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Abstract: Chest diseases can be dangerous and deadly. They include many chest infections such as
pneumonia, asthma, edema, and, lately, COVID-19. COVID-19 has many similar symptoms compared
to pneumonia, such as breathing hardness and chest burden. However, it is a challenging task to
differentiate COVID-19 from other chest diseases. Several related studies proposed a computer-aided
COVID-19 detection system for the single-class COVID-19 detection, which may be misleading due
to similar symptoms of other chest diseases. This paper proposes a framework for the detection of
15 types of chest diseases, including the COVID-19 disease, via a chest X-ray modality. Two-way
classification is performed in proposed Framework. First, a deep learning-based convolutional neural
network (CNN) architecture with a soft-max classifier is proposed. Second, transfer learning is
applied using fully-connected layer of proposed CNN that extracted deep features. The deep features
are fed to the classical Machine Learning (ML) classification methods. However, the proposed
framework improves the accuracy for COVID-19 detection and increases the predictability rates for
other chest diseases. The experimental results show that the proposed framework, when compared
to other state-of-the-art models for diagnosing COVID-19 and other chest diseases, is more robust,
and the results are promising.

Keywords: chest diseases; COVID-19; transfer learning; deep learning; self-activation; X-ray imaging

1. Introduction

Society is developing towards one in which people are more consistently confronted
with new and unique diseases. In this industrial era, due to different types of pollution,
different diseases, including pulmonological diseases, have arisen. The recent rise of the
deadly coronavirus caused a global pandemic. COVID-19 is manifested by pneumonia or
chest infections. Different chest diseases are experienced; however, to discover the exact
problem or disease in the chest, multiple tests or procedures must be performed. Separate
tests and procedures are usually done at one time to identify different chest problems.
Many chest diseases cannot be detected with a single test or procedure. X-ray images
and convolutional neural networks (CNN) are used to to diagnose different diseases.
For example, for the coronavirus disease, to detect the virus, an antibody test, a swab test,
and other tests are required, but to determine whether the level of chest infection is due
to the same virus, we need X-rays in conjunction with other tests for different diseases.
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However, using a combination of deep and machine learning, it is much easier to identify
different diseases at one time.

A disease is an abnormal situation that impairs the regular functions of any living
body and directly affects the condition and structure of all parts of a living organism [1].
Chest diseases are highly aggressive and are one of the most serious health issues faced
today. Millions of people face chest diseases globally; tuberculosis, pneumonia, chronic
obstructive pulmonary, asthma, and lung cancer diseases are the most common globally [2].

Chronic obstructive pulmonary sickness is a primary source of death and handicap.
Tuberculosis (TB), chronic obstructive pulmonary disease (COPD), pneumonia, asthma,

and cellular breakdown in the lungs are considered complex issues and a common cause
of death. Pneumonia is a chest abnormality that affects the lungs, where it is a bacterial
disease. Early detection of any chest abnormality is a significant factor for effective treat-
ment solutions. Generally, abnormalities can be analyzed from X-ray images by a medical
specialist. These diagnoses can be abstract, for example, the presence of diseases can be
hazy in chest X-rays or can be mistaken for different chest abnormalities [3]. Asthma is a
chest disease that affects approximately 0.3 billion people in the world. It directly affects
the human lungs as well, as it is the most common long-term disease of children and adults.
Wheezing, breathlessness, chest tightness, and coughing are symptoms of asthma [4]. TB is
another chest disease caused by a bacterium known as Mycobacterium tuberculosis. TB can
directly affect any part of the body, such as the spine, brain, and kidney. For this disease,
every year, an average of 0.25 to 0.32 billion cases are reported globally [5]. Asthma, chronic
mucus, pneumonia, lingering chest pain, stubborn cough, snorting, coughing up blood,
and vocal fold paralysis (VFP) are also common types of chest diseases. Some patients with
VFP chest issues are not diagnosed correctly at their first stage. Therefore, these patients
may remain untreated for a significant period of time [6].

The coronavirus disease was first reported in China; it has now been declared as
a global health emergency by the WHO [7]. It is a respiratory disease and reaches into
the respiratory tract and the lungs. Chest CT scan is the most utilized modality for the
identification and follow-up of lung abnormalities [8]. Most pediatric chest infections are
sufficiently assessed with chest radiography. Chest radiography does not permit the identi-
fication of the area and nature of a territory of expanded murkiness, but ultrasonography
can contribute toward an analysis [9].

In medical imaging examinations, chest X-rays are the most common and cost-effective
exam available. They are used for testing in clinical analysis, but sometimes it is difficult to
identify chest diseases due to inexperienced X-ray technician mistakes, not highlighting
ROIs, etc. Indeed, some encouraging work utilizing deep learning has been done on
whether TB classification or single COVID-19 detection tests are effective.

Many researchers have worked on the identification of chest issues [10–15]. Chest X-
ray image filtering is frequently utilized by radiologists to analyze numerous chest-related
diseases in their underlying stages [16]. The framework can indeed help radiologists in
more effectively identifying diseases found in cleaned X-ray images [17]. Artificial intelli-
gence (AI) techniques guarantee quick and exact identification and forecasts of COVID-19
from standard-of-care chest radiographs and other processed tomography chest images [18].
However, proposed study mainly focuses on multi-class chest disease detection including
COVID-19 that is essential need of current era. Due to similar symptoms, any other chest
disease can be wrongly diagnose as COVID-19 that may leads to severe health results.

The contribution of this study is as follows:

• The proposed study considers multimodal chest diseases, including COVID-19.
• Self-CNN improved accuracy with a multi-validation method enhances the robustness

of the proposed framework.

This paper shows the achievability of detection abnormalities in X-ray images utilizing
DL approaches that depend on non-clinical methods. The deep CNNs learn more significant
image representations.
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The custom CNN design comprises five types of layers: a convolutional layer, a pool-
ing layer, an activation layer, a fully connected layer, and a soft-max activation function
that outputs the likelihood for each type of chest disease. Furthermore, transfer learning
is applied on proposed DL model that increases accuracy to detect chest diseases using
ML classifiers.

The rest of the article is divided into four sections. Section 2 describes previous
state-of-the-art work related to chest diseases. Section 3 discusses the proposed system,
including the working methodology. Section 4 represents the experiment setup and results.
The study is concluded in Section 5.

2. Background and Literature Review

The purpose of this study is to provide a more efficient and robust solution to the
current problem of chest disease detection. An overview of previously proposed studies
indicates solutions proposed by other authors. Many automatic techniques are used for
solving different problems. AI systems are becoming the core of many real-time and
data science-related solutions, including those for COVID-19 [19,20]. Machine learning
(ML) methods can be found in science, technology, health care, manufacturing, education,
policing, and marketing [21]. DL is a sub-type of ML that works on deep neural network
data representations in a supervised, semi-supervised, or unsupervised way [22,23]. DL
techniques are used for the execution of different medical imaging-related tasks [24,25].
In radiology, deep learning can improve the precision of X-ray image segmentation and
disease diagnostics. DL methods combined with transfer learning from pre-trained models
such as ResNet18, InceptionV3, Xception, MobileNetV3, and DenseNet121 can be used for
chest X-ray image segmentation, detection, recognition, and classification tasks [26].

In chest imaging, there has been an effort to create and apply computer-aided detection
(CAD) frameworks for the identification of lung lesions on chest radiographs [27,28] and
chest tomography [29]. A scan of a patient’s lungs using CT/X-ray is used to identify
COVID-19, which can cause significant chest abnormalities that require a multimodal chest
detection system for chest disease diagnosis.

CNN-based approaches have acquired prominence because of their capacity to learn
mid-level and high-level image representations. In [30], the authors show the possibility
of recognizing different chest pathologies in chest X-rays using convolutional and DL
methods. Different CNNs are introduced for the analysis of chest abnormalities. Back-
propagation neural networks are used with the supervised learning backend phenomenon,
and competitive neural networks with a backend of unsupervised learning have been built
for identifying chest infections.

There are a couple of works focused on multi-class pathological X-ray images, where
COVID-19 also needs to be included [31]. Abnormal CT signs such as those of COVID-
19 patients at our medical centers need to be analyzed. The acknowledgment of these
highlights with medical specialists must be fortified by such signs , which will help them
make quick and precise decisions [32]. Remarkably, only 56% of early patients of COVID-19
had a typical CT-X-ray test. However, some time after the beginning of indications, CT
discoveries were more frequent, including consolidation, reciprocal and fringe illness,
complete lung infections, severe opacities, “insane clearing”, and “opposite halo” types.
Reciprocal lung association was found. In 28% of early patients, 76% of transitional patients,
and 88% of late patients, infectious lungs were diagnosed at different stages from a certain
range [33].

The point of examination was to research chest (CT) images of confirmed COVID-19
patients and to assess their relationship with clinical findings. This study considered
80 patients with COVID-19 diagnoses from January to February 2020. The chest CT images
and other diagnosed information were reported, and the relation between them was exam-
ined [34]. The author presented chest CT discoveries from five patients with COVID-19
infection who had introductory negative, inverted polymerase chain response (RT-PCR)
reports. Each of the five patients had regular medical discoveries, including ground-glass
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opacity, a blended type, and a mixed combination of chest abnormalities [35]. The role
of CT images as an aid to or substitution to RT-PCR in finding COVID-19 and pneumo-
nia has been a subject of debate [36]. There are many diseases of the chest, and we can
identify them using machine learning. One way to identify asthma endotypes is to utilize
advances in information-driven strategies, with the suspicion that examples of indications
or potential biomarkers were surveyed either longitudinally (e.g., in birth co-founders) or
cross-sectionally (e.g., in investigations of patients with asthma) [37]. In another paper,
the aim was to improve on the medical use and to extend the precision level of the forced
oscillation technique (FOT) for identifying asthma. However, the researchers utilized
various methods such as k-nearest neighbor (KNN), AdaBoost, random forest (RF), and the
feature-based dissimilarity space classifier [38].

The paper in [39] portrayed records of patients with chronic obstructive pulmonary
disease (COPD) who were hospitalized for intensive care to meet the expense of such
hospitalizations. For highly endangered patient subgroups, other distinguishing factors
were possibly connected to a danger of rehospitalization. An AI model was used to consider
the variables related to the danger of rehospitalization utilizing choice tree examination.
Another direct cost examination was performed from the point of view of public medi-
cal insurance.

A precise survey of articles that utilize AI techniques to distinguish clinically signif-
icant COPD phenotypes was performed in [40]. Lately, the developing utilization of AI
calculations, bunch investigations specifically, has the potential to establish this group-
ing via joining other explanatory attributes, comorbidities, genomic data, and biomark-
ers. This combination will permit scientists to more dependably recognize new types of
COPD phenotypes, to better describe existing ones, and to improve conclusions and create
novel medicines.

The aim of [41] was to find the potential relationship between cellular breakdowns
in the lungs and thereby help clinicians and consequently patients to distinguish cellular
breakdown in the lungs using these normal tests. Random forest was adopted to assemble
a recognizable proof model between routine blood records and cellular breakdown in the
lungs that would decide whether they were intensively connected. There are few recent
studies have also used the Ai-driven approaches using Regression [42] and Classification
methods to detect the COVID-19 and other lungs infections using time-series, pathological,
CT, and X-ray data [43–47]. However, some of them are discussed. The time-series
data, used in many studies [48–50], are shifted into normalized form using a regression
method where later a multi-layer perceptron is used for training purpose [51], it also used
in many other studies [52,53]. Similarly, Indian COVID-19 pandemic-based regression is
performed on Kaggle data [54], US data are also used in another study [55], as are data from
Mexico [56] and Indonesia [57]. Although, some of the studies are given health measures
to make effective prevention against COVID-19 [58]. Moreover, the system behavior
after government applied policies regarding COVID-19 is analyzed [59]. The evolutionary
algorithms also used by various studies to estimate the COVID-19 [60], such as in [60] where
optimization algorithms were also used to optimize the proposed methods of COVID-19
identification [61].

Table 1 shows a summary of previous work.
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Table 1. Summary of recent studies on the detection of chest-related diseases.

Title of the Paper Reference Tools / Classifiers
Used

Training Images
Used Dataset (s) Accuracy

Disease Staging and
Prognosis in Smokers
Using Deep Learning

[62] CNN 1000 - 74.95%

Deep Learning for
Screening COVID-19 [63] (DL) (ML) COVID-19 datasets 90.13%

A Deep Neural Network
to distinguish COVID-19 [64] CNN 108,948 - 87%

Chest CT manifestations
of new coronavirus [31] GGO 21 patient - 98%

Chest CT Findings in
Coronavirus Disease-19 [65] Ct scan 125 patient - 88%

Chest disease radiography
in twofold: using

convolutional neural
networks and transfer

learning

[66] CNN Chest x-ray dataset 97%

Pneumonia detection on
chest x-ray using machine

learning paradigm
[67] ML Chest x-ray14

dataset 95.8%

3. Methodology

In this study, a framework is proposed for the detection of chest diseases, including
COVID-19. First, we train our proposed 32-layer CNN and classify the chest diseases
using soft-max activations. After that, transfer learning is applied on fully-connected layer
of trained CNN. It extracted deep features that were fed to ML classification methods.
We then perform 10-fold and 5-fold validation on best performed of the seven machine
learning classifiers. The proposed framework in its first stage takes an image as an input
and subsequently applies preprocessing to normalize the data. The processing of the
proposed framework with primary steps is shown in Figure 1.

Figure 1. The proposed framework containing all steps for classification of chest diseases.
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3.1. Dataset

There are many datasets used for the identification of chest diseases, but we selected
these two datasets because our proposed system identifies chest diseases and COVID-19
issues. We selected the NIH and Open COVID-19 X-ray datasets. The datasets of X-ray
modality for both chest and COVID-19 diseases have been merged to obtain single-unit data.
Due to the size difference, the data were resized in a preprocessing step to normalize it.

3.2. NIH Chest X-Ray Dataset

In this dataset, the publicly provided improved rendition (with six more infection
classifications) of the dataset is utilized in the new work, which has a much higher number
of frontal chest X-ray images. It achieved clinically important information for recognition
and determination of CAD systems where all information settings of chest X-rays on clinical
sites are still troublesome. However, it is certainly feasible when large numbers of images
are utilized for any study. This dataset is separate from the clinical PACS information based
on the National Institute of Health Clinical Center (NIH) and comprises 60% of all frontal
chest X-rays in the emergency clinic where 14 different chest disease data are utilized in
proposed study.

3.3. COVID-19 Chest X-Ray Image Dataset

In the analysis of COVID-19 infection, chest X-rays are a significant part of the analysis
of COVID-19 infection, as they contain clarified picture datasets. Multi-class chest disease
identification including COVID-19 disease is needed. Therefore, the data from NIH and
COVID-19, available at kaggle, were collected and normalized. The number of images for
each class is kept equal to avoid overfitting and bias. The normalized images with their
selected number and dimension are shown in Table 2.

Table 2. NIH chest X-ray and COVID-19 chest X-ray image dataset.

Datasets Total Images Size Classes/ Image Format

NIH Chest X-ray
Dataset 2800 1024 × 1024 14/200 PNG

COVID-19 Chest
X-ray Image Dataset 200 1024 × 1024 1/200 PNG

In Table 2, the size of these images in the dataset is 1024 × 1024. The extension is
Portable network graphics (PNG). There are 200 images per class.

3.4. Data Preprocessing

Preprocessing is a significant step in the data mining process. The expression “trash in,
trash out” is especially applicable to information mining and AI projects. Data gathering
strategies are regularly approximately controlled, with out-of-range esteems, impossible
information mixes, missing qualities, etc. A preliminary processing of information is set
up for primary preparation or for additional examination. Data preprocessing is a cycle
of setting up raw information and making it appropriate for an AI model. It is the first
and pivotal advance in making an AI model robust. Data cleaning and normalization
are techniques used to eliminate anomalies and normalize the information. It takes a
structure that can be handily used to make a model. Normalization is an information-based
design technique that decreases data redundancy and eliminates unwanted qualities such
as insertion, deletion, and update anomalies. The described normalization rules separate
larger tables into smaller tables and connect those utilizing connections. Mathematically,
the normalization equation is represented as given in Equation (1):

xnorm =
x − xmin

xmax − xmin
(1)
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where x is the input variable as the individual input, xmin and xmax are the minimum and
maximum values from that particular feature, and xnorm is the output of the processed
input value.

However, the images have pixels that are taken as intensity values. The normalization
in these images is somehow different in the context of numeric operations. For this
purpose, different interpolation methods have been used in matrix normalization. The data
become loss-free when we increase or decrease the input image dimensions. The bilinear
interpolation method has been used to preprocess the images. In image processing tasks,
the neighborhood pixels are utilized in most cases to obtain focused pixel results. Similarly,
in the bilinear method, the 2 × 2 neighborhood operation is utilized to obtain the weighted
average. The horizontal and vertical interpolations are performed using corner points of
the given input image as points of reference for further operations. Assume the 4 corner
points as C(1,1), C(2,1), C(1,2), and C(2,2) as given in Equations (2)–(5).

C(1,1) =
(α2 − α)

(α2 − α1)

(β2 − β)

(β2 − β1)
Q1 (2)

The vertical corner points C(1,1) and C(2,1) are shown in Equation (2) and (3), where α
is the middle point regarding the x-axis between α1 and α2. The middle point is considered
as the 2 × 2 neighborhood, where β is taken as the y-axis point, and β1, β2 are the corre-
sponding 2 × 2 neighbors of the middle y point of the considered interpolated point. Q1
and Q2 are the quadrants of the four points of the image.

C(2,1) =
(α − α1)

(α2 − α1)

(β2 − β)

(β2 − β1)
Q2 (3)

Equations (4) and (5) are the corner points of the bottom of a given digital lattice.
These points are shown in Figure 2.

Figure 2. Bilinear interpolation method to find the final point ( P_final) for the newly interpo-
lated point.

The four corner points with their corresponding 2 × 2 neighbors for the final point
calculations have been shown for a better understanding and interpretation of the given
equations of the bilinear interpolation method.

C(1,2) =
(α2 − α)

(α2 − α1)

(β − β1)

(β2 − β1)
Q3 (4)

C(2,2) =
(α − α1)

(α2 − α1)

(β − β1)

(β2 − β1)
Q4 (5)
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As calculated in Equations (2) and (3), by determining the two corner points C(1,2) and C(2,2),
the final point Pf inal is calculated by the summation of all of them, as given in Equation (6).

Pf inal = C(1,1) + C(2,1) + C(1,2) + C(2,2) (6)

3.5. Classification

The proposed study has used two methods of classification for multi-chest disease
detection: (1) the Deep learning and (2) Machine learning methods. In Deep Learning,
the proposed study used a proposed architect of CNN where in Machine learning-based
Classification, the transfer learning is applied on proposed CNN fully-connected layer that
returns the deep features and then fed them as input data to Machine Learning classifiers.

3.5.1. Deep Learning Based Classification

There are many ways of doing classification and other tasks using DL methods such
as multi-layer perceptron, autoencoders, etc. but the most commonly used DL method for
image based classification is CNN that uses convolve operation in its layers. Similar to this,
we propose a CNN architect that is discussed in detail.

3.5.2. Proposed CNN

CNN stands for Convolutional Neural Network, a specific neural network for han-
dling information that has a 2D input shape. CNNs are ordinarily utilized for image
detection and classification. In this stage, we train our CNN. The proposed CNN is based
on a 32-layer architecture. The size of input images is set 1024 × 1024. The images are fed
to Convolutional Blocks where our convolutional blocks include a sequence of 4 layers
(Convolution, batch-normalization, ReLU, and Max-Pooling) with different parameters as
explained in Table 2. For our first Convolutional Block, we make a window of 3 × 3 and
convolve the image through kernels, where number of filters is set to 16 and these number
of filters increases by incoming convolutional layers. The layer-by-layer visualization of
weights is shown in Figure 3.

After the convolution layer, we then apply batch normalization. Batch normalization
is a strategy for preparing deep neural networks that normalizes inputs to a layer for every
scaled-down bunch. This settles the learning process and reduces data variation. Let us
have a look on CNN layers that how they works individually.

3.5.3. The Input Layers

In this layer, the tensor to reshape and then restructure the tensor is followed up by
layers. In the Input arguments of this layer, the properties of the data that are used to
define the argument of a function for sizing are the width, height, and a channel. For the
proposed CNN, it is 1024 × 1024 × 1 and a 2D image with 1024 rows and 1024 columns,
where 1 is the color channels representation.

3.5.4. Convolutional Layer

The convolution layer contains at least one convolutional operation. For the first
convolutional layer, the kernel size is 3 × 3 with equal padding. The output tensor and the
input tensor have the same width and height. The tensor flow will add zeros in the rows
and columns to ensure the same size. Convolutional blocks indicate how many times the
image is iterated over 4 layers in proposed study. Our convolutional layer output size is
(N − m + 1) × (N − m + 1). The output of the l-th convolution layer, denoted as in [30],
consists of feature maps. It is computed as shown in Equation (7):

C(l)
i = B(l)

i +
a(l−1)

i

∑
j=1

.K(l−1)
i,j ∗ C(l)

i (7)
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where B(l)
i is the bias matrix and the convolution filter or kernel of size a ∗ a that connects

the j-th feature map in layer (l − 1) with the i-th feature map in the same layer. The out-
put layer consists of feature maps. The first convolutional layer has input space. Our first
convolutional block is 3 × 3, and the number of filters used is 16.

3.5.5. Batch Normalization Layer

Batch normalization layers are utilized among the convolution and the ReLU layers
to normalize the information xi by estimating the µB and σ2

B over a smaller batch size
to accelerate CNN training and furthermore limit the affectability of the organization
introduction. The standardized computations are defined in Equation (8) [68]:

x̂i =
xi−µB

σ2
B + e

(8)

The normalized output of input instance is shown as x̂i, where i is the correspond-
ing instance of data. After batch normalization, the ReLU activation function is applied,
after which max-pooling is applied.

3.5.6. Max Pooling Layer

Max pooling computation is the next step. The pooling counting will reduce the
addition of the data. In this stage, the module max-pooling2D with a size of 3 × 3 and a
stride of 2 is used. For a pooling layer, one can specify only the filter/kernel size (F) and
the strides (S).

Pooling Output dimension = [(I − F) / S] + 1 ∗ D (9)

There is no special parameter in the pooling layer, but it has two hyperparameters:
Filter(F) and Stride(S). In general, if we have input dimensions of W1 ∗ H1 ∗ D1, then [69]

W2 = (W1 − F) / S + 1 (10)

The kernel or operational window is represented as W; the window that is needed
to compute, represented as W1; and the result is shown as W2. The number of filters in
the proposed CNN is changed in each block in the convolutional layers, where the max-
pooling filter window size remains the same at 2 × 2 with a stride of 1. The image is then
downsampled to max-pooled data that are further processed by the subsequent layers.

H2 = ((H1 − F)/S + 1−F) (11)

In Equation (11), F is the spatial extent in the given filter of the image, and H is the
height of the given image. These are the columns of the image. However, their height is
calculated as stride by subtracting the assigned corresponding number of filters with their
3 × 3 size. This is later on subtracted from the stride with a summation of 1 by subtracting
it from the spatial extent.

D2 = D1 (12)

If the volume of an input image is W1 ∗ H1 ∗ D1, then an output of size W1 ∗ H1 ∗ D1
is produced by a pooling layer. The equations for W2, H2, and D2 in the pooling layer
are shown above, where W2, H2, and D2 are the width, height, and depth of the output,
respectively.
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Figure 3. Proposed CNN design with convolve layer weight activation.

3.5.7. Rectified Linear Unit (ReLU)

ReLU refers to the Rectifier Unit, the most ordinarily conveyed initiation work for the
output of CNN neurons. Unfortunately, ReLU work is not differentiable at the beginning,
which makes it difficult to use with backpropagation preparation. In this layer, we eliminate
low values from the sifted picture and supplant it with nothing. This capacity is possibly
enacted when the hub input is over a specific amount. Thus, when the info is under zero,
the yield is zero.

f (x) = max(0, x) where x = input value (13)

Therefore, to cover any in-bounding and out-bounding range of pixels, the activation
function is performed, and this normalizes incoming values. The summarizing details have
been shown in Equation (13) [1].

3.5.8. Softmax Layer

Softmax is a numerical capacity that changes over a vector of numbers into a vector of
probabilities, where the probabilities of each value correspond to the general size of each
value in the vector. Convolutional layers are layers where channels are applied to the first
picture, or to other element maps in a deep CNN. We use 32 layers for training. The table
of CNN layers (Table 3) is given below.

Table 3. Details about the proposed CNN layers.

Number Layer Names Activations Kernel Size Stride Parameters Feature Maps

1 Input layer 1024 × 1024 × 3 / 1024 × 1024 / /

2 Convolutional
layer (C1) 1024 × 1024 × 3 3 × 3 1 Weights = 3 × 3 × 3 × 16

Bias = 1 × 1 × 16 16

3
Batch

Normalization
(BN1)

1024 × 1024 × 16 / / Offset = 1 × 1 × 16
Scale = 1 × 1 × 16 16

4 ReLU (R1) 1024 × 1024 × 16 / / / /

5
Maximum

pooling layer
(MP1)

1024 × 1024 × 16 2 × 2 2 / /
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Table 3. Cont.

Number Layer Names Activations Kernel Size Stride Parameters Feature Maps

6 Convolutional
layer (C2) 512 × 512 × 16 3 × 3 1 Weights = 3 × 3 × 16 × 32

Bias = 1 × 1 × 32 32

7
Batch

Normalization
(BN2)

512 × 512 × 32 / / Offset = 1 × 1 × 32
Scale = 1 × 1 × 32 32

8 ReLU (R2) 512 × 512 × 32 / / / /

9
Maximum

pooling layer
(MP2)

256 × 256 × 32 2 × 2 2 / /

10 Convolutional
layer (C3) 256 × 256 × 64 3 × 3 1 Weights = 3 × 3 × 32 × 64

Bias = 1 × 1 × 64 64

11
Batch

Normalization
(BN3)

256 × 256 × 64 / / Offset = 1 × 1 × 32
Scale = 1 × 1 × 32 64

12 ReLU (R3) 256 × 256 × 64 / / / /

13
Maximum

pooling layer
(MP3)

128 × 128 × 64 2 × 2 2 / /

14 Convolutional
layer (C4) 128 × 128 × 128 3 × 3 1

Weights = 3 × 3 × 64 ×
128

Bias = 1 × 1 × 128
128

15
Batch

Normalization
(BN4)

128 × 128 × 128 / / Offset = 1 × 1 × 128
Scale = 1 × 1 × 128 128

16 ReLU (R4) 128 × 128 × 128 / / / /

17
Maximum

pooling layer
(MP5)

64 × 64 × 128 2 × 2 2 / /

18 Convolutional
layer (C5) 64 × 64 × 256 3 x 3 1

Weights = 3 × 3 × 128 ×
256

Bias = 1 × 1 × 256
256

19
Batch

Normalization
(BN5)

64 × 64 × 256 / / Offset = 1 × 1 × 256
Scale = 1 × 1 × 256 256

20 ReLU (R5) 64 × 64 × 256 / / / /

21
Maximum

pooling layer
(MP5)

32 × 32 × 256 2 × 2 2 / /

22 Convolutional
layer (C6) 32 × 32 × 512 3 × 3 1

Weights = 3 × 3 × 256 ×
512

Bias = 1 × 1 × 512
512

23
Batch

Normalization
(BN6)

32 × 32 × 512 / / Offset = 1 × 1 × 512
Scale = 1 × 1 × 512 512

24 ReLU (R6) 32 × 32 × 512 / / / /
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Table 3. Cont.

Number Layer Names Activations Kernel Size Stride Parameters Feature Maps

25
Maximum

pooling layer
(MP6)

16 × 16 × 512 2 × 2 2 / /

26 Convolutional
layer (C7) 16 × 16 × 1024 3 × 3 1

Weights = 3 × 3 × 512 ×
1024

Bias = 1 × 1 × 1024
1024

27
Batch

Normalization
(BN7)

16 × 16 × 1024 / / Offset = 1 × 1 × 1024
Scale = 1 × 1 × 1024 1024

28 ReLU (R7) 16 × 16 × 1024 / / / /

29
Maximum

pooling layer
(MP7)

8 × 8 × 1024 2 × 2 2 / /

30 Fully connected
layer FC1 1 × 1 × 15 / / Weights = 15 × 65,536

Bias = 15 × 1 15

31 Softmax 1 × 1 × 15 / / / /

32 Classification
Layer / / / / /

Table 3 shows the fine-tuned CNN details for 15 categories of chest disease detection,
where padding, stride, and other fine details of CNN show how the fine features are
being collected and passed on to the next block. There are seven total Conv-Blocks in
which a 4-layer combination is used by conducting a downsample of half of the size,
as compared to the previous layer input. A training and validation graph of the proposed
CNN is shown in Figure 4, where the consistent confidence of validation accuracy is shown.
However, the accuracy graph is saturated over a few epochs. Various approaches using
hyperparameters optimization, such as changing the learning rate (LR), the activation
function, and epochs, are considered. Finely, the fine-tuned parameters for case study are
shown in Table 4.

Figure 4. CNN training graph.
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Table 4. The fine-tuned parameters of the proposed CNN.

Parameter Value

Stochastic gradient descent momentum
(SGDM) 0.9

Learning Rate (LR) 0.0004

Verbose No

Max-epochs 500

Iteration-Frequency 65

Min-Batch Size 32

As discussed above, the training parameters of the proposed CNN are shown in
Table 4. It is observed that max-epochs are taken as 500, which are manually stopped
due to the saturation of change in validation accuracy. The initial learning rate is set to
0.0004, where the frequency of iteration is taken as 65. Considering 13,000 iterations in
total, by looking into a consistent accuracy rate from 1000 to more than 6000, training was
manually stopped after 6764 iterations. At this time, epochs reached 105. After obtaining
poor results of classification on validation and testing data, the state-of-the-art deep features
using self-activations of CNN are applied. The self-activations are referred to as no other
pre-trained model is used to extract deep features where the proposed CNN based transfer
learning is performed on its fully-connected layer.

3.6. ML-Based Classification

Many of the state-of-the-art machine learning classifiers are used when a comparison
of algorithm performance is proposed. Support Vector Machine (SVM) is an algorithm
used for linearity in data. We consider training features and training labels. Training labels
are already defined, and every machine learning or SVM classifier selects the numeric
value row by row from the table, so this training features results as 2100 × 15 feature vector,
which means 2100 rows in every single image, as we have 2100 images for training and 15
is the number of features. Basically, in this, we design a matrix that consists of rows and
columns. As we know, the rows are a feature, so there are n columns in front of every row,
and this is a feature vector of a single image. Testing is performed using testing features
that are performed on a trained model. The predictions function is performed, and we
map these predicted labels on testing labels and calculate the accuracy, which is maximally
reached to 99.98%. The testing features data contain a 900 × 15 size vector array where
900 is representing to testing features instances and 15 is the number of features. Different
evaluation measures are used for evaluation on multiple trained model predictions. The all
testing measures are discussed in Section 4.

3.7. Deep Features Extraction

Transfer learning is an examination issue in AI that emphasizes putting acquired
information away while tackling an issue and applying it to another related issue. For in-
stance, information acquired while figuring out how to perceive vehicles can be applied
when attempting to perceive trucks. Basically, we train our CNN mainly with 106 epochs.
In our train network we take preprocessed Training data. First, we consider two datasets—
the NIH Chest X-ray Dataset and the COVID-19 Chest X-ray Image Dataset, perform a
process of normalization on them, and change the scale. We then make the image sizes
of both datasets the same. After the normalization process, a dataset with a normaliza-
tion form of 200 images of 15 different diseases is created. Our proposed CNN achieved
validation accuracy that is 87.89% in 105 epochs with 6764 iterations. We also checked
the 105 epochs with 13,000 iterations, but the result was the same. In the training graph,
the Black Dots are Validation data. To check the accuracy, we load the model, but the
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accuracy is in two forms: (1) the model and (2) validation accuracy. This takes a very
long time and an extensive validation process, but the accuracy is still very low, at 87.89%.
Therefore, we utilize our proposed CNN fully-connected layer to obtain deep features
and perform a machine learning classification process such as SVM or decision tree using
10-fold and 5-fold validation methods where accuracy reaches 95, 98, and 99%. We use the
machine learning process because it is highly time-efficient as compared to deep learning.
We perform the activations on CNN using fully-connected layer, in which there are 15
classes. These activations get training features on our training data and testing features on
testing data.

4. Results and Discussions

With the use of the two best datasets, the CNN and the activation of CNN provides
machine learning techniques with fivefold and tenfold validation techniques included in the
proposed work. We show the result of the proposed work in the form of tables and graphs
where the training set is utilized to prepare the model, while the validation set is simply
used to assess the model’s presentation. We made a table of CNN activation for the tenfold
technique and calculated the individual accuracy of individual classes. In Tables 3 and 4,
detailed CNN layers and training parameters are shown. CNN validation accuracy as
shown in Figure 4 remains saturated with an 87.89% validation accuracy.

The results of CNN testing data are further discussed for each class that increase
the testing accuracy as compared to validation accuracy. Furthermore, other important
evaluation measure are also use and shown in Table 5.

Table 5. CNN testing data results.

Classes Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F1-Score
(%)

Precision
(%)

Kappa
(%)

Atelectasis 0.96667 0.96667 0.99524 0.95082 0.93548 0.86492

Cardiomegaly 1 1 1 1 1 0.86667

Consolidation 1 1 1 1 1 0.86667

Covid-19 0.93333 0.93333 0.99524 0.93333 0.93333 0.8673

Edema 1 1 1 1 1 0.86667

Effusion 0.9 0.9 0.99286 0.9 0.9 0.86761

Emphysema 0.96667 0.96667 0.99762 0.96667 0.96667 0.86698

Fibrosis 0.96667 0.96667 1 0.98305 1 0.86904

Hernia 1 1 1 1 1 0.86667

Infiltration 0.96667 0.96667 0.99762 0.96667 0.96667 0.86698

Mass 1 1 0.99762 0.98361 0.96774 0.8646

Nodule 0.93333 0.93333 0.99762 0.94915 0.96552 0.86935

Pleural
Thickening 1 1 0.99762 0.98361 0.96774 0.8646

Pneumonia 0.96667 0.96667 1 0.98305 1 0.86904

Pneumothorax 0.9 0.9 0.99286 0.9 0.9 0.86761

Overall 0.9667 0.9667 0.9976 0.9667 0.9669 0.7321

Although the validation accuracy was lower when testing data were collected at a
70:15:15 ratio: 70% data is used as training data, 15% as validation, and 15% as testing data,
the overall results of classification are improved. The F1-score is an important measure
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of evaluation as it contains the effect of precision and recall. The precision is the ratio
of true positives over true positives and false positives. The 96.67% value is a good
measure of predictivity. Similarly, a kappa value of more than 60% shows the moderate
level of agreement on testing data. However, to increase the overall evaluation measure
performance, the transfer learning based deep features are used and tested via classical
machine learning methods that improved the accuracy and other results as well.

Although the CNN testing data results were good enough, to increase accuracy,
the transfer learning concept was used. Therefore, to improve the testing data results,
deep transfer learning is utilized using self-activation on the proposed trained fully con-
nected CNN layers. These features are embedded within classical ML classification meth-
ods. The best classification results selected among 23 different methods are shown in
Tables 6 and 7 with fivefold and tenfold validation methods.

Table 6. Classification validation accuracy of fivefold validation using self-activated features.

Method Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%) Precision (%) Kappa (%)

Bag-Ensemble 99.33 99.33 99.95 99.33 99.34 96.64

KNN-coarse 96.17 96.17 99.73 96.17 96.23 69.20

KNN-fine 99.40 99.40 99.96 99.40 99.41 95.18

KNN-medium 96.30 96.30 99.74 96.30 96.34 70.27

LP-Boost-Ensemble 99.1 99.10 99.94 99.10 99.12 92.77

Subspace-discriminant 93.40 93.40 99.53 93.44 93.55 46.96

Total-boost-Ensemble 99.17 99.17 99.94 99.17 99.18 93.30

K-fold cross-approval is a technique that endeavors to expand the utilization of
accessible information for training and afterward testing a model. It is especially valuable
for surveying model execution, as it gives a scope of accuracy scores across (to some degree)
different datasets. K-fold CV is a method where a given informational index is part of a
K number of segments/folds, where each fold is eventually utilized as a testing set. Let
us consider the situation of fivefold cross-validation (K = 5). This cycle is repeated until
each of the five folds has been utilized as the testing set. The validation accuracy using
fivefold validation means that it makes five folds of all the input data from which the
randomized instances are selected in each fold. Afterwards, one fold is trained and tested
on the four other folds, where results are saved as one-fold predictions. Similarly, two
folds selected for training and testing are performed on three folds, and the results of the
predictions are saved. At last, when all folds’ training and testing is performed, the mean
of all predicting results is taken and shown as fivefold prediction results. By doing these
cross-fold validation methods, the biases in predicting and training decreases almost to
zero. Therefore, the proposed study uses these five- and tenfold methods to make the
proposed results more promising. In Table 6, we can see almost all methods perform
more than 99% of the results, except for the KNN-coarse, KNN-medium, and subspace-
discriminant methods. The other results of these methods in terms of sensitivity, specificity,
precision, F1−score, and the statistical method of evaluation (kappa-cohen) index are used.
Generally, the validation accuracy is the ratio between the summation of true positives, true
negatives with the summation of true positives, true negatives, false positives, and false
negatives. This tells us how many true results for positive and negative classes are found.
The evaluation measures operational calculations are shown in Equations (14)–(19) [70].

Accuracy =
(TP + TN)

(TP + FN) + (FP + TN)
(14)
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In the proposed study, there are 15 classes, so it is not about two classes. It considers
the multi-class problem validation accuracy.

Sensitivity =
(TP)

(TP + FN)
(15)

The other measure called recall or sensitivity is used to measure true positivity predic-
tions among actual true positives.

Speci f icity =
(TN)

(FP + TN)
(16)

The specificity measure is used to measure the true negatives among actual negatives.
The precision is similar to sensitivity, which is used to measure over the summation of
true negatives and false negatives; precision is used to measure the summation of true
positives and false positives. However, the proposed studies used both to cross check the
true positive predictions.

Precision =
(TP)

(FP + TN)
(17)

The F1−score is used to measure the ratio of the product of precision and recall with
the summation of precision and recall. Sometimes, the true positivity and true negativity
predictions may lead to incorrect perceptions due to data imbalancing. Therefore, we need
to give weights to false positives and false negatives for the mean measurement.

F1 − Score =
2 ∗ (TP)

(2 ∗ TP + FN + FP)
(18)

Similarly, a statistical evaluation measure calculated from a confusion matrix of pre-
dicted data also uses four evaluation measures to give a confidence value. Its confidence
range changes from 50 to 90+, where the 90+ value yields strong confidence, where 0–
20% = None, 21–39% = Minimal, 40–59% = Weak, 60–79% = Moderate, 80–90% = Strong,
and Above 90% = an almost Perfect Confidence in the proposed model of classification.

Agreementlevel =

( xcm∗ xrm
n

)
+
( ycm∗ yrm

n
)

n
(19)

In Equation (19), x is a cm and rm value showing the column 1 and the row 1 predicted
values of the confusion matrix, and y is a cm and rm value showing the column 2 and
the row 2 value of the confusion matrix for two classes only where in the proposed study,
which uses 15 classes that indicate a 15 cm and rm value from both x and y aspects.

In Table 6, we can see that there are seven different classification models used, where
four of them yield 99%+ accuracies. The bag-ensemble, KNN-fine, the LP-boost ensemble,
and total-boost yield 99.33%, 99.40%, 99.1%, and 99.17% validation accuracies, respec-
tively. It is further noticed that accuracy, sensitivity, and precision values remain the same.
Therefore, we can say that the true positivity predictions over the true negatives and false
negatives do not affect it. However, multiple evaluation measure usage covers it by evalu-
ating the results in a different way. The F1-score uses both precision and sensitivity, which
yields 99.33% again using the bag-ensemble method, as in the other six methods used in
this study. The specificity calculated over the true negatives that changes for all methods
is used in Table 6. It remains higher than the sensitivity values in all methods. However,
we can say that the true negative predictions are more accurate than the true positive
predictions. The changed precision value, as compared to sensitivity, includes the sum
of TP and FP in the denominator over the precision values, which shows slightly higher
values as compared to validation accuracy. This shows that the true positive predictions
outnumber the false positives.
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The statistical measure covers each aspect of the TP, FP, NP, and TN values to yield
a confidence value. It can be observed that KNN-Fine has the highest accuracy, but the
kappa index is not higher. The highest kappa value is of the bag-ensemble method with
96.64%, which makes it the best over all methods of classification. To cross-validate and
remove bias, if any, more folding methods can validate it. The tenfold validation method is
also used and shown in Table 7.

Table 7. Classification validation accuracy of tenfold validation using self-activated features.

Method Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%) Precision (%) Kappa (%)

Bag-Ensemble 99.77 99.77 99.98 99.73 99.74 97.86

KNN-coarse 96.20 96.20 99.73 96.20 96.26 69.46

KNN-fine 99.67 99.67 99.98 99.67 99.67 97.32

KNN-medium 96.37 96.37 99.74 96.37 96.41 70.80

LP-Boost-Ensemble 99.47 96.47 99.96 99.47 99.48 95.71

Subspace-discriminate 96.53 96.53 99.75 96.53 96.56 72.14

Total-boost-Ensemble 99.63 99.63 99.97 99.63 99.64 97.05

The same classification methods are used with the ten-fold cross validation method.
The results are slightly higher than the fivefold method results. The validation accuracy
for the bag-ensemble method increased from 99.33% to 99.77%. Similarly, it increased the
validation accuracy results for other lower-value algorithms as well. Therefore, we can say
that the proposed method is more promising because it uses more randomized folding,
which is good for big data usage as well. By increasing validation accuracy, the other two
values—sensitivity and F1-score—remain the same, except the specificity of bag-ensemble,
which decreased from 99.77 to 99.73%. The specificity remains above 99% in both five- and
tenfold methods, where it increased in decimal values in the case of the tenfold method.
The Kappa Cohen index overall in all methods increases its confidence on the predicted
results of each algorithm.

The best kappa value method in the fivefold method was bag-ensemble, with 96.64%,
which was increased to 97.86% in the tenfold method. The 2nd best kappa value in the
fivefold method was 95.18% for KNN-fine, which is also increased to 97.32%. The 3rd and
4th best kappa value for LP-boost and total boost was 92.77% and 93.30%, respectively,
and are increased from 92.37% to 95.71% and from 93.30% to 97.05% for both methods.
The increasing results in all evaluation measures for the tenfold method makes the proposed
results more promising for chest disease identification.

We here provide a table of CNN activations of the five-fold technique and calculate
the individual accuracy for each class. The results are shown in Table 8.

The individual disease detection rate will lead us to propose a more confident model
for particular disease detection. COVID-19 needs to be detected quickly and cheaply.
In the proposed study, using the fivefold validation method showed that the best kappa
value in the COVID-19 detection results was 99.0, i.e., the bag-ensemble. Similarly, for the
other algorithms, i.e., the KNN-fine, LP-boost, and total-boost methods, the COVID-19
classification accuracy was 100%, 100%, and 98.0%, respectively. This shows that COVID-19
disease detection is highly accurate using the proposed framework. The COVID-19 results
are set as a point of reference for investigating other chest disease detection results. Most
of the results were detected with 100% or 99% accuracy. The best kappa value was attained
with the bag-ensemble method. The all-class results were either 99% accurate or 100%
accurate, but the Atelectasis disease classification was 97% accurate.
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Table 8. Self-activated features based on classification using the fivefold technique results on individual class accuracy.

Classes Bag-
Ensemble

KNN-
Coarse KNN-Fine KNN-

Medium
LP-Boost
Ensemble

Subspace-
Discriminant

Total-Boost
Ensemble

Atelectasis 97.00 95.0 99.0 94.0 100 88.0 97.0

Cardiomegaly 100 99.0 100 99.95 99.0 99.0 99.0

Consolidation 99.0 97.0 100 97.0 99.0 94.0 100

COVID-19 99.0 96.0 100 97.5 100 90.0 98.0

Edema 99.0 97.50 99.0 98.0 100 97.0 100

Effusion 100 89.0 100 90.0 100 89.0 97.0

Emphysema 100 96.0 98.0 99.6 100 95.0 98.50

Fibrosis 99.0 99.0 99.0 98.0 99.0 98.0 100

Hernia 100 100 100 100 100 100 100

Infiltration 100 96.0 100 96.0 100 94.0 100

Mass 99.0 97.0 100 97.0 99.0 89.0 100

Nodule 100 94.0 99.0 95.0 97.0 88.0 100

Pleural
Thickening 100 99.0 100 99.0 99.0 92.0 100

Pneumonia 99.0 99.0 99.0 99.0 98.0 100 100

Pneumothorax 99.0 89.0 98.0 88.5 96.50 88.0 98

Similarly, the KNN-fine method was 100% accurate in COVID-19 detection, and At-
electasis detection accuracy was increased, as compared to the bag-ensemble method (97%
to 99%). Emphysema, nodule, and pneumothorax disease results decreased from 100 to
98%, from 100 to 99%, and from 99 to 98%, respectively. The third best model in the fivefold
method was the LP-boost method, which also achieves 100% COVID-19 detection results,
where the Atelectasis disease results, as compared to the bag-ensemble method, increased
from 97% to 100%. However, other classification results decreased slightly. For example,
for Cardiomegaly, it decreased from 100 to 99%; for Nodule, it decreased from 100 to 97%;
for Pleural Thickening, it decreased from 100 to 99%; and for pneumothorax, it decreased
from 99 to 96.50%. However, it not only decreased the detection rate, but also increased
in other disease detection results. The fourth best model, the total boost, also detected
COVID-19 with 98% accuracy. It also decreased the classification results of Effusion, Em-
physema, and Pneumothorax. In other disease detection results, it increased the detection
rate, but it maintained results for some diseases. However, by looking into all ML classifi-
cation methods, all performances are promising using the proposed method for multi-class
chest disease detection. The ten-fold validation method proved to be more accurate than
the fivefold method. This method based on individual class detection results are shown in
Table 9.

We can see in Table 9 that the COVID-19 detection accuracies achieved by the best
algorithms showed 100%, 99%, 99%, and 99% for the bag-ensemble, KNN-fine, LP-boost,
and total boost methods, respectively. We can set the bag-ensemble algorithm results as a
frame of reference for disease detection. The other algorithms showed that other methods
are 1% less accurate than the bag-ensemble method. This method also achieves the highest
confidence value of kappa. This algorithm not only achieves 100% for COVID-19 detection
but also increases the classification accuracy for Atelectasis to 99%, which was 97% in the
fivefold method. Furthermore, it also increased the detection results for fibrosis, mass,
pneumonia, and pneumothorax from 99% to 100%. However, it decreased detection of infil-
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tration from 100% to 98%. This disease detection decrease is negligible if we look upon the
improvement of the other six diseases. However, the best results achieved by the tenfold
method makes the detection rate of all diseases 100%, except for three, two of which (Atelec-
tasis and Consolidation) are 99% accurate and one is 98% (Infiltration). Furthermore, the 2nd

best method also improved the results of detection for all diseases. It ranges from 99 to
100%. The 10 classes reach 100% (cardiomegaly, consolidation, edema, emphysema, fibrosis,
hernia, mass, nodule, pleural thickening, and pneumonia) accuracy, where five (atelectasis,
COVID-19, effusion, infiltration, and pneumothorax) reach 99%, so these results are im-
proved compared to the fivefold validation approach. The 3rd best model, LP-boost, also
increases its detection results and reaches 100 detections in eight diseases (cardiomegaly,
edema, fibrosis, hernia, infiltration, mass, nodule, and pleural-thickening), 99% for five
diseases (atelectasis, consolidation, COVID-19, pneumonia, and pneumothorax), and 98%
for two diseases (effusion and emphysema). The 4th best model also improved its results
by giving a 100% accurate detection for nine diseases (cardiomegaly, consolidation, edema,
emphysema, fibrosis, hernia, infiltration, pleural thickening, and pneumonia) and 99% for
six other diseases (atelectasis, COVID-19, effusion, mass, nodule, and pneumothorax).

Table 9. Self-activated features based on classification using the ten-fold technique results on individual class accuracy.

Classes Bag-
Ensemble

KNN-
Coarse KNN-Fine KNN-

Medium
LP-Boost
Ensemble

Subspace-
Discriminant

Total-Boost
Ensemble

Atelectasis 99 95 99 94 99 91 99

Cardiomegaly 100 99 100 99 100 98 100

Consolidation 99 97 100 97 99 96 100

COVID-19 100 96 99 98 99 93 99

Edema 100 97 100 98 100 98 100

Effusion 100 90 99 9 98 95 99

Emphysema 100 96 100 96 98 99 100

Fibrosis 100 99 100 99 100 99 100

Hernia 100 100 100 100 100 100 100

Infiltration 98 96 99 96 100 96 100

Mass 100 97 100 97 100 98 99

Nodule 100 94 100 95 100 93 99

PleuralThickening 100 99 100 99 100 98 100

Pneumonia 100 99 100 99 99 100 100

pneumothorax 100 89 99 88 99 94 99

It is observed that the tenfold method shows the less accurate results. The kappa
confidence value is improved in the tenfold method. Therefore, tenfold cross-validation
is a more robust, confident, promising method to classify chest diseases using more ran-
domization and folds. The comparison of state-of-the-art studies on COVID-19 disease
detection and other chest diseases are shown in the next section.

Comparison of with Previous Studies

The proposed study was used to solve multi-class classification problem for chest
diseases. Few studies cover the multiple aspects of chest diseases, but currently, the problem
must include COVID-19 among chest diseases. By including COVID-19, the proposed
method not only solved the other single-class chest disease detection problems, but also
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covered the COVID-19 single-class detection studies. The comparison with state-of-the-art
recent methods is summarized in Table 10.

Table 10. Existing method comparison.

Sr. No. Title of the Paper Authors Names Classifiers Used Accuracy Achieved

1 Disease Staging and Prognosis in
Smokers Using Deep Learning Samuel Y.ash et al. CNN 74.95%

2 Deep Learning for Screening
COVID-19 Sanhita Basu et al. (DL) (ML) 90.13%

3 A Deep Neural Network to
distinguish COVID-19. . . Saleh Albahli et al. CNN 87%

4 Chest CT manifestations of new
coronavirus Zheng ye et al. GGO 98%

5 Chest CT Findings in
Coronavirus Disease-19. . . Adam Brenham et al. Ct scan 88%

6 Chest pathogens detection using
deep learning Y bar et al. Deep learning 87–94%

7 Chest disease radiography in
two-fold Prakash et al. CNN 97%

8 Pneumonia Detection on Chest
X-Ra

Tej Bahadur Chandra
et al. ML 95.8%

9 Proposed Proposed CNN, ML
KNN = 99.8% Boosted
trees = 99.6 Subspace

KNN = 99.7%

Table 10 shows the comparison of the proposed models with various studies of ML-
and DL-based methods. The 1st comparison shows the staging problem solver for smokers’
diseases and achieves up to 74.95% accuracy. The 2nd comparison shows that the DL-based
COVID-19 detection results reach 90.13%. The 3rd comparison used a DL method and
achieved 87%. The 4th comparison shows that the chest CT scan-based analysis of the GGO
classifier achieve 98% accuracy. Another chest detection method showed 87.94%. The 7th
comparison showed 97% using the radiographical method and a modality of images for
chest disease detection. The last comparison used X-ray modality using ML classification
methods and achieved 95.8%. The proposed study finally shows more accurate results on
all compared studies. There are many other studies that focus either on a single disease
of pneumonia, COVID-19, or some other chest disease, but most studies do not cover the
multi-class problem in order to classify chest studies.

5. Conclusions

The proposed study uses a combined dataset of X-ray modality for chest disease
detection by including a COVID-19 X-ray imaging dataset. To normalize the data, data
augmentation is performed. This preprocessed data removes data bias, if there is any.
However, a novel CNN is proposed for multi-chest disease detection. It saturates its
learning in its training time by reporting an 87.89% validation accuracy. To increase the
prediction results and reduce the prediction time, deep transfer learning is applied. In this
way, self-activated deep features are extracted from the fully-connected layer of the pro-
posed CNN. The deep features are fed to seven different domain algorithms of the ML
approach. To make the proposed study more promising, two methods of validation (5- and
10-fold) are performed. It is observed from the results that more folding makes the results
more accurate. This means that the proposed study can be used to detect multi-class chest
disease detection. It not only increases accuracy, but also reduces the prediction time of a
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given testing sample. At last, a comparison shows the improvement of the proposed study
from either single-class chest diseases or multi-class chest diseases, including COVID-19.

In the future, multi-class decision-making CAD systems in different aspects of the
medical domain should be used. However, data normalization needs to be considered to
make the data reliable. Big data samples are encouraged for more confident results of chest
diseases. The deep transfer learning features are also encouraged.
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rapid diagnosis of COVID-19 on computed tomography scans. Pattern Anal. Appl. 2021, doi:10.1007/s10044-020-00950-0.

30. Abiyev, R.H.; Ma’aitah, M.K.S. Deep convolutional neural networks for chest diseases detection. J. Healthc. Eng. 2018, 2018.
31. Ye, Z.; Zhang, Y.; Wang, Y.; Huang, Z.; Song, B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): A pictorial

review. Eur. Radiol. 2020, 30, 4381–4389.
32. Lee, S.M.; Seo, J.B.; Yun, J.; Cho, Y.H.; Vogel-Claussen, J.; Schiebler, M.L.; Gefter, W.B.; Van Beek, E.J.; Goo, J.M.; Lee, K.S.; others.

Deep learning applications in chest radiography and computed tomography. J. Thorac. Imaging 2019, 34, 75–85.
33. Hashmi, M.F.; Katiyar, S.; Keskar, A.G.; Bokde, N.D.; Geem, Z.W. Efficient pneumonia detection in chest xray images using deep

transfer learning. Diagnostics 2020, 10, 417.
34. Wu, J.; Wu, X.; Zeng, W.; Guo, D.; Fang, Z.; Chen, L.; Huang, H.; Li, C. Chest CT findings in patients with coronavirus disease

2019 and its relationship with clinical features. Investig. Radiol. 2020, 55, 257.
35. Xie, X.; Zhong, Z.; Zhao, W.; Zheng, C.; Wang, F.; Liu, J. Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia:

relationship to negative RT-PCR testing. Radiology 2020, 296, E41–E45.
36. Raptis, C.A.; Hammer, M.M.; Short, R.G.; Shah, A.; Bhalla, S.; Bierhals, A.J.; Filev, P.D.; Hope, M.D.; Jeudy, J.; Kligerman, S.J.;

others. Chest CT and coronavirus disease (COVID-19): A critical review of the literature to date. Am. J. Roentgenol. 2020,
215, 839–842.

37. Saglani, S.; Custovic, A. Childhood asthma: Advances using machine learning and mechanistic studies. Am. J. Respir. Crit. Care
Med. 2019, 199, 414–422.

38. Amaral, J.L.; Lopes, A.J.; Veiga, J.; Faria, A.C.; Melo, P.L. High-accuracy detection of airway obstruction in asthma using machine
learning algorithms and forced oscillation measurements. Comput. Methods Prog. Biomed. 2017, 144, 113–125.

39. Cavailles, A.; Melloni, B.; Motola, S.; Dayde, F.; Laurent, M.; Le Lay, K.; Caumette, D.; Luciani, L.; Lleu, P.L.; Berthon, G.; et al.
Identification of patient profiles with high risk of hospital re-admissions for Acute COPD Exacerbations (AECOPD) in France
using a machine learning model. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 949.

40. Nikolaou, V.; Massaro, S.; Fakhimi, M.; Stergioulas, L.; Price, D. COPD phenotypes and machine learning cluster analysis: A
systematic review and future research agenda. Respiratory Med. 2020, 171, 106093.

41. Wu, J.; Zan, X.; Gao, L.; Zhao, J.; Fan, J.; Shi, H.; Wan, Y.; Yu, E.; Li, S.; Xie, X. A machine learning method for identifying lung
cancer based on routine blood indices: Qualitative feasibility study. JMIR Med. Inform. 2019, 7, e13476.

42. Chakraborty, T.; Ghosh, I. Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis.
Chaos Solitons Fractals 2020, 135, 109850.

43. Alakus, T.B.; Turkoglu, I. Comparison of deep learning approaches to predict COVID-19 infection. Chaos Solitons Fractals 2020,
140, 110120.

44. Salgotra, R.; Gandomi, M.; Gandomi, A.H. Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries.
Chaos Solitons Fractals 2020, 140, 110118.



Appl. Sci. 2021, 11, 9023 23 of 24
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machine learning and finite element simulation approach towards personalized model for prognosis of COVID-19 disease
development in patients. EAI Endorsed Trans. Bioeng. Bioinform. 2021, 1, e6.

48. Saba, A.I.; Elsheikh, A.H. Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial
neural networks. Process Saf. Environ. Prot. 2020, 141, 1–8.

49. Salgotra, R.; Gandomi, M.; Gandomi, A.H. Time series analysis and forecast of the COVID-19 pandemic in India using genetic
programming. Chaos Solitons Fractals 2020, 138, 109945.

50. Elmousalami, H.H.; Hassanien, A.E. Day level forecasting for Coronavirus Disease (COVID-19) spread: analysis, modeling and
recommendations. arXiv 2020, arXiv:2003.07778.
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