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Abstract: With the increased incidence of traumatic injuries and the advanced understanding of
the periodontal and alveolar healing process, teeth splinting has become a common practice for
stabilizing traumatized teeth. Consequently, several splinting materials and techniques have been
introduced in the past few years. Despite the detrimental role of bacterial biofilm on healing, the
level of biofilm development on these material surfaces has not been well investigated. Bacterial
biofilms are severely detrimental for periodontal healing of avulsed and luxated teeth. Thus, biofilm
growth becomes a critical factor in selecting the material of choice for dental splints. In this study,
we aim to assess the level of oral biofilm growth on four different splinting systems: Ribbond®©,
orthodontic NiTi wire, monofilament fishing line, and Titanium Trauma Splint. A total of 72 extracted
anterior teeth were divided into four groups. We splinted six rows of three teeth each per group.
The teeth selected were caries-free and periodontitis-free at the time of extraction. To assess biofilm
growth, a supragingival dental plaque sample was cultured and directly inoculated into all groups.
After 7 days, bacterial growth was quantified by live/dead fluorescent microscopy assay and colony
forming unit counts (CFU). Using one-way ANOVA and Bonferroni’s post hoc tests, we demonstrated
that all splint systems allowed for bacterial growth. However, the Titanium Trauma Splint (TTS)
allowed for the least amount of biofilm growth compared to other splint systems.
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1. Introduction

Traumatic injuries have become a common occurrence in today’s society and may
surpass the incidence of caries and periodontal disease [1]. Studies have confirmed that the
prevalence of these injuries is increasing and ranges from 16% to 40% among 6-year-old
children and from 4% to 33% among 12 to 14-year-old children [1,2]. A significant propor-
tion of dental trauma relates to sports, unsafe playgrounds or schools, road accidents, or
violence. Skaare and colleagues reported that in a group of children aged 7 to 10 years, the
maxillary anterior teeth were the most frequently affected by trauma [3].

Generally, except for concussion and subluxation, these traumatic injuries require
some type of stabilization for proper teeth retention and periodontal ligament healing [4-6].
Conventionally, several methods have been advocated for splinting such as fishing lines,
orthodontic wires, orthodontic brackets, resins, and most recently introduced, the TTS
system [5,6]. The TTS system is made of titanium and has been reported to be easy to use,
significantly rapid to place and remove, and to facilitate proper hygiene [7,8].

It has been previously established that splints should be passive enough to allow
for physiological healing; however, the cleanability of the splints has not been well
studied [9-11]. One of the direct causes of inflammatory root resorption is bacterial
contamination [12-15]. Pettini and Pettini have examined previously replanted teeth under
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a scanning electron microscope and found a direct association between bacterial infection
and resorptive defects [16]. Another study has demonstrated a tight association between in-
flammatory root resorption and periradicular bacterial infection in a mouse model observed
by MicroCT [17].

Plaque level one of the paradoxes of dental splinting after trauma is that stabilizing the
displaced tooth with a splint may lead to the accumulation of plaque, which hinders proper
oral hygiene, causing bacterial contamination intra- and extraradicularly and causing root
resorption [18]. Bacteria from the gingival sulcus have been detected at the root surface
at the site of external resorption after traumatic injury [14,19]. In addition, periradicular
bacteria may indirectly cause internal root resorption or pulpal necrosis [20]. A study
by Grossman et al. concluded that an introduced nonoral bacteria to the oral cavity of
monkeys with traumatized teeth found its way to the dental pulp [21]. Moreover, most
traumatic injuries occur in children and adolescents who have larger dentinal tubules,
allowing for the faster passage of oral bacteria [22,23]. With the advances in microbiolog-
ical techniques, recent studies found a close resemblance of periodontal bacteria in the
necrotic dental pulp after trauma [24,25]. Our new understanding of the importance of the
bacterial load to the healing of the splinted avulsed or subluxated tooth emphasizes the
importance of oral hygiene and reducing oral biofilm, especially during the first 2-3 weeks
of treatment [18,26,27].

Furthermore, the International Association for Dental Traumatology recommends
a splint that offers physiological retention and proper hygiene for a favorable clinical
prognosis [28]. Previous studies have also reported that bacterial load and biofilm forma-
tion play a critical role in healing [8,29,30]. Yet, there has not been a study that investigated
biofilm growth levels on the splint systems available on the market. In our study, we aim
to compare biofilm growth on four different commonly used splinting systems currently
being used by clinicians.

2. Materials and Methods
2.1. Teeth Selection and Bonding Process

Seventy-two caries- and periodontal disease-free maxillary anterior freshly extracted
human teeth were used in this study. Teeth were extracted from patients at the University
of Florida Oral Surgery department according to the patient’s treatment plan. Teeth were
collected according to the IRB protocol (201500591) and stored in saline solution. Teeth were
sterilized using autoclave and then randomly divided into 4 different splint groups: monofil-
ament fishing line (MFL), size 0.016 round NiTi orthodontic wire (OW) (Rocky Mountain
Orthodontics®, Denver, CO, USA), 3-mm lock-stitch woven polyethylene ribbon (Ribbond®,
Seattle, WA, USA), and TTS (Medartis Inc, Basel, Switzerland). Each group contained
6 replicates composed of 3 teeth each, in which the horizontal linear dimension of each
group was approximately 28.0 mm. In addition, the splint length was set at 28 mm for all
samples. Splints in each group were bonded with one drop (~0.05 g) of bonding agent
(Scotchbond, 3M ESPE, St. Paul, MN, USA) and light-cured after etching with 35% phos-
phoric acid for 15 s. Then, 0.3 & 0.01 g of flowable composite (Filtek Supreme Plus resin,
3M ESPE, St. Paul, MN, USA) attachments were consistently adapted to the labial surfaces
of the extracted maxillary teeth following the manufacturer’s specifications. Composite
attachments were light-cured for 30 s following splint placement (Figure 1).
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Figure 1. Teeth groups splinted with either (A) Orthodontic wire, (B) Ribbond, (C) Titanium Trauma
Splint, or (D) Monofilament fishing line. Splinted teeth submerged completely in 3 mL of peptone
yeast glucose (PYG) broth and replenished equally as needed.

2.2. Biofilm Preparation

A sterile curette was utilized to collect supragingival plaque samples from periodontal
disease- and caries-free sites from properly consented individuals (IRB200600154). Sam-
ples were immediately placed into a 1-mL aliquot of Amies (1967) transport medium,
supplemented with 0.5% gelatin (Fisher Scientific, Ocala, FL, USA) and 0.1% sodium thio-
glycollate (Fisher Scientific), and stored at 4 °C for 2 h or until further use. The collected
dental plaque sample was then inoculated into 7 mL peptone yeast glucose (PYG) broth
(Remel, San Diego, CA, USA) and allowed to grow for 24 h at 37 °C in a CO; incubator. This
culture was then directly inoculated into each well of 6-well culture plates that contained
3 mL of fresh PYG broth (1:50 dilution). Splinted teeth were completely submerged in the
broth (Figure 1). Samples were incubated with low-speed agitation in a CO, chamber at
37 °C for 7 days for biofilm growth. Media were replenished every 48 h.

2.3. Cell Viability Assay

On day 7, the samples were removed from the wells, and splints were carefully
detached from the teeth. The samples were sonicated in 1 mL of Ringer’s solution for
15 s. The sonicated samples were then serially diluted and plated onto blood agar plates,
enriched with hemin and vitamin K, to assess for the number of viable cells present. The
remaining solution was prepared for a live/dead fluorescence assay. From each sample,
100 pL was placed in triplicate in a 96-well black polystyrene microplate and mixed with
100 pL of live/dead dye (50 uL SYTO 9 working solution, 50 puL PI working solution)
(Live/dead Backlight kit, Invitrogen, Carlsbad, CA, USA). The plate was then incubated in
the dark at room temperature with gentle shaking for 20 min and absorbance was measured
at Ex/Em 528/485 nm (live cells) and Ex/Em 645/485 nm (dead cells) using a Biotek plate
reader (BioTek, Winooski, VT, USA). The live/dead ratio was calculated after subtracting
blank (media only) and plotted into a previously built standard curve (r? = 0.99) to obtain
the cell viability ratio. PYG broth incubated for 7 days was included as a control. The
results were analyzed with a one-way ANOVA and data were plotted on a dot plot graph.

2.4. Statistical Analysis

All data were checked for normality using Shapiro-Wilk’s test. CFUs and live/dead
ratios were compared among groups by ANOVA with Bonferroni’s multiple comparison
post hoc test.
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3. Results

Differences in bacterial growth were observed comparing all splinting systems. Fluo-
rescence intensity was used to measure the ratio of live/dead cells present in each group
(Figure 2). We found that TTS resulted in a mean of 0.0505 £ 0.007 (95% CI, 0.03184-0.06916),
while MFL, Ribbond, and OW resulted in 1.275 £ 0.062 (95% CI, 1.117-1.439), 1.583 £ 0.1053
(95% CI, 1.239-1.780), and 1.470 £ 0.0584 (95% CI, 1.307-1.607), respectively (p < 0.0001).
TTS showed a 25%, 31, 29 x reduction in viable cells compared to MFL, Ribbond, and OW,
respectively (p < 0.0001), with no differences found among the other three splint systems
(Figure 2).
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Figure 2. Live/dead ratio plot for the groups tested. Each group is presented by mean and standard
error horizontal lines. NiTi orthodontic wire (OW), woven polyethylene ribbon (Ribbond®), Titanium
Trauma Splint (TTS), and monofilament fishing line (MFL). *** p < 0.0001.

Further, a CFU assay was performed to determine the number of viable cells in the
culture after 7 days (Figure 3). We found that the mean number of viable cells in TTS was
4.567 x 10°, while MFL, Ribbond, and OW had a viable count of 4.467 x 10'°, 5.400 x 10'°,
and 4.400 x 1019, respectively (p = 0.0047). The resultant colony count concluded that TTS
had a significantly lower number of viable bacterial cells than any other splint system
tested after 7 days of incubation (p = 0.0047), with no differences found among the other
three splint systems.
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Figure 3. Colony forming unit values (CFUs) showing the number of viable cells in each sample. MFL:
monofilament fishing line, OW: NiTi orthodontic wire, Ribbond: lock-stitch woven polyethylene
ribbon, TTS: Titanium Trauma Splint. * p < 0.05, ** p < 0.01.
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4. Discussion

Bacterial biofilm is not a static community as it is a continuously growing and striving
biosystem [31,32]. Biofilm composition and virulence level increase with age and the
overall growth of the biofilm [33,34]. As the biofilm matures and bacterial load increases,
there is a higher chance for bacteria to expand into the lateral canals and dentinal tubules,
and bacteria found at these sites are reported to become more resistant to antibiotics [35,36].
Thus, it is critical to select a splint material that allows the least amount of biofilm growth
in addition to the physiological stabilization ability. Furthermore, traumatic injuries are
commonly associated with soft tissue injuries and lacerations, which are prone to bacterial
contamination. Thus, the presence of bacterial biofilm on the splint system and the sur-
rounding teeth exacerbates the inflammation of the surrounding tissues and contributes to
delayed healing.

In addition, bacterial root resorption is the main complication causing the majority of
failures detected following trauma [29,37]. Currently, according to the International Dental
Traumatology guidelines for Traumatic Injuries, with the exception of alveolar fractures,
the splint should be physiologic (non-rigid) for the duration of two weeks for avulsion and
luxation injuries, and 6 to 8 weeks for mid-root horizontal root fractures [4,38].

One of the materials we tested is the monofilament nylon line, “fishing line”. It was
introduced in 1982, and has been used with success by some practitioners [39]. Additionally,
nylon monofilament has been used as a suture material in several types of surgeries. It has
been shown to allow for some but limited biofilm growth compared to other suture
materials, especially multifilament ones [40]. Currently, new splint systems have been
introduced into the market such as Rebbond [41,42], OW [43], and TTS [7,8], and while
practitioners differ in their choice, the common agreement is that they should be easy to
apply and remove, be esthetic, and facilitate hygiene. However, bacterial growth on these
newer systems has not been properly evaluated before.

Since the presence of bacteria is so detrimental for the healing of post-traumatic
injuries, this study focused on determining which type of splint system would favor the
least amount of biofilm growth. When splints were bonded with the same amount of
composite to the labial surfaces of three maxillary teeth, they all allowed bacterial growth.
However, we observed significantly less bacterial growth in TTS when compared to the
other three materials, MFL, Ribbond, and OW, which showed comparable bacterial growth
to one another. Multiple factors may play a role in the level of bacterial adherence and
growth, such as surface roughness, surface area, and splint design. Surface roughness
is a critical factor for biofilm adherence to the splint surface [44] or surface treatment
that may facilitate bacterial adherence [45,46]. In addition, the architectural design of the
splint system may also play a role in allowing for biofilm detachment. We have shown
for the first time that the new TTS system allows for the least amount of biofilm retention
in vitro. Our study was limited to the quantification of the bacterial growth on each splint.
Further investigation into the types of bacteria collected would provide us with a better
understanding if the splint material can select for certain bacterial types. In addition, future
clinical studies measuring biofilm adherence and growth in the oral cavity and cleanability
by patients would also be desirable.

5. Conclusions

Several splint systems are available on the market to facilitate the physiological
splinting of avulsed and luxated teeth. While all materials allowed for bacterial biofilm
formation, TTS has been shown to be the least promoting for biofilm formation and thus a
more attractive splint system for clinicians.
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