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Abstract: Two-way cooperative collaborative filtering (CF) has been known to be crucial for binary
market basket data. We propose an improved two-way logistic regression approach, a Pearson
correlation-based score, a random forests (RF) R-square-based score, an RF Pearson correlation-based
score, and a CF scheme based on the RF R-square-based score. The main idea is to utilize as much
predictive information as possible within the two-way prediction in order to cope with the cold-
start problem. All of the proposed methods work better than the existing two-way cooperative CF
approach in terms of the experimental results.

Keywords: recommender systems; market basket data; cold-start problem; high dimensionality;
two-way collaborative filtering

1. Introduction

User similarity measures in collaborative filtering (CF) are crucial for recommenda-
tions [1,2]. Pearson correlation is one of the most well-known user-item similarity measures
in CF. Ahn [3] developed a new similarity measure for a cold-start problem with data
sparsity, where many voting scores are missing. This cold-start problem is common in
CF [3–7]. For the cold-start problem, Liu et al. [8] modified Ahn’s user-item similarity
measure by using nearest neighbors. Son [9] compared the existing user-item similarity
measures that tackle the cold-start problem.

A variety of CF approaches can be categorized into user-based CF using the user simi-
larity measures, model-based CF using data mining approaches, and hybrid CF combining
with content-based filtering. Breese et al. [10] developed the user-based CF leveraging
on the Pearson correlation, which has become one of the most widely used user-based
CF approaches. In it, similarities between active users and existing users are considered
for the predicted scores of test data. The user-based CF leveraging on the Pearson cor-
relation is convenient and easy to implement. Ahn [3] and Choi and Suh [11] used the
user-based CF leveraging on the Pearson correlation for predicting voting scores. By
contrast, model-based CF methodologies have leveraged data mining approaches, such
as Bayesian network, clustering, regression, classification, and association rule, among
others [2,12–14]. Stai et al. [15] developed a hybrid recommender system by using both
collaborative and content-based filtering in multimedia information retrieval. CF also can
be combined with knowledge-based filtering to improve its performance [16]. Many other
hybrid approaches have appeared as data become easily available from complex social
networks [17].

Mild and Reutterer [18] proposed using the Pearson correlation-based approach rather
than the user-based CF leveraging on the Pearson correlation for binary market basket
data [19]. Whereas the binary user-item matrix is used for the user-based CF for the
Pearson correlation-based approach, the binary item-user matrix can be considered for
the item-based CF for the Pearson correlation-based approach [20]. Recently, Hwang [20]
proposed a feature selection approach to improve the Pearson correlation-based approach.
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Furthermore, to resolve the structural problems of the Pearson correlation-based approach,
Hwang [21] developed new Pearson correlation-based approaches that use separated terms
and separated terms with proportions.

By contrast, as a model-based CF methodology, when there are sufficient numbers of
users or items, the logistic regression approach with principal components (PCA+LR) can
be more effective than the Pearson correlation-based approach [22]. Whereas the binary
user-item matrix is used for item modeling, the binary item-user matrix can be considered
for user modeling [20]. Item modeling considers item vector predictors, whereas user
modeling considers user vector predictors. However, the PCA+LR may not perform well,
because the principal components are ineffective when there are insufficient numbers
of either users or items in the binary market basket data, which can be modeled as a
high-dimensional cold-start problem [23]. As Hwang and Jun [23] show, the Pearson
correlation-based and random forest regression approaches can outperform the PCA+LR
for the high dimensional cold-start problem. In particular, when the high dimensional
cold-start problem is too extreme, either the rows of active users or the columns of active
items consist of only zeros, such that the existing CF schemes fail for binary market basket
data. Then, either predictions obtained by the user-based CF and the item modeling or
predictions obtained by the item-based CF and the user modeling are not available, which
results in that we can no longer use the PCA+LR.

The existing two-way cooperative CF for the binary market basket data utilizes
both the PCA+LR user modeling and the PCA+LR item modeling [24]. Lee and Olaf-
sson [24] proposed a two-way logistic regression approach based on the Homer–Lemeshow
Goodness-of-Fit Chi-square statistic. A weighted mean of the PCA+LR item modeling-
based prediction and the PCA+LR user modeling-based prediction may outperform either
the PCA+LR item modeling-based prediction only or the PCA+LR user modeling-based
prediction only [24]; therefore, two-way CF is crucial. However, because Lee and Olf-
sson [24] still proposed the two-way cooperative CF approach for the PCA+LR, which
cannot work properly for the high-dimensional cold-start problem, we are motivated
to develop new two-way cooperative CF approaches based on the Pearson correlation-
based and random forest-based approaches to overcome the difficulties caused by the
high-dimensional cold-start problem. Considering this, we propose an improved two-way
logistic regression approach, a Pearson correlation-based score, an RF R-square-based score,
an RF Pearson correlation-based score, and a CF scheme based on the RF R-square-based
score for two-way cooperative CF for binary market basket data. The proposed approaches
handle the high-dimensional cold-start problem and work better than the existing two-way
cooperative CF approach in terms of the performance measures such as classification error
and Top-N accuracy. We introduce the existing CF approaches in Section 2. In Section 3, we
propose an improved logistic regression approach, a Pearson correlation-based score, an
RF R-square-based score, an RF Pearson correlation-based score, and a CF scheme based
on the RF R-square-based score. In Section 4, the proposed CF approaches are compared
with the existing CF approaches based on the experimental results. Section 5 provides
concluding remarks.

2. Existing CF Approaches

The section briefly reviews the previous studies including both the one-way and
the two-way CF approaches. Although we follow the conventional notation used in the
literature of recommender systems, we summarized the main symbols in Table 1 for readers’
easy understanding. Some of those are still used in Section 3 explaining the proposed
methods.
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Table 1. Notations.

Symbol Description

n number of users

m number of items

w(a, i) similarity between users a and i

w(b, j) similarity between items b and j

Paj′ , Pbi′ predicted scores by user-based and item-based CFs

v̂j′ ûi′ predicted scores by regression

PP(Paj′ ,Pbi′ )
Pearson correlation-based score

Prsq(v̂j, ûi) RF R-square-based score

PP(v̂j, ûi) RF Pearson correlation-based score

2.1. One-Way Pearson Correlation-Based Approaches

The Pearson correlation-based approach can use either user-item similarities or item-
user similarities, where either the user-based CF or the item-based CF is considered. For the
user-based CF, V =

(
v1, . . . , vj, . . . , vm

)
=
(
vij
)
, (i = 1, 2, . . . , n; j = 1, 2, . . . , m) represents

the binary user-item matrix shown in Figure 1a, which comprises ones (representing
purchased items) and zeros (representing non-purchased items). Mild and Reutterer [18]
expressed the predicted score for an active user a, for an item j′, Paj′ by

Paj′ = ka

n

∑
i=1

(w(a, i)vij′), (1)

where
vi =

1
m ∑

j
vij, va =

1
m ∑

j
vaj,

w(a, i) =
∑j
(
vaj − va

)(
vij − vi

)√
∑j
(
vaj − va

)2
∑j
(
vij − vi

)2

and
ka =

1
∑n

i=1|w(a, i)| .Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 14 
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Here, the Pearson correlation denoted by w(a, i) represents a user-item similarity
for the user-based CF. On the contrary, we can consider the binary item-user matrix as
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illustrated in Figure 1b, where item-user similarities are used for the item-based CF [20].
Then, the predicted voting score for an active item b, for a user i′, Pbi′ is denoted by

Pbi′ = kb

m

∑
j=1

(w(b, j)vji′), (2)

where
vj =

1
n ∑

i
vji, vb =

1
n ∑

i
vbi,

w(b, j) =
∑i(vbi − vb)

(
vji − vj

)√
∑i(vbi − vb)

2 ∑i
(
vji − vj

)2

and
kb =

1
∑m

j=1|w(b, j)| .

Here, the Pearson correlation denoted by w(b, j) represents an item-user similarity.

2.2. One-Way RF Regression Approaches

Note that V =
(
v1, . . . , vj, . . . , vm

)
is the binary user-item matrix in Figure 1a. Then,

the RF item modeling can be considered by

v̂j′ = f̂ (v1, v2, . . . , vm), (3)

where vj′ is the binary user-item matrix vector representing an item j′ [20]. To calculate the
predicted voting scores, the active users are considered as test data. On the contrary, we
can consider the RF user modeling [20]. Then, the voting score of an active item b, for a
user i′ is calculated by

ûi′ = f̂ (u1, u2, . . . , un), (4)

where U = (u1, . . . , ui, . . . , un) is the binary item-user matrix, and ui′ is a vector represent-
ing a user i′. This approach is known as RF user modeling [20].

2.3. One-Way PCA+LR Approaches

Lee et al. [22] considered the first k principal components of the binary user-item matrix
predictors for the binary logistic regression model. Note that V =

(
v1, . . . , vj, . . . , vm

)
is

the binary user-item matrix. When the first k principal components, pcv
1, pcv

2, . . . , pcv
k are

given, the PCA+LR item modeling can be considered by

v̂j′ = f̂ (pcv
1, pcv

2, . . . , pcv
k), (5)

where vj′ is a vector representing an item j′. On the contrary, we can consider PCA+LR
user modeling [20]. Then, the voting score of an active item b, for a user i′ is represented as

ûi′ = f̂ (pcu
1 , pcu

2 , . . . , pcu
k ), (6)

where U = (u1, . . . , ui, . . . , un) is a binary item-user matrix and predictors, and ui′ is a
vector representing a user i′.

2.4. Two-Way Logistic Regression Approach (PCA+LR Two-Way 1)

The Homer–Lemeshow Goodness-of-Fit Chi-square statistic is a model adequacy
measure of the logistic regression approach. Lee and Olafsson [24] considered the mea-
sure to obtain a weighted mean of the PCA+LR item modeling-based prediction and
the PCA+LR user modeling-based prediction, where the two weights are the Homer–
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Lemeshow Goodness-of-Fit Chi-square statistics for the two predictions. Based on (5) and
(6), the weighted mean is represented as:

τi′

τ j′ + τi′
v̂j′ +

τ j′

τ j′ + τi′
ûi′ , (7)

where τi′ is the Homer–Lemeshow Goodness-of-Fit Chi-square statistic for the PCA+LR
user modeling-based prediction, and τ j′ is the Homer–Lemeshow Goodness-of-Fit Chi-
square statistic for the PCA+LR item modeling-based prediction.

3. Proposed Two-Way Cooperative CF Approaches

The two-way CF scheme combining the user-based and item-based predictions is
illustrated in Figure 2, where their moving direction for taking necessary information
is orthogonal [24]. Then, we calculate a weighted average of the user-based and item-
based predictions considering their contributions estimated by the Homer–Lemeshow
Goodness-of-Fit Chi-square statistic, Pearson correlation, and the R-square value.
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3.1. Improved Two-Way Logistic Regression Approach (PCA+LR Two-Way 2)

For the extreme high-dimensional cold-start problem, where either the row of an
active user or the column of an active item in the market basket data are all zeros, the
Homer–Lemeshow Goodness-of-Fit Chi-square statistic is not available (NaN) (0/0) in the
R package (ResourceSelection), which worsens the performance of the PCA+LR two-way 1.
To resolve this problem, we propose that in (7), τ j′ becomes zero when the Homer–
Lemeshow Goodness-of-Fit Chi-square statistic is NaN (0/0) for the PCA+LR item modeling-
based prediction, whereas τi′ becomes zero when the Homer–Lemeshow Goodness-of-Fit
Chi-square statistic becomes NaN (0/0) for the PCA+LR user modeling-based prediction.

The Homer–Lemeshow Goodness-of-Fit Chi-square statistic is a Pearson goodness
of fit statistic where the number of observed zeros and the number of expected zeros
in a group are considered for the extreme high-dimensional cold-start problem. Since
the binary classification problem is easily fitted as a one-class classification problem, the
number of observed zeros and the number of expected zeros can be all zeros, such that the
Homer–Lemeshow Goodness-of-Fit Chi-square statistic becomes NaN (0/0). The lower the
Homer–Lemeshow Goodness-of-Fit Chi-square statistic, the better the model fit. Thus, we
propose to make the Homer–Lemeshow Goodness-of-Fit Chi-square statistic zero for the
extreme high-dimensional cold-start problem.
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3.2. Pearson Correlation-Based Score

In (1) and (2), ka = 1/
n
∑

i=1
|w(a, i)| and kb = 1/

m
∑

j=1
|w(b, j)| are respectively multiplied

to the sums of the correlations to consider the proportions of the contributions. Then, the
Pearson correlation-based score for two-way cooperative CF is defined as a weighted mean
of Paj′ and Pbi′ as follows.

PP(Paj′ ,Pbi′ )
= Paj′

∑n
i=1|w(a, i)|

∑n
i=1|w(a, i)|+ ∑m

j=1

∣∣∣w(b, j)
∣∣∣ + Pbi′

∑m
j=1

∣∣∣w(b, j)
∣∣∣

∑n
i=1|w(a, i)|+ ∑m

j=1|w(b, j)| (8)

The first weight for Paj′ ,
n
∑

i=1
|w(a, i)|/(

n
∑

i=1
|w(a, i)|+

m
∑

j=1

∣∣∣∣∣w(b, j)

∣∣∣∣∣) is the proportion of

the sum of the absolute values of the Pearson correlations between an active user a and an

existing user i, whereas the second weight for Pbi′
m
∑

j=1

∣∣∣∣∣w(b, j)

∣∣∣∣∣/
(

n
∑

i=1
|w(a, i)|+

m
∑

j=1
|w(b, j)|

)
is the proportion of the sum of the absolute values of the Pearson correlations between an
active item b and an existing item j. Since the sum of the absolute values of the Pearson
correlations reveals the importance of the prediction, the two proportions reasonably assign
the importance of the prediction to the two predictions, Paj′ and Pbi′ .

For the extreme high-dimensional cold-start problem, where either the row of an
active user or the column of an active item in the market basket data are all zeros, we
propose that the corresponding Pearson correlations are considered as zeros because they
cannot be calculated, and there are low correlations between the two variables. Then, the
weighted mean can be reasonably calculated because both Paj′ and Pbi′ , the two predictions
obtained by the user-based CF and by the item-based CF, become available.

3.3. RF R-Square-Based Score and RF Pearson Correlation-Based Score

For the RF item modeling and the RF user modeling, we consider the average of the
R-square (rsq) values of the RF regression approach to calculate a two-way cooperative
score, because it represents a model adequacy. Based on (3) and (4), the RF R-square-based
score is defined by

Prsq(v̂j,ûi)
= v̂j

(∑Ti
i=1 rsqi)/Ti

(∑Ti
i=1 rsqi)/Ti + (∑

Tj
j=1 rsqj)/Tj

+ ûi
(∑

Tj
j=1 rsqj)/Tj

(∑Ti
i=1 rsqi)/Ti + (∑

Tj
j=1 rsqj)/Tj

(9)

where rsqi is an R-square value of an ith regression tree for the RF item modeling; rsqj is
an R-square value of a jth regression tree for the RF user modeling; Ti is the number of
regression trees for the item modeling; and Tj is the number of regression trees for the user
modeling. Since the average of R-square (rsq) values of the RF regression approach reveals
the importance of the prediction, the two proportions reasonably assign the importance of
the prediction to the two predictions, v̂j and ûi.

For the extreme high-dimensional cold-start problem, where either the row of an
active user or the column of an active item in the binary market basket data are all zeros,
the R-square values can have a negative sign when the mean squares of errors for the
RF approach is greater than the variance of the response variable. Moreover, when the R
package (randomForest) says that the R-square values are NaN, both the mean squares of
errors for the RF approach and the variance of the response variable are zeros. Then, we
consider the R-square values because the model fit is perfect. As a result, the weighted mean
can be reasonably calculated. Additionally, instead of the average of R-square (rsq) values,
we can adopt the proportion of the sum of the absolute values of the Pearson correlations
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for the voting scores, as follows, which is called an RF Pearson correlation-based score in
this study.

PP(v̂j, ûi)
= v̂j

∑n
i=1|w(a, i)|

∑n
i=1|w(a, i)|+ ∑m

j=1

∣∣∣w(b, j)
∣∣∣ + ûi

∑m
j=1

∣∣∣w(b, j)
∣∣∣

∑n
i=1|w(a, i)|+ ∑m

j=1|w(b, j)| (10)

3.4. Scheme for RF R-Square-Based Score

For the extreme high-dimensional cold-start problem, the RF R-square-based score
depends on an ad hoc approach considering even the inaccurately calculated average of
the R-square (rsq) values. By leveraging on only the accurately calculated average of the
R-square (rsq) values, we can improve the performance of the RF R-square-based score. We
first consider both the average of the R-square values for the RF item modeling (item-rsq

= (
Ti
∑

i=1
rsqi)/Ti) and that for the RF user modeling (user-rsq = (

Tj

∑
j=1

rsqj)/Tj) in (9). Indeed,

we modify (9) according to the availabilities and the signs of item-rsq and user-rsq. The
pseudocode of the proposed method is depicted below.

1. if (item-rsq != “NaN”) & (user-rsq != “NaN”)
if (item-rsq > 0) & (user-rsq > 0)

Prsq(v̂j, ûi)
= v̂j

(∑Ti
i=1 rsqi)/Ti

(∑Ti
i=1 rsqi)/Ti + (∑

Tj
j=1 rsqj)/Tj

+ ûi
(∑

Tj
j=1 rsqj)/Tj

(∑Ti
i=1 rsqi)/Ti + (∑

Tj
j=1 rsqj)/Tj

else if (item-rsq < 0) & (user-rsq < 0)

Prsq(v̂j, ûi)
= v̂j

(∑
Tj
j=1 rsqj)/Tj

(∑Ti
i=1 rsqi)/Ti + (∑

Tj
j=1 rsqj)/Tj

+ ûi
(∑Ti

i=1 rsqi)/Ti

(∑Ti
i=1 rsqi)/Ti + (∑

Tj
j=1 rsqj)/Tj

else if (item-rsq > 0) & (user-rsq < 0) Prsq(v̂j, ûi)
= v̂j

else if (item-rsq < 0) & (user-rsq > 0) Prsq(v̂j, ûi)
= ûi

2. else if (item-rsq != “NaN”) & (user-rsq == “NaN”) Prsq(v̂j, ûi)
= v̂j

3. else if (item-rsq == “NaN”) & (user-rsq != “NaN”) Prsq(v̂j, ûi)
= ûi

4. else if (item-rsq == “NaN”) & (user-rsq == “NaN”) P
rsq(v̂j,

^
ui)

= 0

3.5. Computational Complexity Analysis

We usually analyze the computational complexity of recommender systems with
consideration of two parts: computation time for model construction and that for one
rating prediction. Based on a binary user-item matrix whose size is n×m, the computa-
tional complexities of the user-based CF are O

(
n2mk

)
for model construction and O(k)

for one rating prediction. The former is to calculate similarities among users, and the
latter is to make a prediction using k neighbors. Likewise, the computational time of the
item-based CF can estimated as O

(
nm2k

)
and O(k). It is obvious that our approaches

require more computational time for model construction because we employ the statistical
learning algorithms. The computational complexities are O(nm) for logistic regression and
O
(
min

(
n3, m3)) for principal component analysis. The CART (classification and regression

tree) algorithm has the complexity of O(mn log n) in the worst case, which means that
the depth of a tree is n. If we build s trees with t randomly chosen variables at each split,
the complexity of random forests becomes O(stn log n). Notice that the actual times for
training prediction models can be reduced by performing PCA because we use a fewer
number of input variables than m. Although our methods need more computational times
for model construction than the existing CF approaches, their prediction complexity is
O(1), which means a constant time complexity because they do not use k neighbors. As a
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result of this small complexity for rating prediction, our methods are suitable for online
recommendation, as other model-based approaches are. Our numerical experiments in the
next section showed that the item-based CF took 0.05 s and our methods took 0.02 s for one
rating prediction, although the PCA+LR item modeling and the RF item modeling took
5.29 s and 47.57 s respectively for model construction.

4. Numerical Experiments
4.1. Experimental Settings

Based on the experimental settings used by Mild and Reutterer [18] and Lee et al. [22],
we consider both the Groceries dataset (arules R package) and the EachMovie dataset
(https://grouplens.org/datasets/eachmovie/, accessed on 5 September 2004). For the
Groceries dataset, 9835 transactions and 169 categories were collected for 30 days from a
grocery store [25]. The first 20 existing users and 168 categories are selected, whereas the
next 980 active users and 168 categories are selected. “Whole milk” is chosen as a new item.
We consider classification error, recall, and precision for the predicted values, and actual
values to evaluate the prediction performance.

The EachMovie dataset comprises 72,916 users and 1628 movies with 2,811,983 ratings,
where a six-point scale with [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] is considered. The ratings are
converted into binary scales, and the experimental settings are used [22], where future
responses or non-responses can be predicted for target marketing.

From the EachMovie dataset, 604 existing users and 207 movies (case 1), 150 existing
users and 150 movies (case 2), 10 existing users and 100 movies (case 3), and 604 existing
users and 20 movies (case 4) are randomly chosen for the section A × C in Figure 1a.
Corresponding to the selected existing users and movies, 121 active users and 207 movies,
50 active users and 150 movies, 90 active users and 100 movies, and 121 active users and
20 movies are randomly selected for the section B × C in Figure 1a. Finally, 100 movies
for new items (D in Figure 1a) are randomly chosen for 10 existing users and 100 movies,
whereas 50 movies for new items (D in Figure 1a) are randomly chosen for the other cases.
We consider Top-1, Top-2, . . . , and Top-10 accuracies as our performance measure [22]. For
example, Top-10 accuracy is

The number of the actual ′Top-10′items
The number of first ten item that are recommended by a CF scheme

. (11)

4.2. Experimental Results
4.2.1. Grocery Dataset

A cutoff value with a minimal classification error is chosen. For the best cutoff values,
Table 2 presents the classification error, precision, recall, and F1 score of the CF approaches.
As shown in Table 2, in terms of classification error, the RF Pearson correlation-based score
is the best, whereas the RF item modeling and RF user modeling are the best in terms of
precision. Regarding recall and F1 score, the PCA+LR item modeling works better than the
other approaches, but its precision is the lowest.

https://grouplens.org/datasets/eachmovie/
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Table 2. Prediction performance results.

Classification
Error Precision Recall F1 Score

PCA+LR item modeling 0.273
(

267
980

)
0.475

(
28
59

)
0.106

(
28
264

)
0.173

PCA+LR user modeling 0.269
(

264
980

)
0.500

(
18
36

)
0.068

(
18
264

)
0.120

PCA+LR two-way 1 NA NA NA NA

PCA+LR two-way 2 NA NA NA NA

User-based CF 0.267
(

262
980

)
0.583

(
7

12

)
0.026

(
7

264

)
0.050

Item-based CF 0.261
(

256
980

)
0.667

(
16
24

)
0.060

(
16
264

)
0.110

Pearson correlation-based
score 0.260

(
255
980

)
0.737

(
14
19

)
0.053

(
14
264

)
0.099

RF item modeling 0.260
(

255
980

)
0.800

(
12
15

)
0.046

(
12
264

)
0.087

RF user modeling 0.260
(

255
980

)
0.800

(
12
15

)
0.046

(
12
264

)
0.087

RF R-square-based score 0.261
(

256
980

)
0.700

(
14
20

)
0.053

(
14
264

)
0.099

RF Pearson
correlation-based score 0.259

(
254
980

)
0.639

(
23
36

)
0.087

(
23
264

)
0.153

Most significantly, the PCA+LR two-way 1 and PCA+LR two-way 2 fail to provide
two-way predictions because of the high-dimensional cold-start problem. By contrast, the
Pearson correlation-based score improves the classification error and precision of the user-
based CF and item-based CF, whereas the RF Pearson correlation-based score improves
the classification error, recall, and F1 score of the RF item modeling and RF user modeling.
In conclusion, the two-way logistic regression approaches are outperformed by the pro-
posed Pearson correlation-based score and RF Pearson correlation-based score.

4.2.2. Eachmovie Dataset

We calculate the Top-N accuracies for the approaches. Table 3 summarizes the Top-N
accuracy for case 1, where we can effectively check the recommendation performance by
manipulating the N. The Top-N accuracy ranging from 0 to 1 has been widely used for eval-
uating the recommendation performance because the N can be selected by recommender
system managers, and they are interested in how many items among the recommended
ones would be actually chosen by users [18–24]. The bold numbers in the table indicate
the best performances. In case 1, for the PCA+LR item modeling and PCA+LR user mod-
eling, the PCA+LR two-way 1 performs the best for Top-8, Top-9, and Top-10, whereas
the PCA+LR user modeling is the best for Top-1, Top-6, and Top-7, and the PCA+LR item
modeling is the best for Top-1 to Top-5. For the user-based CF and item-based CF, the
Pearson correlation-based score performs the best for Top-2, Top-3, Top-9, and Top-10,
whereas the user-based CF performs the best for Top-1 and the item-based CF does for
Top-4 to Top-9. For the RF item modeling and RF user modeling, the RF R-square-based
score performs the best for Top-1 and Top-4 to Top-10, whereas the RF user modeling
performs the best for Top-3 and the RF item modeling does for Top-1 and Top-2. For the
two-way cooperative CF, the Pearson correlation-based score and the RF R-square-based
score provide the best average of the ten Top-N accuracies. Therefore, we realize that
the Pearson correlation-based score as well as the RF R-square-based score works more
effectively than the PCA+LR two-way 1. Note that there are 604 users and 207 items in
section A × C in Figure 1a.
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Table 3. Top-N accuracy for case 1.

N PCA+LR
User

PCA+LR
Item

PCA+LR
Two-Way 1

Pearson
User

Pearson
Item

Pearson
Score

RF
User

RF
Item

RF rsq
Score

1 0.926 0.926 0.917 0.893 0.843 0.884 0.926 0.934 0.934
2 0.905 0.921 0.917 0.868 0.855 0.872 0.921 0.917 0.913
3 0.909 0.917 0.912 0.862 0.857 0.871 0.917 0.904 0.909
4 0.899 0.907 0.899 0.847 0.855 0.853 0.897 0.895 0.903
5 0.891 0.893 0.891 0.812 0.833 0.823 0.873 0.881 0.893
6 0.858 0.855 0.854 0.788 0.807 0.803 0.850 0.864 0.869
7 0.837 0.832 0.835 0.769 0.782 0.775 0.829 0.836 0.837
8 0.807 0.802 0.808 0.738 0.754 0.750 0.813 0.813 0.817
9 0.778 0.775 0.786 0.717 0.731 0.731 0.778 0.789 0.793
10 0.751 0.752 0.757 0.704 0.696 0.711 0.754 0.759 0.771
Avg. 0.856 0.858 0.858 0.800 0.801 0.807 0.856 0.859 0.864

In case 2, as shown in Table 4, for the PCA+LR item modeling and PCA+LR user
modeling, the PCA+LR two-way 1 performs the best for Top-2, Top-3, Top-9, and Top-
10, whereas the PCA+LR user modeling is the best for Top-1 and Top-4 toTop-8 and the
PCA+LR item modeling is the best for Top-1.

Table 4. Top-N accuracy for case 2.

N PCA+LR
User

PCA+LR
Item

PCA+LR
Two-Way 1

Pearson
User

Pearson
ITEM

Pearson
Score RF User RF Item RF rsq

Score
1 0.940 0.940 0.920 0.880 0.780 0.920 0.900 0.920 0.920
2 0.900 0.880 0.910 0.870 0.790 0.870 0.850 0.900 0.900
3 0.867 0.860 0.860 0.873 0.727 0.873 0.867 0.893 0.893
4 0.860 0.855 0.850 0.875 0.730 0.875 0.820 0.860 0.865
5 0.840 0.828 0.844 0.832 0.708 0.840 0.800 0.836 0.836
6 0.803 0.793 0.797 0.777 0.683 0.790 0.770 0.800 0.800
7 0.766 0.746 0.754 0.740 0.660 0.740 0.734 0.763 0.777
8 0.735 0.705 0.715 0.705 0.633 0.710 0.703 0.725 0.743
9 0.691 0.678 0.693 0.689 0.611 0.687 0.678 0.696 0.708
10 0.660 0.662 0.672 0.670 0.592 0.664 0.654 0.684 0.674
Avg. 0.806 0.795 0.802 0.791 0.691 0.797 0.778 0.808 0.812

For the user-based CF and item-based CF, the Pearson correlation-based score per-
forms the best for Top-1 to Top-8, whereas the user-based CF performs the best for Top-2 to
Top-4, Top-7, Top-9, and Top-10; the item-based CF is outperformed by the two approaches.
The RF R-square-based score performs the best for Top-1 to Top-9, whereas the RF item
modeling performs the best for Top-1 to Top-3, Top-5, Top-6, and Top-10; the RF user
modeling is outperformed by the two approaches. For the two-way cooperative CF, the
Pearson correlation-based score and the RF R-square-based score provide the best average
of the ten Top-N accuracies.

Therefore, we assume that both the Pearson correlation-based score and the RF R-
square-based score work very effectively for the two-way cooperative CF than the PCA+LR
two-way 1. Note that there are 150 users and 150 items in section A × C in Figure 1a.

In case 3, as shown in Table 5, the PCA+LR item modeling performs better than
the other approaches for all the Top-N accuracies. The PCA+LR two-way 2 seems not
to outperform the PCA+LR user modeling, although it clearly outperforms the PCA+LR
two-way 1. For the user-based CF and item-based CF, the Pearson correlation-based score
and the item-based CF are outperformed by the user-based CF for all the Top-N accuracies.
The Pearson correlation-based score does not seem to work well. The RF R-square-based
score is outperformed by the RF user modeling and the RF item modeling.
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Table 5. Top-N accuracy for case 3.

N PCA+LR
User

PCA+LR
Item

PCA+LR
2-Way 1

PCA+LR
2-Way 2

Pearson
User

Pearson
Item

Pearson
Score

RF
User

RF
Item

RF rsq
Score

RF
Pearson
Score

1 0.49 0.67 0.49 0.54 0.71 0.41 0.30 0.66 0.63 0.57 0.79
2 0.47 0.66 0.40 0.48 0.73 0.38 0.24 0.71 0.71 0.59 0.71
3 0.42 0.62 0.37 0.44 0.68 0.39 0.27 0.66 0.65 0.56 0.65
4 0.43 0.56 0.38 0.45 0.63 0.38 0.26 0.61 0.61 0.53 0.62
5 0.42 0.55 0.36 0.42 0.60 0.37 0.24 0.58 0.58 0.53 0.60
6 0.42 0.53 0.35 0.42 0.56 0.36 0.23 0.57 0.56 0.53 0.57
7 0.44 0.52 0.36 0.44 0.54 0.35 0.25 0.54 0.54 0.50 0.54
8 0.43 0.50 0.35 0.43 0.51 0.34 0.23 0.52 0.52 0.49 0.53
9 0.42 0.49 0.34 0.42 0.50 0.34 0.23 0.49 0.50 0.48 0.52
10 0.41 0.47 0.34 0.41 0.49 0.33 0.23 0.48 0.47 0.47 0.50
Avg. 0.44 0.56 0.37 0.45 0.60 0.36 0.25 0.58 0.58 0.53 0.60

Note that there are only 10 users in section A × C in Figure 1a. In this case, the
columns of some active items in the market basket data are all zeros, which is the extreme
high-dimensional cold-start problem. Then, the average of the R-square values can have a
negative sign, which can lead to bad prediction performance.

For instance, we randomly select a test observation where 1 denotes a purchased item
and −1 denotes a non-purchased item where the predicted values of the item modeling
and the user modeling range from −1 to 1. The predicted value of the item modeling is
−0.3204994, and the predicted value of the user modeling is −0.5009333. The average
of the R-square values of the item modeling is 0.251122 and the average of the R-square
values of the user modeling is −0.3145476, which has a negative sign. Then, the calculated
weighted average based on (9) is −1.215328, which does not make sense because it does
not fall between −0.3204994 and 0.5009333. Therefore, the RF R-square-based score does
not work well in this case.

Instead of the RF R-square-based score, we apply the Pearson correlation-based
score to the RF item and user modeling. For Top-1 and Top-4 to Top-6, the RF Pearson
correlation-based score performs the best and is close to the RF user modeling or the RF
item modeling for the other Top-N accuracies. Moreover, the RF Pearson correlation-based
score gives the best average of the ten Top-N accuracies. As a result, we realize that the RF
Pearson correlation-based score works better for the two-way cooperative CF than the RF
R-square-based score.

For case 4, as shown in Table 6, the PCA+LR item modeling performs better than the
other approaches for all the Top-N accuracies. The PCA+LR two-way 2 does not seem
to outperform the PCA+LR item modeling, although it clearly outperforms the PCA+LR
two-way 1. The PCA+LR two-way 1 does not even provide appropriate predicted values.
For the user-based CF and item-based CF, the user-based CF and the Pearson correlation-
based score outperform the item-based CF for all the Top-N accuracies. The Pearson
correlation-based score does not seem to perform the best, except for Top-1 and Top-8.
The RF R-square-based score is outperformed by the RF user modeling and the RF item
modeling. Note that there are only 20 items in section A× C in Figure 1a. In this case,
the rows of some active users in the binary market basket data are all zeros, which is the
extreme high-dimensional cold-start problem. Then, the average of the R-square values
can have a negative sign, which can lead to bad prediction performance.
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Table 6. Top-N accuracy for case 4.

N
PCA
+LR
User

PCA
+LR
Item

PCA
+LR
2-Way 1

PCA
+LR
2-Way 2

Pearson
User

Pearson
Item

Pearson
Score

RF
User

RF
Item

RF rsq
2-Way

RF
Pearson
Score

1 0.76 0.87 NA 0.69 0.84 0.68 0.85 0.86 0.88 0.70 0.88
2 0.73 0.87 NA 0.74 0.84 0.63 0.83 0.84 0.86 0.71 0.85
3 0.71 0.85 NA 0.74 0.82 0.62 0.82 0.83 0.84 0.73 0.85
4 0.67 0.84 NA 0.74 0.81 0.62 0.80 0.81 0.81 0.70 0.83
5 0.64 0.82 NA 0.71 0.77 0.62 0.77 0.76 0.79 0.67 0.79
6 0.61 0.78 NA 0.69 0.75 0.61 0.74 0.74 0.76 0.65 0.75
7 0.59 0.75 NA 0.67 0.71 0.59 0.71 0.70 0.73 0.64 0.73
8 0.57 0.71 NA 0.64 0.68 0.57 0.68 0.68 0.70 0.63 0.70
9 0.56 0.69 NA 0.62 0.66 0.56 0.66 0.65 0.68 0.60 0.68
10 0.55 0.67 NA 0.61 0.64 0.54 0.64 0.63 0.65 0.59 0.65
Avg. 0.64 0.79 NA 0.69 0.75 0.60 0.75 0.75 0.77 0.66 0.77

For further analysis, we randomly select 10 test data and respectively calculate pre-
dicted values for the RF user modeling, the RF item modeling, and the RF R-square-based
score, as shown in Figure 3, where 1 denotes a purchased item and −1 denotes a non-
purchased item. Although the RF R-square-based score is a weighted average of the RF
item modeling-based prediction and the RF user modeling-based prediction, the first,
second, third, and seventh observations violate the assumption that the weighted mean
should fall between the predicted value of the RF item modeling and the predicted value
of the RF user modeling, as illustrated in Figure 3, because the averages of the R-square
values have negative signs. As a result, the RF R-square-based score does not work well.
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Figure 3. Predicted values for the RF R-square-based score.

Instead, we apply the Pearson correlation-based score to the RF item modeling and the
RF user modeling. For Top-1, Top-3, Top-4, and Top-10, the RF Pearson correlation-based
score performs the best and is close to the item modeling for the other Top-N accuracies,
as shown in Table 6. Moreover, the RF Pearson correlation-based score gives the best
average of the ten Top-N accuracies. Thus, the RF Pearson correlation-based score works
better for the two-way cooperative CF than the RF R-square-based score. To understand
these matters better, we randomly select 10 test data and calculate predicted values for
the RF user modeling, the RF item modeling, and the RF Pearson correlation-based score
(Figure 4), where 1 denotes a response and −1 denotes a non-response. The RF Pearson
correlation-based score should be a weighted average of the RF item modeling-based
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prediction and the RF user modeling-based prediction. In this case, no observations violate
the assumption. In other words, the RF Pearson correlation-based scores always fall
between the predicted value of the RF item modeling and the RF predicted value of the
user modeling. Thus, the RF Pearson correlation-based score works more effectively than
the RF R-square-based score for the two-way cooperative CF.
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Figure 4. Predicted values for the RF Pearson correlation-based score.

Additionally, although the proposed CF scheme for the RF R-square-based score in
Section 3 D requires more procedures, it improves the prediction performance of the RF
R-square-based score dramatically, as shown in Table 6. As illustrated in Figure 5, the
proposed CF scheme emulates the RF Pearson correlation-based score. Indeed, the average
of the ten Top-N accuracies for the proposed CF scheme, 0.7737, is greater than that of the
ten Top-N accuracies for the Pearson correlation-based score, 0.7696. We realize that the
proposed CF scheme performs as well as the RF Pearson correlation-based score for the
two-way cooperative CF.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 14 
 

Additionally, although the proposed CF scheme for the RF R-square-based score in 
Section 3 D requires more procedures, it improves the prediction performance of the RF 
R-square-based score dramatically, as shown in Table 6. As illustrated in Figure 5, the 
proposed CF scheme emulates the RF Pearson correlation-based score. Indeed, the aver-
age of the ten Top-N accuracies for the proposed CF scheme, 0.7737, is greater than that 
of the ten Top-N accuracies for the Pearson correlation-based score, 0.7696. We realize that 
the proposed CF scheme performs as well as the RF Pearson correlation-based score for 
the two-way cooperative CF. 

 
Figure 5. Top-N accuracy for the proposed CF scheme. 

5. Conclusions 
In this study, we propose a PCA+LR two-way 2, a Pearson correlation-based score, 

an RF R-square-based score, an RF Pearson correlation-based score, and a CF scheme for 
the RF R-square-based score for two-way cooperative CF for binary market basket data. 
The experimental results show that the proposed two-way cooperative CF approaches 
work better than the existing PCA+LR two-way 1. For the Grocery dataset, the PCA+LR 
two-way 1 does not even provide an appropriate predicted value, which demonstrates 
that it is clearly outperformed by the Pearson correlation-based score and RF Pearson cor-
relation-based score. For the non-high-dimensional EachMovie dataset, the Pearson cor-
relation-based score as well as the RF R-square-based score clearly improve the accuracy 
of the one-way approaches, whereas the PCA+LR two-way 1 does not. For the extreme 
high-dimensional EachMovie dataset, only the RF Pearson correlation-based score and 
the proposed CF scheme clearly improve the performance of the one-way approaches. 

Most significantly, for the first time, we apply the proposed two-way cooperative CF 
approaches to the Grocery transaction dataset and obtain promising results. Two-way co-
operative CF is crucial for binary market basket data; therefore, the proposed two-way 
cooperative CF approaches would be useful for marketing practitioners. However, the 
two proposed CF approaches cannot always improve the performance of the one-way CF 
approaches because the prediction performance depends on the datasets. In our future 
research, we plan to apply the proposed two-way CF approaches to other domains and 
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5. Conclusions

In this study, we propose a PCA+LR two-way 2, a Pearson correlation-based score,
an RF R-square-based score, an RF Pearson correlation-based score, and a CF scheme for
the RF R-square-based score for two-way cooperative CF for binary market basket data.
The experimental results show that the proposed two-way cooperative CF approaches
work better than the existing PCA+LR two-way 1. For the Grocery dataset, the PCA+LR
two-way 1 does not even provide an appropriate predicted value, which demonstrates
that it is clearly outperformed by the Pearson correlation-based score and RF Pearson
correlation-based score. For the non-high-dimensional EachMovie dataset, the Pearson
correlation-based score as well as the RF R-square-based score clearly improve the accuracy
of the one-way approaches, whereas the PCA+LR two-way 1 does not. For the extreme
high-dimensional EachMovie dataset, only the RF Pearson correlation-based score and the
proposed CF scheme clearly improve the performance of the one-way approaches.

Most significantly, for the first time, we apply the proposed two-way cooperative CF
approaches to the Grocery transaction dataset and obtain promising results. Two-way
cooperative CF is crucial for binary market basket data; therefore, the proposed two-way
cooperative CF approaches would be useful for marketing practitioners. However, the
two proposed CF approaches cannot always improve the performance of the one-way CF
approaches because the prediction performance depends on the datasets. In our future
research, we plan to apply the proposed two-way CF approaches to other domains and
employ other supervised learning approaches.
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