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Abstract: A rolling element signal has a long transmission path in the acquisition process. The fault
feature of the rolling element signal is more difficult to be extracted. Therefore, a novel weak fault
feature extraction method using optimized variational mode decomposition with kurtosis mean
(KMVMD) and maximum correlated kurtosis deconvolution based on power spectrum entropy
and grid search (PGMCKD), namely KMVMD-PGMCKD, is proposed. In the proposed KMVMD-
PGMCKD method, a VMD with kurtosis mean (KMVMD) is proposed. Then an adaptive parameter
selection method based on power spectrum entropy and grid search for MCKD, namely PGMCKD, is
proposed to determine the deconvolution period T and filter order L. The complementary advantages
of the KMVMD and PGMCKD are integrated to construct a novel weak fault feature extraction model
(KMVMD-PGMCKD). Finally, the power spectrum is employed to deal with the obtained signal by
KMVMD-PGMCKD to effectively implement feature extraction. Bearing rolling element signals of
Case Western Reserve University and actual rolling element data are selected to prove the validity of
the KMVMD-PGMCKD. The experiment results show that the KMVMD-PGMCKD can effectively
extract the fault features of bearing rolling elements and accurately diagnose weak faults under
variable working conditions.

Keywords: rolling element; feature extraction; variational mode decomposition; maximum correlation
kurtosis deconvolution; optimization method; kurtosis mean; variable conditions

1. Introduction

A rolling bearing is one of the core components of rotating machinery. Its normal
operation is of great significance to the whole mechanical system [1-3]. Status monitoring
and fault diagnosis have always been an important part of maintaining health [4-6]. The
main fault types of rolling bearings include inner race faults, cage faults, rolling element
faults, and outer race faults [7-11]. Because the rolling element is inside the rolling bearing,
the transmission path of its fault signal is more complex, which makes the fault information
of the rolling element fault signal is more difficult to be extracted [12-15]. Therefore, the
research on the enhancement and the effective separation of fault features is the key step in
fault diagnosis.

In the past few decades, many scholars have presented various signal processing
methods to extract fault features from signals, such as wavelet transform (WT), empirical
mode decomposition (EMD), local mean decomposition (LMD), and so on [16-24]. These
methods are applied to better extract fault features from the signal, but they also have
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some shortcomings. WT needs to early select wavelet basis function before the signal is
processed. The EMD and LMD have mode mixing. Although the ensemble EMD(EEMD)
alleviates the mode mixing, the number of iterations will increase during signal processing,
which results in an increase in the amount of calculation [25-31]. Therefore, Dragomiretskiy
et al. [32] presented a VMD method in 2014. The central frequency and bandwidth of
intrinsic mode functions (IMFs) are iteratively updated by solving variational problems
to decompose signals into a series of IMFs. This method not only overcomes the mode
mixing and end effect but also has suitable robustness. Therefore, the VMD has been
extensively applied in fault diagnosis. Zhang et al. [33] used VMD to extract bearing fault
features. However, the VMD requires to early set the parameter K, and improper selection
of k will affect the decomposition effect [34]. Therefore, the proper selection of K is of
great significance for the improvement of VMD. Zhu et al. [35] presented a dual-threshold
method to obtain the number of decomposition modes and used this improved VMD to
extract features of partial discharge signal. Pu et al. [36] presented a fault feature method
based on VMD with a stationary wavelet. This method selects K by kurtosis criterion.
However, the method using the kurtosis criterion to determine the decomposition mode
number is not very accurate in practical application, and under strong noise interference,
the VMD is not enough to extract weak fault features. McDonald et al. [37] presented
MCKD in 2012. This method aims at maximizing the correlation kurtosis to highlight the
periodic fault information submerged by noise in the signal. It has a suitable extraction
effect on weak fault information. Tang et al. [38] used MCKD to extract the weak gear
fault features. However, the deconvolution effect of MCKD is greatly affected by the
values of L and T. The adaptive selection of the two parameters will greatly improve the
algorithm effect. Lv et al. [39] used the grid search to select two parameters adaptively,
and Shannon entropy is used as the evaluation index. This improved MCKD method
has a suitable result in processing fault signals of rolling bearings. In addition, the other
some feature extraction methods and fault diagnosis methods are also proposed in recent
years. Zhao et al. [40] presented a new fault feature extraction method based on integrating
ensemble empirical mode decomposition, mode selection, and multi-scale fuzzy entropy
to accurately diagnose faults. Deng et al. [41] presented a center frequency method of
double thresholds to improve the variational mode decomposition (VMD) method for
extracting the features of signals. Wang et al. [42] presented a multi-objective particle
swarm optimization algorithm to optimize the parameters of VMD for the composite
fault diagnosis of the gearbox. Shao et al. [43] presented a novel two-part approach: a
stacked wavelet auto-encoder structure with a Morlet wavelet function for multisensory
data fusion and a flexible weighted assignment of fusion strategies. At the same time,
the performance of bearings can also be assessed with the use of measurements of such
parameters as noise, vibrations, resistant torque [44]. In summary, the EMD, VMD, MCKD,
and the other methods are proposed to extract fault features from signals to obtain better
fault diagnosis results. However, These methods also exist some shortcomings, such as
mode mixing, complex calculation, and so on.

In the strong noise environment, due to the long transfer path of the bearing rolling
element signal, its features are weaker than those of other signals, which makes the fault
features more difficult to be extracted. Therefore, the variational mode decomposition
with kurtosis mean and maximum correlated kurtosis deconvolution based on power
spectrum entropy and grid search are integrated to propose a novel weak fault feature
extraction method, namely KMVMD-PGMCKD in this paper. In the proposed KMVMD-
PGMCKD method, the mode selection method based on kurtosis mean value is presented
to tackle the mode selection problem of the VMD. Then, to solve the problem that the result
processed by MCKD is affected by the L and T, an adaptive parameter selection method
using the power spectrum entropy and grid search is presented. Kurtosis mean is applied
to determine the proper mode number k of the VMD, and then the VMD is employed
to decompose the signal. Kurtosis is employed to select IMFs that contain more fault
information and reconstruct the signal. The PGMCKD is employed to extract fault features
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of the reconstructed signals. The periodic shock components in IMFs will be enhanced
while the noise will be suppressed. Bearing rolling element signal of Case Western Reserve
University and actual rolling element data are selected to prove the validity of the proposed
KMVMD-PGMCKD method.

2. VMD with Kurtosis Mean (KMVMD)

Dragomiretskiy introduced the algorithm called variational mode decomposition,
which mainly uses signal processing tools of Hilbert transform, Wiener filtering, and
frequency mixing. The signal is decomposed into different IMF by VMD [45]. The IMF is
written as follows.

uy(t) = A(t) cos(¢k () @

The VMD requires to predefine the number of modes k. Improper k will cause over
decomposition or under decomposition. With the occurrence and development of bearing
faults, the kurtosis value increases. The kurtosis value is higher, bearing fault is more
serious. So, it is often applied to fix the number of mode k. After decomposition, the mode
with the largest value is often selected. Its mathematical formula is shown as follows.

E(x—p)*
il @

kur =

where x indicates signal, # indicates the mean value of x, o is the standard deviation of x.

However, it is not completely accurate to use the kurtosis criterion to fix the number

of modes and choose the mode with the largest value for power spectrum analysis. This

is because the fault frequency does not necessarily occur in the mode with the largest

kurtosis under the strong noise interference but could occur in the mode with the other
largest values.

Aiming at the shortage of kurtosis, VMD with kurtosis mean is proposed, which

uses kurtosis mean to measure the mean value of fault information under different k. By

calculating the kurtosis mean of the modes with larger kurtosis values at different k, the

maximum kurtosis mean values at different k are compared to obtain the number of modes.

When the mode number is k < 5, {%} modes with larger values are chosen to calculate

the kurtosis mean value. When the mode number k > 5, 3 modes with larger values are
chosen to calculate the kurtosis mean value. When K is less than 5, the problem of less
mode number should be considered, so the number of selected IMF should be the number
rounding half of k. This selection method can not only retain the fault information greatly
under strong noise interference but also avoid the interference of abnormal modes on mode
number selection. When k > 5, three modes are selected for analysis. Because for weak
fault signals, the possibility of fault information appearing in IMF with the second or third
larger value should be considered, but under normal conditions, fault information will not
appear in modes with lower values. Therefore, the kurtosis mean value of the three larger
kurtosis values of IMF can represent the proportion of fault information in the signal.
The expression of the kurtosis mean is shown in Equation (3).

Z
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where N represents the number of IMFs.
The specific implementation steps of the KMVMD are given as follows.

Step 1: Determine the number of modes.

Step 2: Decompose fault signals using VMD in order to obtain IMFs in different k.
L ={IME}(k=2,..., kpax,i=1,2,...,k);

Step 3: Calculate the kurtosis of each IMF, the set of kurtosis of IMF is obtained.
kury = {kur(IMF)}(k =2,... , kpax, i = 1,2,...,k);
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Step 4: In kury, j larger kurtosis is selected, so the set of larger kurtosis is obtained.
kurg j(k=2,3,4,j =1, [§|;k =56, knix,j=1,2,3). Whenk < 5, j = [§],
Whenk >5, j =3;

Step 5: Calculate the mean of larger kurtosis. kur_mean; = { 1 Zj"“’" kurK_]}

Ly
(k =2,34,j=1,-, [g};k =56, kpax, | = 1,2,3,); -

Step 6: Finding the maximum value max_kurmyean in { kurm_meany};
Step 7: The mode number corresponding to max_kuteqank is the number of modes for VMD,
and the modes with larger kurtosis values are chosen to obtain the reconstructed signal.

3. MCMD with Power Spectral Entropy and Grid Search (PGMCKD)
3.1. MCKD

x(n) is periodic impulse signal, /(1) is the transmission path response, and e(n) is
noise interference of the external environment. Then the measured signal y (1) using sensor
can be described as follow.

y(n) = h(n)- x(n) +e(n) )

In fact, the function of MCKD is to seek out an optimal FIR filter f(1) to achieve the
recovery of x(n) by deconvolution; that is, the correlation kurtosis of the signal is maximized.

x(n) = y(n)* f(n) ®)
The maximized correlation kurtosis value is given.

2

ZnN:1 (Hi\n/lzo xnfmT>

CKm(T) = maxy (ZnN:l x%>MH (6)
The Expression (4) is derivatized.
iCKM(T):0,k:1,2,---,L (7)
dfr
Calculate the filter coefficients.
= 3t (910) " e ©

where T is the deconvolution period, M represents the order shift. f represents the finite
impulse response filter vector, L is the filter size. The coefficients in Expression (8) are
obtained.

-1 2.2 2
X (XX r)
r=[0 T 2T mT ], Ap = : B
-1 2.2 2
XNt (RN - XN—r) Nx1,
XYyi-1 - X1-mT
XNYN-T ° XN-mT Jpnx1

©)

3.2. Parameter Optimization of MCKD

The L and T are two major parameters in MCKD, especially for T. The value of T
can determine the enhancement performance of MCKD. When MCKD is employed to
enhance the signal, the optimal parameters for MCKD are determined according to the
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signal characteristics. The enhancement performance of the MCKD is decided by the value
of parameters.
In theory, the value of T can be determined.

fs
T o (10)
where fj is fault frequency, f; is sampling frequency.

However, in practical application, the value of T is different from the theoretical value.
Therefore, the value of T is optimized. Usually, the value range of L is from 100 to 500. Due
to the interaction between L and T, it is of major significance to study the adaptive selection
of L and T for improving the enhancement performance of MCKD.

If the sampling frequency y(n) is fs. The sampling points are N. Y(w;) is obtained by
Fourier transform. w; = Kifsi (i=12,--,N/2)

The formula of power spectral density of signal is as follows.

a2
plew) = ) ()
p(w;) was normalized to p;.
__p(wi)
P Top(wr) (12

Power spectral entropy can effectively reflect the distribution characteristics of signal
energy, so it is applied to optimize parameters. The expression of power spectrum entropy
is described as follows.

H= —Zpi*logpi (13)
i

The grid search method is a search algorithm to specify parameter values. The possible
values of various parameters are arranged and combined. The possible combination results
are shown to produce a “grid”. It exists a low precision requirement, and the step size can
improve the calculation speed. The search range of L is [a, b], step is n;. The search range
of T is [c, d], step is ny. The possible values of L and T are arranged, and the generated
grid is considered as (L, T) € [a,b] X [c,d].

The optimization evaluation of parameters using power spectral entropy is described
as follows.

— 2 pi(L, T) xlogy(pi(L, T)) (14)

min
(L, T)€[a,b]x[cd] ;

wherei=1,2,...,n.

4. A Fault Feature Extraction Method

Because it is difficult to extract fault features of rolling elements under complex
working conditions and strong interference, a new feature extraction method of rolling
element fault based on KMVMD and PGMCKD, namely KMVMD-PGMCKD, is proposed
here. Firstly, the KMVMD is employed to decompose the signal into IMFs and reconstruct
the signal. Then, based on the parameter adaptive selection method of power spectrum
entropy, the L and T of MCKD are selected adaptively, and the fault features of the
reconstructed signal are effectively enhanced by PGMCKD. Finally, the power spectrum is
selected to analyze the deconvoluted signal to diagnose faults.

The realized steps of the KMVMD-PGMCKD are described as follows.

Step 1: Determine the maximum number of modes and decompose the signal.

Step 2: Based on the maximum kurtosis mean value, the mode number is determined,
and IMFs with larger kurtosis values are selected for reconstructing the signal.

Step 3: Set the values of L and T in MCKD. The interference of rotating frequency is
considered to determine T. Calculate the theoretical value of the search range, and obtain
the search range.
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Step 4: Grid search is employed to determine two parameters in MCKD, and the power
spectral entropy evaluation criterion is employed to obtain ideal values of parameters.

Step 5: Hilbert transform is employed to transform the enhanced signal. The power
spectrum is applied to analyze the enhanced signal to identify fault feature frequency.

5. The Experiment and Analysis

To prove the effectiveness of KMVMD-PGMCKD, bearing rolling element fault signals
from Case Western Reserve University and bearing rolling element fault signals from
QPZZ-T] platform are selected in this paper.

5.1. Fault Data from CWRU

The experiment is to analyze the bearing rolling element fault signal of Case Western
Reserve University [45]. The bearing is SKF6205, the pitch diameter is 39.04 mm, there
are nine rolling elements with a diameter of 7.94 mm, the speed is 1797 r/min, and the
load is 0 HP, the sampling frequency is 12,000 Hz. The signal length is 4096. By theoretical
calculation, the fault frequency fy of bearing rolling element is 141.1 Hz, and the rotating
frequency f; is 29.2 Hz.

The time waveform and power spectrum are shown in Figure 1.

0.6 T

Amplitude

0.4 J
’0() | 1 | | 1
0 0.05 0.1 0.15 02 0.25 03
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(a) Time waveform
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(b) Power spectrum

Figure 1. The time waveform and power spectrum of rolling element signal.

It cannot be found any useful information for the rolling element from Figure 1. To
extract fault features from fault signal, the KMVMD-PGMCKD is employed to process the
rolling element fault signal.

5.1.1. Experimental Analysis

Firstly, KMVMD is employed to select the mode number of VMD. The fault signals
are decomposed in different scales, and the kurtosis and the kurtosis mean values are
calculated, which are shown in Table 1.
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Table 1. Kurtosis and kurtosis mean values of each IMFs with different k.

Kurtosis .
IMF1 IMF2 IMF3 IMF4 IMF5 IMFe IME7 Kurtosis

K Mean
2 3.0346  3.0406 3.0406

3 3.0427 31279  3.0361 3.0853

4 25209 2118 31205  3.0365 3.0785

5 2519 21155 3.0974 3.4117  2.7499 3.0863

6 23611 29584 3.1004 3.4003 27476 3.1516 3.2174

7 23452 3.0009 1.9672  3.0901 3.4083 27464 3.1055  3.2013

The bold values in Table 1 are the kurtosis values used to compute the mean value. Ac-
cording to the data, the IMF with a larger kurtosis value is selected for signal reconstruction
when k = 6, which are IMF3, IMF4, and IMF6. The power spectrum of the reconstructed
signal is given in Figure 2.

1} 1/3f,(46.88) 1
£(292) 1
‘(’, H |] )' ]
I A
L
200 400 600 800 1000 1200 1400 1600 1800

Frequency(Hz)

Figure 2. Power spectrum of reconstructed signal.

It can be clearly found that 1/3 harmonic of fault frequency (46.88 Hz) and rotating
frequency (29.2 Hz) are obvious in Figure 2, which are better than the original signal without
processing. However, since the fault frequency is not found directly in Figure 2, in order to
obtain a better result, the reconstructed signal will be further processed by PGMCKD.

Firstly, the calculated theoretical value of T is 85 according to Equation (10), so the
search range of T is set [83, 87], the step size is 1, the search range of L is set [100, 500], its
step size is 5. Based on the evaluation criterion of power spectrum entropy, the optimized
parameter by the grid search method is [T, L] = [87, 460]. The power spectrum of the
deconvoluted signal by PGMCKD is given in Figure 3.

1 —> 1/4f(5.859) ]

[ JLLORLN Lalbadlon AL s 4 T —
0 500 1000 1500 2000 2500 3000
Frequency(Hz)

Figure 3. Power spectrum of element fault signal by KMVMD-PGMCKD.
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From Figure 3, it can be clearly found that 1/5 harmonic of the rotating frequency
(5.859 Hz), the fault frequency fy (140.6 Hz), and its second harmonic (281.3 Hz) are
obvious. It can be seen that the KMVMD-PGMCKD can accurately extract fault features of
the bearing rolling element signal.

5.1.2. Comparison Analysis

To prove the effectiveness of PGMCKD, the MCKD and MCKD based on Shannon
entropy are selected to compare with PGMCKD. For MCKD, the value of T is 85, and L can
be any value from 100 to 500. In this experiment, the value of L is 460, which is the same as
PGMCKD. The Shannon entropy optimization parameter method sets the value range of
T as [83, 87], the step size as 1, the search range of L as [100, 500], the step size is 5, and
the final result of [L, T] is [87, 325]. The power spectrum by different methods is given in
Figures 4 and 5.

12 T T T
1 5 4217
5 5684
08 r
0 269.5
Eoael. 7 > 1465 |
gosr [T
-4 il
04F | | 4
02F [ ﬂ -
0 \lu. N

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency(Hz)

Figure 4. Power spectrum of the reconstructed signal by MCKD.
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AL T R ’
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Figure 5. Power spectrum of the reconstructed signal by MCKD based on Shannon entropy.

From Figure 4, after the reconstructed signal is processed by MCKD, the extracted
fault features are still weak, so they cannot meet the requirements of fault diagnosis. In
Figure 6, it can be seen 1/5 harmonic of the rotating frequency (5.859 Hz), and the fault
frequency fo (140.6 Hz) and its 1/3 harmonic (46.88 Hz). However, compared with Figure 4,
the power spectrum of the signal processed by PGMCKD has less frequency component of
noise, and the effect is more obvious. Therefore, the experimental comparison results can
prove the effectiveness of PGMCKD for fault diagnosis.

5.1.3. Experimental Results under Variable Condition

To prove the effectiveness of KMVMD-PGMCKD under variable working conditions,
the experiments are carried out under the conditions of 2 HP motor load and 1748 r/min
rotating speed. According to the changed conditions, the fault frequency is about 137.4 Hz,
and the rotating frequency is about 29.1 Hz. The experimental results are shown in Figure 6.
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(c) Power spectrum of processed signal

Figure 6. The obtained results of rolling element fault signal under variable working conditions.

From Figure 6, the fault frequency fy (134.8 Hz) and 7f, (943.4 Hz) are obvious.
Therefore, the experiment results proved that the KMVMD-PGMCKD still can extract the
fault features under variable working conditions.

5.2. Fault Data from QPZZ-[]

To further prove the effectiveness of the KMVMD-PGMCKD, the fault signal from
QPZZ-II rolling bearing is selected here. The bearing is N205, the pitch diameter is 39 mm,
rolling elements with a diameter of 7.5 mm are 13, the speed is 1500 r/min, and the
sampling frequency is 12 kHz. The signal length is 2048. Therefore, the fault characteristic
frequency is 125.2 Hz, the inner race fault characteristic frequency is 194.2 Hz and the
rotating frequency f; is 25 Hz.

The time waveform and power spectrum are given in Figure 7.
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Figure 7. The obtained experiment results.

From Figure 7a, the signal contains strong noise interference, and faults are not
obvious. In Figure 7b, the rotating frequency and its second harmonic are only obviously
obtained, and the amplitude of other components is relatively weak, so it is difficult to find
any useful features for fault diagnosis. The KMVMD-PGMCKD is used to further process
in order to extract fault features.

5.2.1. Experimental Analysis

Firstly, the KMVMD is employed to select the mode number. The fault signal is
decomposed in different scales, and the kurtosis value and the kurtosis mean value are
calculated, which are given in Table 2.

Table 2. Kurtosis and kurtosis mean value of each IMF with different k.

Kurtosis .
IMFI IMF2 IMF3 IMF4 IMF5 IMFe IMF7 Kurtosis

K Mean
2 43737  4.2419 43737

3 43696 42406  4.8543 4.6119

4 42420 43257 57181  4.8536 5.2850

5 3.6537 35656 4.4510 54256  4.8390 4.9052

6 33937 35400 4.4029 57447 53062 4.8391 5.2960

7 33374 43578 43320 57153  5.6530 5.2321 34010  5.5334

According to the data in the table, IMF with a larger kurtosis value is chosen to
reconstruct the signal under k = 7, which are IMF4, IMF5, and IMF6. The power spectrum
of the reconstructed signal is given in Figure 8.

It can be clearly found that 1/3 fault frequency harmonic (41.02 Hz) and rotating
frequency (23.44 Hz) are obvious in Figure 8. Then the PGMCKD is applied to further
deal with the reconstructed signal. The calculated theoretical value of T is 96 according
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to Equation (10), the search range of T is set [94, 98], the step size is 1, the search range of
L is set [100, 500], its step size is 5. Based on the evaluation criterion of power spectrum
entropy, the grid search is employed to obtain optimal parameter [T, L] = [97, 175]. The
power spectrum of the deconvoluted signal by PGMCKD is given in Figure 9.

- 13/41.02)
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08 - R r@3a4)
)
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w
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0.2
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Figure 8. Power spectrum of reconstructed signal.
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Figure 9. Power spectrum by KMVMD-PGMCKD.

From Figure 10, it can be clearly found that 1/4 harmonic of the rotating frequency
(5.859 Hz), the fault frequency fy (140.6 Hz), and its second harmonic (281.3 Hz). It fur-
ther proved that KMVMD-PGMCKD can accurately extract fault features of the rolling
element signal.

| > /(2344)

> 289
0.8 1

| ‘ ! | |

! AL L i :
0 1000 2000 3000 4000 5000 6000
Frequency(Hz)

Figure 10. Power spectrum of reconstructed signal by MCKD.

5.2.2. Comparison Analysis
To verify the effectiveness of PGMCKD, the MCKD and MCKD based on Shannon

entropy are selected to compare with PGMCKD. For MCKD, the theoretical value of T is
96, the value of L is 175. Shannon entropy is used to set the value range of T as [94, 98],
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the step size is 1, the search range of L is [100, 500], the step size is 5, and the final result of
[L, T] is [98, 395]. The processed signal power spectrum is given in Figures 10 and 11.

1.2 T T
i R f0(123) |
0% > l/2f"((l 1.74) |
= :
206 ]
% oy 232
0.4 A
OVZ ‘ ‘ |
AL
0 ‘I \‘I“ I wm‘ L Ll 1l ¢ wll \“ b, il hl]w e | Ll \‘M " ‘.Ml Ml ‘

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency(Hz)

Figure 11. Power spectrum of the reconstructed signal by MCKD based on Shannon entropy.

In Figure 11, after the MCKD is employed to deal with the reconstructed signal, the
fault features still cannot be extracted. In Figure 5, fault frequency fy (123 Hz) has the
largest amplitude, and 1/2 harmonic of the rotating frequency (11.74 Hz) can also be found.
However, compared with Figure 9, harmonic of the fault frequency occurs. Therefore, the
experimental comparison results prove the effectiveness of PGMCKD.

5.2.3. Experimental Results under Variable Working Condition

In order to verify the effectiveness of KMVMD-PGMCKD under variable working
conditions, the experiment is carried out again after the rotating speed is changed to
1000 r/min. According to the changed conditions, the fault frequency is about 83.5 Hz, and
the rotating frequency is about 16.7 Hz. The experimental results are given in Figure 12.
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Figure 12. Cont.
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Figure 12. The obtained results under variable working conditions.

From Figure 12, fault frequency fj (82.03 Hz) and its third harmonic (246.1 Hz) under
the condition of variable working conditions can still be extracted from the fault signal
of the rolling element by KMVMD-PGMCKD, which further proves that this method has
strong generalization ability under the variable working condition.

6. Conclusions

Because it is difficult to extract fault features from rolling element signals, a novel
feature extraction method called KMVMD-PGMCKD is proposed for bearing rolling ele-
ments. The KMVMD provides a new mode number selection method to improve the signal
processing effect of VMD. The PGMCKD provides a new parameter optimization method
to improve the signal processing effect of MCKD. Through the experimental analysis under
different working conditions, the following conclusions are obtained:

(1). The kurtosis mean has a suitable effect on the selection of mode number, which
avoids the phenomenon of over decomposition or under decomposition and provides
a suitable foundation for further processing;

(2). The power spectrum entropy is used as the evaluation criterion for the selection of
parameters in MCKD. The difference between the actual and theoretical conditions
is considered. The L and the T are adaptively selected, which improves the effect of
MCKD on the enhancement of weak fault features;

(3). The combination of improved VMD and MCKD fully suppresses the noise interference
on the fault features, highlights the periodic impact component, and solves difficult
fault feature problems for bearing rolling elements. The effectiveness of the KMVMD-
PGMCKD is also verified by experiments;

(4). The signal processing effect of KMVMD-PGMCKD is not affected by the variable
working condition. The experiment shows that KMVMD-PGMCKD has a strong
generalization ability under the variable working condition.
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