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Abstract: The spatial relationship between transport networks and retail store locations is an impor-
tant topic in studies related to commercial activities. Much effort has been made to study physical
street networks, but they are seldom empirically discussed with considerations of transport flow
networks from a temporal perspective. By using Beijing’s bus and subway smart card data (SCD)
and point of interest (POI) data, this study examined the location patterns of various retail stores and
their daily dynamic relationships with three weighted centrality indices in the networks of public
transport flows: degree, betweenness, and closeness. The results indicate that most types of retail
stores are highly correlated with weighted centrality indices. For the network constructed by total
public transport flows in the week, supermarkets, convenience stores, electronics stores, and specialty
stores had the highest weighted degree value. By contrast, building material stores and shopping
malls had the weighted closeness and weighted betweenness values, respectively. From a temporal
perspective, most retail types’ largest correlations on weekdays occurred during the after-work
period of 19:00 to 21:00. On weekends, shopping malls and electronics stores changed their favorite
periods to the daytime, while specialty stores favored the daytime on both weekdays and weekends.
In general, the higher store type level of the shopping malls correlates more to weighted closeness
or betweenness, and the lower-level store type of convenience stores correlates more to weighted
degree. This study provides a temporal analysis that surpasses previous studies on street centrality
and can help with urban commercial planning.

Keywords: complex network; POI; smart card data; public transport flows; KDE; weighted centrality

1. Introduction

Location is a key factor for the commercial success of retail stores, as consumers tend
to patronize stores that have higher access advantages [1,2]. The configuration of a city’s
transport network has been found to have significant impacts on the distribution of retail
service activities [3–7]. Additionally, in urban planning and design, the locations of retail
services are important for city growth and vitality [8]. Therefore, location analysis of retail
stores is important for retail investment decisions and urban planning.

Location analysis has been increasingly applied to the retail sector with the growing
computing power and the advent of big data [9]. While many location-allocation mod-
els have been developed and used for location decision making of retail stores [10,11],
identifying the spatial pattern of retail locations is still an important and basic research
task to date. Generally, many factors may affect the location retail stores, which made it
a complex and multi-dimensional problem [12]. Among these factors, transportation is
often regarded as a key element for retail locations. There is much empirical literature
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focusing on exploring the spatial relationships between physical street networks and re-
tail stores. Various accessibility indices are optional to capture the convenience of retail
stores in physical street networks [13,14]. Among them, the centrality features of a store
are critical for the commercial competition of market areas according to the central place
theory and spatial interaction theory [15]. Based on the approaches of space syntax or
complex networks, the centrality features of a transport network can be measured by
various centrality indices [16]. The multiple centrality assessment (MCA) model, which
groups several indices together, has been applied to examine the relationship between
street centrality and the spatial distributions of retail stores [17]. Different cities around the
world have been examined, and the findings indicate that the centralities of the physical
street network may well explain the retail distributions [18–21]. The study of Wang and
Chen et al. [22] first examined the differences among location preferences for different types
of retail stores. Later, new data sources as point of interest (POI) data were introduced [23].
As the relationship between various types of stores and multiple centrality indices of street
networks across regions and cities were examined, it was revealed that different store types
may correlate to different spatial networks centralities [23,24], which is helpful for retail
location selection and planning.

While these previous studies have focused on examining the physical street network,
few quantitative empirical studies have examined centrality in networks with transport
flows. However, the location advantage of attracting transport flows is one important factor
that influences the location selection of commercial services. The transport flows can reflect
where people would like to go, and the correlation for retail stores is an important element
for commercial development. According to the classic Hotelling model [25], the location
strategy serves to obtain maximum flows, which are not necessarily geometric central
points in space [26]. In addition, the flow network has a temporal attribute. Exploring
temporal dynamics in flow networks may provide some possible insights into retail location
patterns [27], as temporal factors such as store opening hours and individuals’ travel time
cannot be addressed by the static location analyses on the physical street network [28,29].

For retail location, it was recognized early that accessibility by public transport is
a key issue for a store [30]. Several studies have verified that public transport has a
substantial impact on retail patterns in city centers when compared to those of out-of-town
malls [31–34]. In the big data era, public transport flow data become available from a smart
card system and a number of studies have devised various weighted centrality indices
to analyze the complex network of transport flows [35–37]. However, to the best of our
knowledge, research on the relationships between retail store locations and their centrality
in public transport flow network still lacking.

This paper aims to examine the relationship between weighted centrality indices
and various retail stores from a temporal perspective. Beijing is chosen as the case city,
in which public transport is well-developed. According to the 2020 Beijing transport
development annual report released by the Beijing Transport Institute (http://www.bjtrc.
org.cn/, accessed on 10 August 2021), the modal shares of public transport (bus and
subway) in most urbanized areas of Beijing are more than 31%, which is greater than that
of car and taxi (about 22% and 2.5%). In our study, the public transport flows are extracted
from the bus and subway smart card data (SCD) of Beijing. The remainder of this study
is organized as follows. Section 2 describes the study area and data preparation, and
discusses the research methods. Section 3 presents the results. The last section discusses
and summarizes the main findings.

2. Materials and Methods
2.1. Study Area and Data Preparation

Beijing is the capital of China and includes both urban and rural areas. As this study
addresses public transport flows and retail activity, the analysis is conducted in the urban
area of Beijing. Here, an area of approximately 38.64 km2 within the sixth ring road of
Beijing is selected as the case study area. The area covers most urbanized areas of Beijing.

http://www.bjtrc.org.cn/
http://www.bjtrc.org.cn/
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The study area is divided into grid cells to conduct further analysis. The appropriate
cell size of the study units may affect the results and computational complexity. In previous
studies of retail stores and network centralities, a cell size of 1 km × 1 km has most
commonly been used despite some variances [21]. Considering the road network density,
this study selects a cell size of 1 km × 1 km (see Figure 1).

Figure 1. Case study area: (a) Beijing; (b) sixth ring road of Beijing.

Point of interest (POI) data are used to construct a dataset of retail stores. The POI
data for 2018 are sourced from Autonavi (Gaode), which is a popular electronic navigation
map in China that provides information on the names, location, and types of various retail
stores. Based on previous studies and the classification of POI data [21,23,37], 72 subtypes
of retail stores (as illustrated in Table 1) were extracted from the POI dataset. According to
the Retail Type Categorization of China (RTCC), they were categorized within six major
categories, including shopping malls, supermarkets, convenience stores, specialty stores,
electronics stores, and building material stores. A total of 91,243 POI retail stores in Beijing
were extracted. The distributions of the six types of POI are shown in Figure 2.

Table 1. Categories and total counts of POI.

Category Sub-Category Total Counts

Shopping malls Shopping Plaza, Shopping
Center, etc. 768

Supermarkets Carrefour, Wal-Mart, Hualian,
Watsons, etc. 12,756

Convenience stores 7-ELEVEN, Circle K, etc. 15,027

Specialty stores
Sports Store, Clothing Store,

Franchise Store, Personal Care
Items Shop, etc.

27,222

Electronics stores
Home Electronics Hypermarket,

Digital Electronics, Mobile
Handsets Sales, etc.

7894

Building material stores
Furniture Store, Kitchen Supply,

Hardware Store, Lighting, Porcelain
Market, etc.

27,576
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Figure 2. The POI distributions of six types of retail stores: (a) shopping malls; (b) supermarkets; (c) convenience stores;
(d) specialty stores; (e) electronics stores; (f) building material stores.

According to the Beijing Statistical Yearbook in 2018, the public transport lines of
Beijing sum to a total length of 19,881 km, including 637 km of metro lines. The annual
passenger volume of public transport is 7038.18 million, which includes 3848.43 million
metro passengers. Approximately 565 bus lines and 22 subway lines pass through the case
study area, and there are more than 3000 bus stations and 259 subway stations within the
sixth ring road of Beijing. Approximately 7.5 million bus and 2.5 million subway cards
swipes are recorded each day. The modal shares of public transport in the urbanized areas
of Beijing are more than 30%.

The public transit flow data used in this study were obtained from one week of bus
and subway smart card data (SCD) from 19 April to 25 April 2015, which were obtained
from the Beijing Public Transport Group. In recent years, two big events have serious
impacts on public transit in Beijing. In 2014, Beijing started a price reform on its public
transport system and adjusted public transportation fares to a higher level since then.
Another event happened in 2019: the transport flows were much impacted by COVID-19.
Therefore, the year 2015 may well reflect the stage of post-era of price reform and pre-
era of COVID-19. We processed the data in two steps. First, the total flow for one week
was accumulated by time periods of one day to capture temporal changes in transit flow.
Various divisions of time periods have been used to aggregate the datasets in previous
studies [38–40]. Considering the purpose of analysis and data features, the dataset was
organized into seven periods based on two-hour intervals from 7:00 to 21:00 in the day.
Then, we separated the weekly data according to weekdays and weekends to detect the
differences in public traffic flow between working days and rest days. Sample records and
selected fields of smart card data are shown in Table 2. All flow data were accumulated on
the above-mentioned raster grid with a cell size of 1 km × 1 km and were based on 7 time
periods. The aggregation process was completed in Python.
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Table 2. Sample records of smart card data.

Time Card
Number Type Line

Number
Vehicle
Number

Boarding
Station

Departure
Station

20150813091012 46,343,397 1 751 95,740 17 11
20150813112013 80,245,649 1 609 83,601 5 8

2.2. Research Methods

In this paper, the SCDs of buses and subways are used to construct a network of
public transport flows, and then, a weighted MCA model is used to calculate centralities
for multiple time slices. The kernel density estimation (KDE) method is used to transform
the centrality indices and the distribution of different types of retail stores to the same data
framework.

Constructing a network is the basis for further complex network analysis. In this
study, a weighted complex network is established according to public transport flows in
the study area. Each raster grid is abstracted as a network node, and then, the transport
flows between nodes are used as the weights of edges between nodes. The generated
complex network has the topological characteristics of P-space, as all stops along a route
can be connected if there is one line connecting two nodes [41].

2.2.1. Multiple Weighted Centrality Assessment Indices

Centrality indices provide a common and effective approach to analyze the spatial
configurations of transport networks [42]. For a flow network, weighted complex indices
have been developed and applied to public transport [43–45]. We select three critical
indices in the MCA model to measure the characteristics of centrality: namely, weighted
degree, weighted betweenness, and weighted closeness. These measures were computed
by using the “networkx” package in Python [46].

Equation (1): weighted node degree centrality (WNDC). The unweighted degree is
a basic indicator that is defined as the number of nodes that are connected to the focal
node [47]. In a weighted network, WNDC is generally defined as the sum of weights and
labeled as node strengths [48]. In this study, WNDC is defined as the traffic flow between
network nodes on the constructed complex network that directly flows in or out of a node,
which is formalized as follows:

WNDCw
i = ∑

j∈v(i)
wij (1)

where wij represents the traffic flows between nodes i and j. Here, the WNDC value of
node i is the total volume of the passenger O-D flows connected with node i.

Equation (2): weighted node betweenness degree (WNBC). The original indicator of
betweenness refers to how often a node is traversed by the shortest paths connecting all
pairs of nodes in the network [47]. In a weighted network, it has been suggested that the
reciprocal link weights should be used to define the shortest path in a weighted graph,
which reflects the ability to transmit through the chain or indicates whether a node is
included in a path with a relatively large flow [49]. Here, the WNBC is adopted, which can
be formalized as follows:

WNBCw
i = ∑k 6=i 6=j∈N

δkj(i)
δkj

(2)

where δkj is the number of shortest paths between nodes j and k and δkj(i) is the number of
these shortest paths through node i.

Equation (3): weighted node closeness centrality (WNCC). The original indicator
of closeness is the average distance from a given starting node to all other nodes in the
network [50]. It measures how close a node is to all other nodes along the shortest paths of
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the network. In a weighted network, WNCC considers both the number of intermediary
nodes and the tie weights [51], which are defined as:

WNCCw
i =

n− 1
∑j∈v(i) dij

(3)

where n is the total number of nodes in the network. dij is the shortest distance between
nodes i and j. In a public transport flow network, dij is the minimum number of nodes to
pass between nodes i and j. The weight in this case is defined in the same manner as that in
the weighted betweenness.

2.2.2. Using KDE to Convert Density Values to a Grid Frame

The KDE method is used to convert the density values of retail stores and multiple
centrality values to the same raster data frame to further perform correlation analysis. The
advantage of KDE is that the density values at the middle locations of the raster grid are
generated by considering the surrounding events [52,53]. For points that fall within the
search range, different weights are assigned. The closer the point to the search center, the
greater the weight, and vice versa. Equation (4) for estimating the kernel density at point x
at the center of a grid is as follows:

f̂ (x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(4)

where K is the kernel function, h is the bandwidth, and n is the total number of points within
the bandwidth. In this study, the grid cell size is set at 1 km × 1 km, and a bandwidth is
set at 5 km. The KDE tool in ArcGIS was used to obtain the density values.

3. Results
3.1. Distribution Characteristic of Retail Stores

Figure 3 shows the spatial distribution characteristics of the KDE values of six types
of retail stores. The values are graded into five classes in the sub-figures, and the method
of natural breaks is applied, which minimizes the sum of variance within the groups. A
general pattern of higher values in the core area and lower values in the peripheral areas
can be observed. Among the densities of the six types of retail stores, building material
stores have the largest average density, which is followed by specialty stores, convenience
stores, supermarkets, electronics stores, and shopping malls. For the high-density centers,
building material stores, specialty stores, supermarkets, and electronics stores had multiple
centers. Shopping malls and convenience stores showed a strong monocentric pattern.

3.2. Distribution Characteristics of Weighted Centrality

Figure 4 shows the spatial distributions of three weighted centrality indices: namely,
weighted degree, weighted betweenness, and weighted closeness, based on the network
constructed by the total public transport flows in the week. The lighter the color, the lower
the centrality value. The degree values gradually decrease from the core to peripheral areas,
and high values are mainly distributed within the fourth ring road. Betweenness presents
a pattern with a high-value core and multiple secondary centers. The high-value core of
the closeness is mainly distributed between the second east ring road and fourth east ring
road. The closeness also exhibits a decreasing trend from the core to the peripheral areas,
and the area with a high value covers a wider range.
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Figure 3. Density distributions of different types of retail stores determined by KDE: (a) building material stores; (b) specialty
stores; (c) supermarkets; (d) electronics stores; (e) shopping malls; (f) convenience stores.

Figure 4. Spatial distributions of three weighted centrality indices of the total flow network: (a) degree; (b) betweenness;
(c) closeness.

Figure 5 shows the temporal changes in the average values of the three weighted
centrality indices on weekends and on weekdays. The horizontal axis represents time, and
the points on the graph correspond to the median values of the different time periods.
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Figure 5. Temporal variations of the three weighted centrality indices on weekdays and weekends: (a) degree; (b) between-
ness; (c) closeness.

The vertical axis represents the centrality values. Overall, three indices show quite
different temporal patterns. For weekdays, the degree curve shows two peaks, which
indicate a morning peak from 7:00 to 9:00 and an evening peak from 17:00 to 19:00, and the
value of the early peak is greater than that of the late peak. The betweenness and closeness
curve also show two peaks, but the late peak is greater than the early peak. The low point
of three indices appeared at 11:00–13:00, and an extra low point appeared at 13:00–15:00 for
betweenness.

Compared with weekdays, the weighted degree curve for weekends fluctuates mildly
before 17:00. The peak appeared at 17:00–19:00 and then the low point appeared at
19:00–21:00. For betweenness, the curve of weighted betweenness for weekends shows
a trend of high in the middle and low on both sides. The peak appeared at 15:00–17:00,
which is earlier than the time of the evening peak for weekdays (17:00–19:00). Compared
with weekdays, the range of fluctuation for the weighted closeness curve for weekends is
smaller. The peak appeared at 17:00–19:00.

The spatial distributions of weighted centrality indices in seven periods of a day from
7:00 to 21:00 are calculated, and here, we present three of them, including the morning
period from 7:00 to 9:00, noon period from 11:00 to 13:00, and after-work period from 19:00
to 21:00.

Figure 6 shows the spatial distributions on weekdays. In general, the core area
of Beijing maintains an advantageous position in the networks with public transit flow.
Although the distributions exhibit certain similarities for different time periods for the
same index, there are some differences. The degree centrality values between the west
second ring and west third ring road change with time, with a trend of increasing first and
then decreasing. For betweenness, the two secondary centers between the west second
ring road and west third ring road and the south second ring road and south third ring
road change over time, with a trend of increasing first and then decreasing. The other
sub-centers also exhibit minor changes with time. For closeness, peripheral areas change
slightly with time, and the central area also exhibits minor changes with time. Figure 7
shows the spatial distributions on weekends. Compared with weekdays, the weighted
centrality values change relatively smoothly over the weekends.
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Figure 6. Spatial distributions of weighted degree centrality indices on weekdays: (a) degree, 7:00–9:00; (b) degree,
11:00–13:00; (c) degree, 19:00–21:00; (d) betweenness, 7:00–9:00; (e) betweenness, 11:00–13:00; (f) betweenness, 19:00–21:00;
(g) closeness, 7:00–9:00; (h) closeness, 11:00–13:00; (i) closeness, 19:00–21:00.

3.3. Relationships between Retail Store Locations and Weighted Centrality from a
Temporal Perspective

This section examines how the density distribution of retail stores may correlate with
the weighted centrality indices. First, the flow network without temporal division is
examined, which is constructed by the total public transit flows of the whole week. Table 3
shows the highest correlation coefficients between various retail stores and weighted
centrality indices. Pearson’s correlation analysis was conducted between the density of
retail stores and weighted centrality indices.
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Figure 7. Spatial distributions of weighted degree centrality indices on weekends: (a) degree, 7:00–9:00; (b) degree,
11:00–13:00; (c) degree, 19:00–21:00; (d) betweenness, 7:00–9:00; (e) betweenness, 11:00–13:00; (f) betweenness, 19:00–21:00;
(g) closeness, 7:00–9:00; (h) closeness, 11:00–13:00; (i) closeness, 19:00–21:00.

Table 3. Correlation coefficients of KDE values of stores and weighted centrality indices of total flow
network.

Retail Types Degree Betweenness Closeness

Shopping malls 0.770 0.785 0.580
Supermarkets 0.722 0.625 0.718

Convenience stores 0.812 0.747 0.740
Electronics stores 0.716 0.636 0.685
Specialty stores 0.553 0.485 0.413

Building material stores 0.261 0.211 0.371

First, most store types have rather high correlation coefficients with weighted centrality
indices. Convenience stores, shopping malls, supermarkets, and electronics stores have
strong correlations with all weighted centrality indices, with coefficients above 0.6. The
highest correlation coefficients for each type of store are more than 0.7, and the highest
coefficient is achieved by convenience stores (with values above 0.8). Specialty stores
have the highest coefficient, exceeding 0.5. Only building material stores exhibit weak
correlations with weighted centrality indices (the highest coefficient is less than 0.4), which
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is consistent with the previous findings by using street centrality indices [22–24], which
implies that building material stores may be relatively less correlated to the public transport
flow. These results indicate that most of the six types of retail stores are highly correlated
to weighted centralities in the public transport flow network.

Second, four types, namely, supermarkets, convenience stores, electronics stores, and
specialty stores, show the highest correlations with weighted degree. Only shopping malls
show the highest correlation coefficients with weighted betweenness, with the highest
correlation coefficient value reaching 0.785. This finding indicates that high-grade retail
stores prefer nodes that are included in paths with relatively large flows. In comparison,
it has been reported that betweenness performs well in previous physical street network
studies [18,22–24]. This is also consistent with our findings, as betweenness in street
networks reflects the frequency of the shortest paths passing through, while the weighted
degree in this study directly reflects public traffic volume. The results indicate that transport
volume has a significant impact on the location patterns of retail stores.

Then, the flow networks for different periods of a day with a distinction between
weekdays and weekends are examined. Tables 4–6 show the temporal analysis results.
Tables 4 and 5 show the correlation coefficients to the three weighted centrality indices
across store types at different periods, and Table 6 shows the highest correlation coeffi-
cients for each store type across the periods of a day and the relative centrality indices.
Tables 4 and 5 indicate that correlation coefficients vary across the day. For the relationship
between weighted closeness and most retail stores on weekends, there is a continuous
slight upward trend in the correlation coefficients with time. The relationships between the
weighted degree and building material stores on weekdays are high in the morning and
evening and low at noon. However, for the weighted degrees among specialty stores on
weekdays, this pattern is reversed.

Table 4. Correlation coefficients of KDE values of stores and weighted centrality indices for each period on weekdays.

Centrality Retail Types 7:00–9:00 9:00–11:00 11:00–13:00 13:00–15:00 15:00–17:00 17:00–19:00 19:00–21:00

degree

Shopping mall 0.763 0.786 0.775 0.772 0.768 0.768 0.784
Supermarket 0.723 0.711 0.717 0.714 0.718 0.717 0.718

Convenience store 0.807 0.810 0.812 0.809 0.809 0.808 0.812
Specialty store 0.545 0.546 0.562 0.563 0.561 0.552 0.538

Electronics store 0.715 0.711 0.710 0.708 0.709 0.710 0.721
Building material store 0.266 0.253 0.252 0.248 0.253 0.257 0.264

betweenness

Shopping mall 0.771 0.786 0.814 0.811 0.815 0.754 0.775
Supermarket 0.643 0.615 0.637 0.635 0.648 0.572 0.605

Convenience store 0.751 0.738 0.762 0.763 0.774 0.710 0.724
Specialty store 0.473 0.460 0.506 0.511 0.515 0.443 0.453

Electronics store 0.638 0.620 0.650 0.643 0.656 0.581 0.618
Building material store 0.222 0.215 0.215 0.208 0.220 0.177 0.204

closeness

Shopping mall 0.570 0.589 0.611 0.616 0.628 0.622 0.640
Supermarket 0.715 0.727 0.741 0.744 0.748 0.742 0.750

Convenience store 0.733 0.749 0.766 0.770 0.776 0.769 0.783
Specialty store 0.406 0.420 0.439 0.443 0.454 0.444 0.455

Electronics store 0.680 0.691 0.704 0.708 0.713 0.709 0.718
Building material store 0.373 0.372 0.369 0.371 0.368 0.371 0.368

Table 5. Correlation coefficients of KDE values of stores and weighted centrality indices for each period on weekends.

Centrality Retail Types 7:00–9:00 9:00–11:00 11:00–13:00 13:00–15:00 15:00–17:00 17:00–19:00 19:00–21:00

degree

Shopping mall 0.747 0.747 0.742 0.747 0.750 0.750 0.763
Supermarket 0.749 0.733 0.724 0.719 0.720 0.727 0.734

Convenience store 0.817 0.811 0.806 0.805 0.806 0.810 0.820
Specialty store 0.540 0.554 0.559 0.563 0.564 0.557 0.550

Electronics store 0.733 0.717 0.712 0.709 0.709 0.719 0.727
Building material store 0.294 0.270 0.260 0.253 0.253 0.266 0.277
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Table 5. Cont.

Centrality Retail Types 7:00–9:00 9:00–11:00 11:00–13:00 13:00–15:00 15:00–17:00 17:00–19:00 19:00–21:00

betweenness

Shopping mall 0.752 0.758 0.769 0.753 0.729 0.766 0.769
Supermarket 0.688 0.694 0.703 0.655 0.639 0.667 0.694

Convenience store 0.765 0.776 0.790 0.754 0.734 0.770 0.777
Specialty store 0.486 0.504 0.556 0.587 0.581 0.564 0.519

Electronics store 0.672 0.677 0.685 0.644 0.630 0.657 0.683
Building material store 0.266 0.267 0.266 0.220 0.213 0.226 0.256

closeness

Shopping mall 0.577 0.588 0.601 0.610 0.622 0.624 0.640
Supermarket 0.726 0.728 0.735 0.740 0.744 0.744 0.752

Convenience store 0.745 0.749 0.758 0.764 0.770 0.771 0.783
Specialty store 0.413 0.423 0.433 0.441 0.451 0.451 0.460

Electronics store 0.688 0.691 0.699 0.704 0.710 0.711 0.719
Building material store 0.375 0.368 0.367 0.366 0.364 0.366 0.366

Table 6. Highest correlation coefficients of all periods.

Store Types
Weekdays Weekends

Period Centrality Coefficient Period Centrality Coefficient

Shopping malls 19:00–21:00 Betweenness 0.815 11:00–13:00 Betweenness 0.769
Supermarkets 19:00–21:00 Closeness 0.750 19:00–21:00 Closeness 0.752

Convenience stores 19:00–21:00 Degree 0.812 19:00–21:00 Degree 0.820
Specialty stores 11:00–13:00 Degree 0.563 13:00–15:00 Betweenness 0.587

Electronics stores 19:00–21:00 Degree 0.721 7:00–9:00 Degree 0.733
Building material stores 7:00–9:00 Closeness 0.373 7:00–9:00 Closeness 0.375

Table 6 shows that most of the highest correlation coefficients are rather large both
on weekends and on weekdays. Compared with the results for the total flow network
(Table 3), the values of the highest correlation coefficients here are larger, which means
that analyses without time divisions may underestimate correlations. For the same store
types, most types, except for shopping malls, have higher correlations on weekends. Most
types show consistency in a preference for the highest centrality index from weekdays
to weekends. Only the index type of specialty stores changes in degree on weekdays to
betweenness on weekends, but its correlations are less than 0.7.

It is noteworthy that the three types of shopping malls, supermarkets, and convenience
stores sell general commodities but differ in store size and diversity in their commodity
types. For these three types, they all nearly achieve the highest correlations during the
period of 19:00–21:00 for the whole week, while the only outlier is that the shopping mall
type correlates more strongly to a different period of 11:00–13:00 on weekends. The same
period implies that most consumers go shopping after work, but shopping behavior for
malls on weekends may differ, as people may like to spend time in malls.

Another interesting result for the three types is that the highest centrality indices are
different: convenience stores correlate best with degree, supermarkets correlate best with
closeness, and shopping malls correlate best with betweenness. Recall that for the total
flow network without periods in Table 3, the highest centrality index for the supermarket
changed here from degree to closeness. In this case, the results of the total flow network
may be misleading. Moreover, recall that the degree reflects the total traffic flow, the
closeness reflects the closeness to all nodes in the flow network, and the betweenness
reflects the traffic corridor. Thus, it can be inferred that the higher levels of store types are
associated with higher correlations to the key structure of the flow network.

For the two types of specialty stores and electronics stores, both correlate best to
degree centrality on weekdays, and neither correlate best with the period of 19:00–21:00 on
weekends. These results imply that people may visit these types of stores after work on
weekdays and may visit them at various periods in the daytime on weekends.
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4. Discussion and Conclusions

This paper examines the relationships between the spatial distributions of six types
of retail stores and their weighted centrality indices in the public transport flow network
from the perspective of temporal dynamics. Three weighted node centrality indices were
measured, e.g., degree, betweenness, and closeness. This study contributes to existing
research on static physical street networks by analyzing the traffic flows of networks and
their dynamic time processes.

The findings illustrate that generally, the distribution patterns of six types of retail
stores are influenced by weighted street centrality significantly. Except for building material
stores, all types of stores are highly correlated with weighted centrality indices. Among
the three weighted centrality indicators, weighted degree is the best for four types of retail
stores in terms of correlation coefficients and is followed by closeness and betweenness.

Temporal analysis can reveal more details and allow an inference of consumer behav-
iors. The correlation coefficients at different periods on weekdays and weekends vary over
the time of day. For shopping malls, supermarkets, and convenience stores, the highest
correlation coefficients on weekdays occur during the after-work period of 19:00 to 21:00.
These may change on weekends for shopping malls, as shopping malls provide more than
shopping services. Lower store levels correlate to degree centrality, that is, traffic volume
itself, such as convenience stores and electronics stores. Higher store levels are correlated
with the spatial characteristics of the flow network, such as closeness or betweenness. For
specialty stores and electronics stores, people may visit these types of stores after work on
weekdays and visit them at various times of the day on weekends.

This research provides a more comprehensive understanding of retail location analysis
from a static physical street network to a dynamic flow network. Further research can
be conducted to examine the following topics. As consumers may travel in a variety
of traffic modes, the flow network that is based on various travel modes is needed to
more comprehensively describe traffic flow information. In addition, there is a significant
characteristic of disparity of centrality in different cities. Thus, it is necessary to identify
the differences among different cities by conducting more case studies.
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