. The stability
of the proposed controller was proved using Lyapunov stability theorem. Experimental
simulation results were reported to verify the proposed dynamic modeling and control
approaches. Results taken from a developed ACMS simulator in MATLAB environment
demonstrate the impressive performance of the controller in tracking desired helix and
infinity trajectories of the UAV while the arm is fixed or moving. It was also shown that
the proposed coupled model is ten times faster than the previously reported decoupled
model for ACMSs. Our future work will include extending the present work to interactive
aerial missions like impedance and hybrid position-force control of the system.
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