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Abstract: The effects of miscibility in interacting two-component classical fluids are relevant in a
broad range of daily applications. When considering quantum systems, two-component Bose–Einstein
condensates provide a well-controlled platform where the miscible–immiscible phase transition can
be completely characterized. In homogeneous systems, this phase transition is governed only by the
competition between intra- and inter-species interactions. However, in more conventional experiments
dealing with trapped gases, the pressure of the confinement increases the role of the kinetic energy and
makes the system more miscible. In the most general case, the miscibility phase diagram of unbalanced
mixtures of different atomic species is strongly modified by the atom number ratio and the different
gravitational sags. Here, we numerically investigate the ground-state of a 23Na–39K quantum mixture
for different interaction strengths and atom number ratios considering realistic experimental parameters.
Defining the spatial overlap between the resulting atomic clouds, we construct the phase diagram of the
miscibility transition which could be directly measured in real experiments.

Keywords: quantum mixtures; miscibility regimes; superfluidity

1. Introduction

Mixtures of quantum fluids such as superfluid 3He-4He [1–4] and atomic Bose–
Einstein condensates (BECs) [5–14] exhibit different miscibility regimes as a result of
the competition between intra- and interspecies interactions between its components. The
high level of control of the latter (mass and atom number ratio between the atomic compo-
nents, temperature, interaction strengths, confinement and system dimensionality) had
allowed the observation of a large variety of physical phenomena not accessible with single
component systems. In optical lattices, new phase transitions give rise to a much more
complex phase diagram than the simple extension of the superfluid to Mott insulator
transition [15,16]; polaron physics can be explored with large imbalanced mixtures [17,18];
and the recently observed self-stabilized quantum droplets with liquid-like behaviour can
be produced when beyond mean-field effects became dominant [19–22]. The miscibility
regime of the system plays a fundamental role on the superfluid properties of the mixture
directly affecting the observation of the mentioned new phenomena.

As for its classical counterpart, a mixture of two fluids is miscible if the fluids to-
tally overlap forming a homogeneous solution or immiscible if the fluids remain phase-
separated [23,24]. In the case of homogeneous quantum fluids, the miscible-immiscible
phase transition is well defined and it is mediated by the miscibility parameter [25,26]

δ =
u2

12
u11u22

− 1, (1)

where u11 and u22 are the intraspecies interaction coupling constants of species 1 and 2,
respectively, and u12 gives the interspecies interaction. This is an intuitive parameter based
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on the competition between intra- and interspecies interactions: if u12 overcomes the in-
traspecies interaction terms (δ > 0), the fluids strongly repel each other making the system
immiscible. On the contrary, if u12 is smaller than the intraspecies interactions (δ < 0), the
fluids overlap and the system is miscible. In such a picture, the miscibility regime of a
two-component quantum gas can be controlled by varying the interaction coupling terms,
which can be experimentally realized with the use of Feshbach resonances [27].

However, until very recently [28], homogeneous atomic BECs were not experimentally
produced. Instead, trapped atomic BECs exhibit an inhomogeneous density distribution
as a result of the confinement. The increased role of the kinetic energy in such systems
contributes to a more miscible mixture where phase-separation occurs for larger u12 than
the condition set by Equation (1). The shift at the miscible–immiscible critical point
has been obtained in the case of mixtures composed of distinct hyperfine states of the
same atomic species [29–31]. In the broader scenario of unbalanced mixtures of different
atomic species, the atom number ratio [32], the mass imbalance and the difference in
trapping configurations between the components were also shown to affect the boundary
of the miscibility phase transition [33–36]. The contribution of gravity, relevant for all real
experiments due to the induced gravitational sag [37,38], is rarely taken into account in
numerical simulations.

In this work, we perform numerical simulations of the ground-state of a two-component
quantum mixture of 23Na and 39K atoms for different interaction strengths, according to
the relevant Feshbach resonances for magnetic fields in the range of 95–117 G [14,39], in
order to show the realistic miscibility regimes accessible in the experimental setup being
developed in our laboratory [40] in the presence of gravity. We explore the effect of chang-
ing the number of atoms of the minority species (39K), thereby changing the atom number
ratio η, and calculating the spatial overlap between the atomic clouds as a quantity able to
characterize the change in the miscibility regime of the system. The numerical simulations
are performed at zero temperature, which satisfactorily reproduces the experimental results
for the case of strongly degenerate atomic mixtures [41], although theoretical works at
finite temperature have shown a change of the miscibility condition of the system favoring
phase separation [42–44].

The article is organized as follows. In Section 2, we describe the two-component
quantum gas at zero temperature in terms of a pair of coupled Gross–Pitaevskii equations
(GPEs) (Section 2.1) and the numerical simulation method used to obtain the ground-
state of the system (Section 2.2). In Section 3, we first present our experimental system
producing the 23Na–39K atomic mixtures (Section 3.1), followed by the results of the
numerical simulation performed with realistic experimental parameters (Section 3.2) and
the construction of the phase diagram of the miscible–immiscible transition for such a
mixture (Section 3.3). Finally, in Section 4, we highlight our main findings and discuss some
future perspectives for identifying the miscibility regime of a quantum mixture comparing
with the results presented in this article.

2. Methods
2.1. Description of an Atomic Quantum Mixture

Consider a mixture of two different bosonic atoms, labeled 1 and 2, at T = 0 in the
weakly interacting regime where interactions are treated as contact interactions. Let N1
and N2 be the number of particles and φ1(r) and φ2(r) be the corresponding normalized
single-particle wave functions. In such a picture, and neglecting terms of the order of 1/N1
and 1/N2, the energy functional of the system [25,26,45] can be written as

E =
∫

dr

[
h̄2

2m1
|∇ψ1|2 + ϑ1(r)|ψ1|2 +

h̄2

2m2
|∇ψ2|2 + ϑ2(r)|ψ2|2

+
1
2

u11|ψ1|4 +
1
2

u22|ψ2|4 + u12|ψ1|2|ψ2|2
]

,

(2)
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where mi (with i = 1, 2) is the mass of atomic species i, ϑi(r) is the corresponding external
potential, uii = 4πh̄2aii/mi are the intra-species interaction terms and u12 = 2πh̄2a12/m12
is the inter-species interaction term with m12 = m1m2/(m1 + m2), the reduced mass of
the system. For all relations, aij is the associated two-body s-wave scattering length. The
wave-functions ψ1(r) and ψ2(r) are the condensate wave-function of each atomic species,
defined as

ψ1(r) =
√

N1φ1(r) and ψ2(r) =
√

N2φ2(r). (3)

Minimizing the energy functional of Equation (2) under the constraint of fixed number
of particles, N1 and N2, one obtains the time-independent coupled Gross–Pitaevskii equations[

− h̄2

2m1
∇2 + ϑ1(r) + u11|ψ1|2 + u12|ψ2|2

]
ψ1 = µ1ψ1 (4)

[
− h̄2

2m2
∇2 + ϑ2(r) + u22|ψ2|2 + u12|ψ1|2

]
ψ2 = µ2ψ2, (5)

where µ1 and µ2 are the chemical potential of atomic species 1 and 2, respectively. If the
interspecies interaction vanishes (u12 = 0), Equations (4) and (5) are no longer coupled and
each species behave as a single species atomic cloud. In this case, approximations such
as the Thomas–Fermi approximation [25,26,45], for which the kinetic term of the GPE is
neglected, can be used to find a solution for the ground-state of the system. On the other
hand, when u12 6= 0, the competition between inter- and intraspecies interactions gives
rise to a phase transition from a miscible to an immiscible (phase-separated) phase when
increasing the positive inter-species interaction strength. The existence of overlapping and
non-overlapping regions between the atomic clouds dramatically changes the ground-state
configuration of the system and it is not always possible to find analytical solutions for it,
even relying on approximations [46]. A more powerful technique to obtain the ground-state
of a trapped two-component BEC makes use of a numerical simulation with imaginary
time evolution of the coupled GPEs.

2.2. Numerical Simulation of the Ground-State

The numerical simulation used to obtain the ground-state of the two-species BEC
consists of projecting onto the minimum of the GPEs each initial trial state by propagating
them in imaginary time [47]. To describe the method, let us first consider a system described
by a Hamiltonian H for which the time evolution of one of its eigenstates, ψn(r, t) with
Hψn(r, 0) = Enψn(r, 0), is easily obtained as:

ψn(r, t) = ψn(r, 0)e−i En
h̄ t, (6)

where En is the energy associated with the n-eigenstate. The time evolution of an arbitrary
trial function Ψ(r, 0), written as a linear combination of the system’s eigenstates, is simply
given by

Ψ(r, t) = ∑
n

ψ(r, t) = ∑
n

ψ(r, 0)e−i En
h̄ t. (7)

If one calculates Ψ(r, t) for t = −iτ, the complex exponentials in Equation (7) are replaced
by exponential decays with decay constants given by En/h̄. By evaluating Ψ(r, t) at
different time steps ∆τ with τ = ξ∆τ, Ψ(r, τ)→ ψ0(r, τ), the ground-state of the system.
The exact convergence is only obtained when τ → ∞; however, convergence methods
based on the variation of the total energy of the system are used to set an upper limit for τ.

In the numerical simulations performed in this work, we define a trial function Ψi(r, 0)
for each species i with time evolution given by

Ψi(r, t) = e−i Ĥi
h̄ tΨi(r, 0), (8)
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where Ĥiψi(r) = µiψi(r) from Equations (4) and (5). Considering t = −i∆τ with ∆τ
infinitesimal, the resulting exponential can be expanded in a Taylor series and the time
evolution of Ψi(r, t + ∆τ) is given by

Ψi(r, t + ∆τ) ≈ Ψi(r, t)− Ĥi
h̄

Ψi(r, t)∆τ. (9)

In order to achieve sufficient long times in the simulations let it be tfinal = ξ∆τ, with ξ
being an integer, Equation (9) is calculated ξ times. The resulting wave-function obtained
after each time step is normalized in order to preserve the atom number.

3. Results

The numerical simulations performed in this work are performed following the
parameters of the experimental setup being developed in our laboratory. For this reason,
we first start the Results Section, Section 3.1, with a description of the experimental setup
and its current status in the preparation of a two-species BEC of 23Na and 39K. Later, the
results from the numerical simulations are presented and discussed in the following two
subsections.

3.1. Experimental Setup

A complete description of the experimental setup and experimental sequence for
producing a Bose–Einstein condensate of 23Na atoms is described in [40]. Here, we present
a short description of the system giving the experimental parameters relevant for the
simulations performed later in this Section.

Briefly, sodium and potassium atoms coming from independent two-dimensional
magneto-optical traps (2D-MOTs) [48,49] are combined in a common vacuum chamber
where they will be trapped and further cooled in a three-dimensional MOT (3D-MOT).
Due to the strong interspecies losses present in the Na–K mixture [40,50], the operation of
an intial two-color MOT is not the best alternative in our experiment. Instead, we chose to
favor the minority species (potassium) during the MOT phase, starting the MOT sequence
with the loading of a single species MOT of 39K until it reaches the saturation value (∼20 s).
Next, we operate the two-color MOT by switching on the lights responsible for trapping
and cooling sodium atoms. We control the initial atom number ratio N0

Na/N0
K by changing

the time duration of the loading of the sodium atoms in the two-color MOT operation.
Once the two species are loaded, we perform subsequent cooling procedures followed

by a fine pumping stage which transfer both species to the F = 1 ground-state before
turning on an optically plugged Quadrupole trap [51]. At the beginning of the magnetic
trap the atomic clouds have NNa∼1× 109 atoms and NK∼1× 106 atoms both at T = 220 µK
trapped in the |F = 1, mF = −1 > hyperfine ground-state.

Evaporative cooling [52] of sodium is performed with microwave radiation at∼1.7 GHz
while potassium atoms are sympathetic cooled [53,54] decreasing its temperature without
significant atom loss. At T∼6–7 µK, the atomic clouds are transferred to a pure optical
dipole trap (ODT) [55] where the interspecies interaction can be tuned with the use of
Feshbach resonances [27] by applying a uniform magnetic field. We have atomic clouds
with NNa = 5× 106 and NK = 8× 105 at the beginning of the ODT for maximum atoms
number of 39K. In single-species operation for sodium under the same conditions, we
obtain an almost pure BEC (with BEC fraction > 80%) with N = 1× 106 atoms at T∼80 µK
after applying an optical evaporation which reduces the initial ODT potential height by a
factor of five in 4.2 s. The final ODT configuration exhibits a planar geometry with equal
frequencies in the xy-plane perpendicular to the gravity direction. The final frequencies
are ωx,y = 2π × 107(137) Hz and ωz = 2π × 148(193) Hz for Na(K), respectively. This is
the actual situation of our experimental system and, following the initial atom number
difference in the ODT, we estimate to be able to obtain a two-species BEC once implemented
the Feshbach field. Following these experimental numbers we performed the simulations
described in Section 2.2 which results are presented in the following.
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3.2. Ground-State of 23Na–39K Mixtures

The ground-state of 23Na–39K mixtures was obtained with the numerical simulation
method described in Section 2.2. In the simulations, we discretize the space with a three-
dimensional grid of 69× 69× 69. The grid step size was chosen to be equal to 0.6 µm
resulting in a total volume of 41× 41× 41 µm3. The time interval for the simulations were
∆t = 50× 10−6 in units of 1/ω1, where ω1 = (ωxωy1ωz1)

1/3 is the geometric mean of the
trapping frequencies for species 1. We considered species 1 (2) as the potassium (sodium)
atoms. We apply convergence methods based on the difference between the wave-functions
of subsequent time intervals and monitor the total energy evolution in order to ensure
the achievement of the ground-state configuration for both species. With these methods,
typical integration times gave tfinal∼3000.

The number of sodium atoms was chosen NNa = 5× 105 atoms in agreement with
the numbers obtained in the experiment. The number of potassium atoms was varied
with NK = 1× 104 − 5× 105 atoms setting η = NNa/NK = 50− 1. The trapping fre-
quencies were also set from the experimental values with ωx,y = 2π × 107(137) Hz and
fz = 2π × 148(193) Hz for Na(K), respectively. The sodium scattering length was fixed
to aNa = 52 a0, with a0 being the Born radius, while the scattering length of 39K, aK, and
the interspecies scattering length, aNaK, was varied according to the Feshbach resonances
occuring at magnetic fields smaller than 300 G [14,39]. In Figure 1, we show the values of
the scattering lengths (aNa, aK and aNaK) as a function of the magnetic field in the region
with B = 95–117.2 G. In this region, both aK and aNaK are positive and the system changes
its behaviour from immiscible to miscible with increasing the magnetic field. The predicted
phase transition point for a homogeneous system (with δ = 0) occurs at B0 = 109.1 G [14].
The potassium scattering length was obtained with the simple relation:

a(B) = abg

(
1− ∆1

(B− B01)
− ∆2

(B− B02)

)
, (10)

where abg = −19a0 is the background scattering length, B01 = 32.6 G and B02 = 162.8 G
are the position of the first and second resonances for 39K at the F = 1, mF = −1 hyperfine
state and ∆1 = 55 G and ∆2 = −37 G are the corresponding resonance widths [39]. The
aNaK curve displayed in Figure 1 was obtained from [14] via a private communication.

Figure 1. (a) Scattering lengths as a function of the magnetic field for the intra-species interactions
of 23Na, aNa (in blue), and 39K, aK (in red), and for the inter-species interaction aNaK (in green)
considering both atoms in the F = 1, mF = −1 hyperfine state. The black dashed line given by
(aNaaK)

1/2 represents the value of aNaK for which the system changes from immiscible to miscible
with δ = 0. (b) Miscibility parameter as a function of the magnetic field. At B = 109.1 G with δ = 0
the system changes from immiscible to miscible when increasing B.

Due to the presence of the gravitational force, each species suffers a different grav-
itation sag and the phase-separation at the immiscible phase occurs along the vertical
direction (z-axis). In Figure 2, we show the simulated density profiles along the z-axis of
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23Na (in blue) and 39K (in red) for Feshbach fields B = 100 G in (a) with δ = 4.32, B = 108 G
in (b) with δ = 0.22 and B = 111 G in (c) with δ = −0.50 and different atom number ratio
η = 50, 10, 5 in solid, dashed and dotted lines, respectively.

Figure 2. Density profiles along the z-axis of the simulated ground-state of 23Na (in blue) and 39K (in
red): (a) B = 100 G with δ = 4.32, (b) B = 108 G with δ = 0.22 and (c) B = 111 G with δ = −0.50.
In each case, we display the results of three atom number ratio η = NNa/NK equal to 50 (solid lines),
10 (dashed lines) and 5 (dotted lines).

For a fixed miscibility parameter, we observe different behaviours of the system when
changing η. In Figure 2a), the system is always immiscible, i.e., the sodium and potassium
atoms do not share the same position in the trap for any value of η. In Figure 2b, the system
is expected to be immiscible according to the miscibility parameter (δ = 0.22 > 0); however,
for η = 50, the phase-separated region disappears and the potassium atoms always share
its position in the trap with sodium atoms, which is characteristic of a miscible system.
Finally, in Figure 2c, the system is expected to be miscible with δ = −0.30 < 0 but in the
case of η = 5, there is still a region of the potassium cloud that do not share the trap with
sodium atoms remaining immiscible. We see that, for inhomogeneous systems, the atom
number ratio has a strong influence in the miscibility regime of a two-species Bose–Einstein
condensate. While in the homogeneous case, the miscibility parameter is enough to set the
regime of the system, in most real experiments where the condensates are confined by a
harmonic trap, additional information is necessary to establish the critical point for the
miscible–immiscible phase transition.

3.3. The Miscibility Phase Diagram

The ground-state configurations obtained in the previous section show the flexibility
of the 23Na–39K mixture in achieving different miscibility regimes with the change of the
Feshbach magnetic field B and the atom number ratio η.

The construction of a phase diagram miscible–immiscible needs a more quantitative
way of defining the miscibility region of a given set of parameters for the two-species
system. Proposals to characterize the regime of such system include the calculation of the
binder cumulant of the system’s magnetization [56], the difference between the centers of
mass of each atomic cloud [32], the study of the entropy of the mixture as defined in [44,57]
and the monitor of dipole oscillations of the atomic clouds in a harmonic trap [35]. Here,
similar to the works presented in [29,58], we follow the definition of the miscible and
immiscible phases and propose the calculation of the spatial overlap between the atomic
clouds to be an indicator of the phase transition.

We define the spatial overlap of the atomic clouds as:

O =
∫ ∞

−∞
|ψ1(r)|2|ψ2(r)|2dr =

∫ ∞

−∞
n1(r)n2(r)dr, (11)

where n1(r) and n2(r) are the atomic densities of species 1 and 2, respectively.
In Figure 3, we show the spatial overlap normalized by the overlap, O0 = O(a12 = 0),

at each case as a function of the Feshbach field for different atom number ratio, η. The
normalization was performed considering that the case of vanishing inter-species inter-
action exhibits the maximum spatial overlap between the atomic clouds possible in each
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configuration. In the immiscible region (B < B0 = 109.1 G), Onorm exhibit small values
with Onorm → 0 when reducing the magnetic field for all η. Approaching B0, the spatial
overlap increases differently for each η with larger η showing an earlier increase on the
spatial overlap. The limit case of η = 50 shows a significant increase in Onorm for B > 104 G,
increasing over a broad range of magnetic fields. This increase occurs before the critical
point estimated with the miscibility parameter, in accordance with was already observed
in the density profiles of Figure 2. Reducing η increases the magnetic field for which the
spatial overlap significantly increases. For the other limit with η = 1, the spatial overlap
starts to increase for B > 111 G, a magnetic field larger than B0. The dashed vertical line in
Figure 3 represents the critical point for the transition at B0 with δ = 0.

B (G)
95 100 105 110 115

O
no

rm

0

0.2

0.4

0.6

0.8

1
2 = 50
2 = 17
2 = 10
2 = 5
2 = 1.7
2 = 1

Figure 3. Normalized overlap as a function of the Feshbach field for different values of η. For large
η, NK << NNa (blue circles), the spatial overlap increases at earlier magnetic fields showing the
transition to the miscible phase for u2

12 > u11u22 (with δ > 0). In the opposite scenario, for η = 1,
NK = NNa (red stars), the normalized spatial overlap significantly increases only for B > 111 G
remaining immiscible even if u2

12 < u11u22 (with δ < 0).

To define the transition from immiscible to miscible from the normalized overlap,
we associate a threshold-like behaviour and identify the Feshbach field (Bpeak) for which
Onorm varies the most. This is performed performing the numerical second derivative of
the normalized overlap and identifying its maximum value. The second derivatives as a
function of the Feshbach field for all η are displayed in Figure 4. The maximum value of
the curves drifts to larger magnetic fields as η decreases. In Figure 4b, we show Bpeak as
a function of η. The almost linear behaviour of the points in the semilog scale suggests a
dependence of Bpeak(η) = B0

peak − α ln η. We find B0
peak = 113.5 G and α = 1.70.
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Figure 4. (a) Numerical second derivative of the normalized overlap, Onorm. We identify the peak
position of each curve as the magnetic field value, Bpeak, for which the normalized overlap changes
the most indicating the transition from immiscible to miscible. The dotted lines serve only as guide
to the eyes. In (b), we show Bpeak as a function of η in a semilog scale which gives a logarithm
dependence of Bpeak with the atom number ration. The red solid curve is a fit to the data points (see
main text) and the black dashed line represents B0 with δ = 0.

The miscible–immiscible phase diagram for the 23Na–39K mixture under our experimen-
tal conditions is shown in Figure 5. The colormap represents the value of the normalized
overlap for each combination of η and B ranging from zero to unit. The transition point for
each η obtained from Figure 4b is displayed by the solid light gray curve with the shaded
area covering its uncertainty. The black dashed line represents the transition point for the
homogeneous case setting δ > 0 to the left side of the curve and δ < 0 to the right.

Figure 5. Phase diagram of the miscible–immiscible phase transition for the 23Na–39K mixture under
our experimental conditions. The colormap represents the value of the normalized overlap for each
combination of η and B. The light gray line sets the phase transition point obtained from the second
derivative of the normalized overlap. The condition for an homogeneous system is shown by the
black dashed line at B0 = 109.1 G.

Differently from earlier works performed with a balanced mixture of two distinct
hyperfine states of a single species [29–31], in our case for η = 1, the system is more
immiscible and the miscible phase only occurs for δ∼−0.5. A deeper analysis of the η = 1
case is presented in Figure 6, where we show the normalized overlap for η = 1 under
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different trapping conditions: real experimental conditions (star), without gravity (asterisk),
considering equal trapping potentials with ϑ1 = ϑ2 (plus sign) and for the homogeneous
case (gray solid curve) obtained setting the external potentials ϑ1(r) = ϑ2(r) = 0. The
dashed vertical line in black represents the point for δ = 0 which indeed matches the
abrupt transition of Onorm from 0 to unity observed in the homogeneous case. The role of
gravity and different trapping configurations for each species is clear in the data of Figure 6:
setting g = 0 and ϑ1 = ϑ2 drifts the transition point to smaller magnetic fields approaching
B0. However, due to the large difference between the intraspecies scattering lengths for
sodium and potassium (aNa = 52a0 and aK∼7.59− 8.73a0), the system still behaves more
immiscible than the homogeneous case.

B (G)
100 105 110 115

O
no

rm

0

0.2

0.4

0.6

0.8

1 2 = 1
2 = 1 and g = 0
2 = 1, g = 0 and #

1
 = #

2

2 = 1, g = 0 and #
1
 = #

2
 = 0

Figure 6. Normalized overlap, Onorm, as a function of the Feshbach field, B, for η = 1 under different
trapping conditions (see main text).

The identification of the miscibility regime of the Na–K mixture under realistic experi-
mental conditions is important when defining the best parameters for studying different
physical phenomena. In studies which the spatial overlap between the components of
the mixture is important (i.e., coupled vortex dynamics [59–61], binary quantum turbu-
lence [62], coupled superfluidity and excitations [63,64], etc.), it is not always sufficient to
have δ < 0. The contrary is also true, when the immiscible nature of the system is relevant
(i.e., in studies of dynamical instabilities [65–68]), δ > 0 is not always sufficient, especially
in the case of large atom number imbalances between the atomic species.

4. Discussion

We have shown that the miscible–immiscible phase transition in a trapped two-
component Bose–Einstein condensation of different atomic species under realistic exper-
imental parameters (considering the effect of gravity and different trapping potentials)
suffers strong influence of the atom number ratio η. In the case of large η, the system
behaves more miscible than the homogeneous case with the transition occurring at δ > 0,
while for η = 1, the system is more immiscible with the transition occurring at δ < 0. We
have defined the miscibility regime of the system by identifying the magnetic field Bpeak
for which the normalized spatial overlap between the atomic clouds changes the most. This
value was obtained from the magnetic field for which the numerical second derivative of
the normalized overlap exhibits a maximum. The behaviour of Bpeak with η could be easily
associated with a logarithm dependence from the graph of Figure 4b making it possible to
draw the critical curve in the phase diagram of the miscible–immiscible phase transition
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for the simulated 23Na–39K quantum mixture (see Figure 5). The use of the spatial overlap
to identify the miscibility regime of the system could be directly implemented in real
experiments by performing high resolution in situ images of each atomic species. Further
characterizations both on the experimental and theoretical sides could be performed using
dynamical properties of the atomic mixture, such as the dipole oscillations proposed in [35],
and considering finite temperature effects as realized in recent works [42–44].
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