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Abstract: In this paper, an artificial neural network (ANN) is used for isolating faults and degradation
phenomena occurring in photovoltaic (PV) panels. In the literature, it is well known that the values
of the single diode model (SDM) associated to the PV source are strictly related to degradation
phenomena and their variation is an indicator of panel degradation. On the other hand, the values of
parameters that allow to identify the degraded conditions are not known a priori because they can be
different from panel to panel and are strongly dependent on environmental conditions, PV technology
and the manufacturing process. For these reasons, to correctly detect the presence of degradation,
the effect of environmental conditions and fabrication processes must be properly filtered out. The
approach proposed in this paper exploits the intrinsic capability of ANN to map in its architecture
two effects: (1) the non-linear relations existing among the SDM parameters and the environmental
conditions, and (2) the effect of the degradation phenomena on the I-V curves and, consequently, on
the SDM parameters. The ANN architecture is composed of two stages that are trained separately:
one for predicting the SDM parameters under the hypothesis of healthy operation and the other one
for degraded condition. The variation of each parameter, calculated as the difference of the output of
the two ANN stages, will give a direct identification of the type of degradation that is occurring on
the PV panel. The method was initially tested by using the experimental I-V curves provided by
the NREL database, where the degradation was introduced artificially, later tested by using some
degraded experimental I-V curves.

Keywords: photovoltaic diagnosis; neural network application; photovoltaic modeling; parameters
identification

1. Introduction

The penetration of photovoltaic (PV) generation in the urban environment is signifi-
cantly growing, owing to its ability to reduce the power bills of owners and support the
grid with local generation [1].

In this scenario, PV systems degradation and failures are less tolerated since not only
do they reduce the return on investment, but they can lead to a grid power imbalance if
the actual energy production is different from the expected energy production that comes,
for instance, from a digital twin of the system.

One of the key factors for increasing PV system reliability and its service life is to
develop methodologies and technical solutions for the accurate monitoring of the state of
health of PV panels. Indeed, PV modules are often exposed to harsh environmental condi-
tions, or operate in abnormal conditions that lead to fast PV degradation or unexpected
failures. For example, especially in urban area, residential PV plants have a high proba-
bility to be subject to panel mismatches, partial shading, hot spots, and mechanical stress,
which accelerate the degradation phenomena. Another example is shown in [2], where
the authors prove that the combined effect of PV delamination, water penetration into the
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delaminated area and high string voltage operation leads to many failures in PV panels
and inverters. Since the severity of delamination increases gradually, this phenomenon
can be early detected so that the affected PV panel can be replaced with a new one. This
preventive maintenance will preserve the inverter operation, avoid further damages and
consequently, keep the PV plant up and running, thereby increasing the PV plant’s energy
yield over the system lifetime.

PV modules also exhibit natural aging that reduces the annual PV energy production
with a more or less flat degradation rate. For crystalline silicon PV modules, it was esti-
mated a reduction of [0.8–0.9]% over the year [3]. An exhaustive review of degradation
phenomena occurring in PV modules is reported in [4]. The early detection of PV degrada-
tion allows to make decisions about system maintenance and PV panel replacements. In
some cases, it can prevent catastrophic consequences, such as fires.

At present, there are many studies related to PV fault diagnosis, but most of them are
focused at the PV system level. In [5], different methods are reviewed and discussed in
detail by putting into evidence their feasibility, complexity, cost-effectiveness and general-
ization capability for large-scale integration. In [6], the discussion is focused on the use
of artificial intelligence (AI) and Internet of Things (IoT) for the remote sensing of solar
photovoltaic systems to improve the PV diagnosis.

On the other hand, such models as the single-diode model (SDM), double-diode
model (DDM), and triple-diode model (TDM) are widely used for the modeling, simulation,
performance evaluation, and design optimization of PV systems as well as for monitoring
and diagnosis purposes [7]. Indeed, the accurate parameter identification of the equivalent
PV electrical model allows to study the characteristics of a PV source [8] in all operating
conditions. Therefore, instead of analyzing the shape of each I-V curve, it is easier to detect
degradation by evaluating the variations of such parameters with respect to their values in
healthy conditions.

The use of photovoltaic models in combination with AI methods has been already
proposed in the literature for PV faults detection. In [9], an artificial neural networks
(ANN) is firstly trained with a numerical simulation, provided by a PV model, for the
classification and isolation of eight types of faults, and then used on field measurements
to identify possible faulty operating conditions. A field programmable gate array (FPGA)
implementation of the proposed method is also proposed in the paper for the online
operation. In [10], the kernel-based extreme learning machine (KELM) is employed to train
the single hidden-layer feed-forward neural network (SLFN) to classify the degradation
fault, short-circuit fault, open-circuit fault and partial shading faults in PV arrays. The
SLFN needs as input electrical values taken from the I-V curve, environmental conditions
and the SDM parameters previously calculated starting from the whole I-V curve. An ANN
with a radial basis function (RBF) requiring only irradiance and PV output power as input
is developed in [11]. The results obtained through the testing of the developed ANN on a
PV installation of 2.2 kW capacity provide an accuracy of 97.9% in faults identifications. In
this case, no model is used but it long-term data measurements are taken for reproducing
on the PV installation different kind of faults.

The ANNs training phase usually requires a large number of observations, which
are not always available. This problem might be mitigated by using probabilistic neural
networks (PNNs), which learn on-line with a small number of observations [12,13].

The explosion of the IoT technologies is expected to enable, with an acceptable addi-
tional cost, the diagnosis at the PV panel level. Moreover, by exploiting edge computing
sensors [14], it will be possible to elaborate the data on site and to transmit to the final user
only synthetic information related to the state of health of each PV module. Module-level
monitoring devices are already available in the market for monitoring and controlling a
single PV panel, thereby improving the system performance and the planning of system’s
operation and maintenance activities [15]. Such devices are also able to perform I-V curve
tracing but the final user is in charge of the analysis of these data. Nevertheless, the offline
data analysis is time consuming and requires an operator with a specific PV background.



Appl. Sci. 2021, 11, 8943 3 of 27

Moreover, the types of faults and degradation mechanisms that can be identified are very
limited. To solve this drawback, in [16], it is proposed an automatic fault detection method
that elaborates online the I-V curves of PV panels. The diagnosis is focused on the identifi-
cation of current mismatch due to partial shading, hot spots, and cell cracks. The method
calculates the concavity and convexity along the I-V curves because the three analyzed
faults produce steps on the I-V curve; thus, not trivial data processing is required for
proper detection of the occurring fault.

Differently from the previous works, which are mainly focused on faults classification
or partial shading identification, the ANN-based method proposed in this paper is aimed
at estimating PV degradation through the identification of SDM parameters values that
can be easily related to the PV panel state of health. The approach exploits the intrinsic
capability of ANN to map in its architecture two effects: (1) the non-linear relations existing
among the SDM parameters and the environmental conditions, and (2) the effect of the
degradation phenomena on the I-V curves and, consequently, on the SDM parameters.
The joint elaboration of these two relationship allows to quantify the PV degradation due
to aging, corrosion, cracks, or hot spots, among others.

With respect to existing fault diagnosis methods, the technique introduced in this
paper has the advantage of recognizing faults quantitatively by using only three points on
the I-V curve around the maximum power point (MPP), irradiance and panel temperature,
and thus, does not need the whole I-V curve, which may not always be available during
the normal operation of the PV system. Moreover, due to the fast elaboration of the ANN
results, it can be easily implemented on an embedded system for online elaboration once
the training phase is performed offline.

2. Single Diode Model for Describing Degradation Phenomena

The SDM, shown in Figure 1, is the most used PV model due to the trade-off between
simplicity and accuracy [17]. It is described by Equation (1) and has a set of five parameters
to be identified:

• Iph: Photo-generated current (A).
• Isat: Dark saturation current (A).
• η: Diode ideality factor.
• Rs: Series resistance (Ω).
• Rsh: Shunt resistance (Ω).

The number of PV cells in the module (ns) and the thermal voltage (Vt = k·T
q ) are

known once the cells temperature (T), the Boltzman’s constant (k) and electron charge (q)
are given.

Ipv = Iph − Isat · [exp
(
Vpv + Ipv · Rs

η · ns ·Vt
)

− 1]− [
Vpv + Ipv · Rs

Rsh
] (1)

Iph D Rsh

Rs

Vpv

Ipv

Id

Figure 1. Single-diode model of PV devices.
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The parameters identification is a relevant task since they are not available on the
manufacturer data sheet. There are variations associated with the operating conditions,
non-linear nature, and degradation phenomena [18].

Methodologies for solving this task are commonly grouped into three categories [19]:
iterative (numerical), non-iterative (analytical), and AI-based optimization approaches.

Analytical methods use equations solved symbolically or explicitly by using key-points
information from data sheets or I-V curve data. These approaches are characterized by the
simplicity of their implementation and computational efficiency [20].

Numerical methods seek to fit the points of the I-V curve by using systems of equations
that are solved numerically. Commonly, trial and error approaches or numerical solvers,
such as Newton–Raphson and curve-fitting methods, are used. The accuracy, reliability,
and convergence of these methodologies are strongly linked to the selection of the initial
conditions [19,21].

Optimization approaches group different kinds of algorithms based on artificial in-
telligence and heuristics methods. The development of computational intelligence has
improved the implementation of these algorithms to solve highly non-linear and complex
problems. Many advantages are associated with these approaches, as preliminary identifi-
cation of the search space of parameters, high accuracy, and in some cases, a mathematical
model, are not needed. Nevertheless, it requires high computational complexity [8].

In this last category, artificial neural networks are proven to be an effective tool for
SDM parameters identification. In [22], a multilayer perceptron (MLP) for identifying
the Iph, Rs, and Isat parameters is implemented. This work uses an input vector of five
inputs composed by Isc, Voc, Impp, Vmpp and Pmpp from the data sheet at the panel level.
Another study [23] focuses on identifying some important points of the I-V curve, such
as Voc, Isc, Pmax, Vmax, and Imax at the panel level. For this purpose, it uses as inputs the
irradiance and temperature in a two-hidden layer configuration. In [24], a recurrent neural
network is implemented for predicting the output current of the cell by using temperature,
irradiance, and voltage as inputs. In [25], the input vector carries out a mix among
environmental and electrical variables, such as irradiance, temperature, Voc, Isc, Vmpp, Impp,
and Pmpp. In this case, the parameters identified are Rs, Rsh, and η for an application at the
panel level. Finally, authors in [26] and [27] propose configurations based on feed-forward
neural networks for identifying the full set of five parameters by means of two-stage
identification. Both works only use irradiance and temperature as inputs, but the work
in [27] is focused on a single cell, while the other [26] concentrates on an entire PV panel.

In this paper, a numerical method is presented that combines I-V curve fitting and
ANN optimization to estimate the variation in PV panels’ SDM parameters when the PV
panels are subject to degradation.

2.1. Effect of PV Degradation on the I-V Characteristic and the SDM Parameters

In [28], the most common degradation effects and failures that are detectable by the
inspection of the I-V curve and the related SDM parameters variations are described. They
are visually shown in Figure 2. A brief comment on these effects is also reported in the
following.
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Figure 2. Module failures detectable from the I-V curve.

• S1 effect: The I-V curve exhibits a lower short-circuit current (Isc) than expected.
This degradation effect may be caused by the following: loss of transparency of the
encapsulation, due to browning or yellowing; glass corrosion, which reduces the
light trapping of the module; or delamination, which causes optical uncoupling of
the layers. This is mainly reflected in the reduction of the photoinduced current
(Iph) parameter.

• S2 and S3 effects: The I-V curve has an open circuit voltage (Voc) lower than expected,
and all points shift homogeneously to the left, while the I-V curve preserves its slope
around Voc. This anomaly may be due to failed cell interconnections, short circuits
from cell to cell or a failure of the bypass diode. Such failure can be associated to
the SDM ideality factor (η) because the number of cells (ns) in a PV module directly
appears in the SDM Equation (1). Thus, the effects of cells failures can be expressed
as follows:

η = ηH
nH
ns

(2)

where ηH is the healthy ideality factor and nH is the number of healthy cells inside
the PV panel made of ns cells. For example, if ns = 36, one failed cell has an impact of
almost −3% on the η parameter.
The open-circuit voltage of the module can be reduced also by the light-induced
degradation (LID) of crystalline silicon modules or potential induced degradation
(PID). Since the leakage current inside the PV cell is an indicator of such phenomena,
they can be directly associated to the variation of saturation current Isat parameter.
Small variation of Isat does not affect significantly the I-V characteristic. It can be
observed that the impact of Isat and η is directly opposite. This can cause a multi-
modal problem in the parameter identification, which means that the same I-V curves
may be reproduced with different pairs of the Isat and η. Therefore, in some cases,
the same degradation phenomena can be associated almost indifferently in the Isat
variation or η variation.

• S4 effect: The slope of the I-V curve near Voc is lower, indicating an increase in the
series resistance Rs in the PV module. Rs in the module could rise by the increase in
interconnections resistance, corrosion in junction box or interconnects and slacks joints.



Appl. Sci. 2021, 11, 8943 6 of 27

• S5 effect: The slope around Isc is mostly associated to the parallel resistance Rsh. The
variation of this parameter is due to shunt paths in the PV cells and/or the interconnec-
tions. Slight cell mismatch or slight non-uniform yellowing may be additional causes.

• S6 effect: The presence of steps in the curve is likely caused by the activation of one
or more bypass diodes that are connected in parallel to a block of cells to protect
them from inverse polarization under mismatched operating conditions. It can be
due to irregular soiling, the shadow affecting only a few cells in the PV module, or
the breakage of one or more cells protected by the same bypass diode. This effect
cannot be reproduced with a single diode model, and thus the variations of the SDM
parameters associated to this effect do not have a physical meaning.

Since all degradation phenomena have an impact on the delivered power, the normal-
ized sensitivity (Sn) of the PV output power with respect to the SDM parameters variation
is calculated as follows:

Sn = [sn,Iph , sn,Isat , sn,η , sn,Rs , sn,Rsh ] =

=

[
∆Pmpp

∆Iph

Iph,H

Pmpp,H
,

∆Pmpp

∆Isat

Isat,H

Pmpp,H
,

∆Pmpp

∆η

ηH
Pmpp,H

,
∆Pmpp

∆Rs

Rs,H

Pmpp,H
,

∆Pmpp

∆Rsh

Rsh,H

Pmpp,H

]
(3)

where the sn,k is the normalized sensitivity calculated by introducing the variation ∆k to
the k-parameter. The subscript H refers to the values in healthy conditions. Due to the
non-linearities of PV power with respect to the SDM parameters, the sensitivity is not
constant and it should be calculated locally and for the different environmental operating
conditions. The normalized sensitivity values of the delivered PV power with respect to
the five parameters’ variation shown in Figure 2 is reported in (4).

Sn = [1.04, −0.0606, 1.12, −0.158, 0.031] (4)

The results show that the PV output sensitivity with respect to the Iph and η is close to
one. As a consequence, few percentage variation of Iph and η is reflected in a significant
variation of PV power. Rsh and Isat have lower impact at less than one order of magnitude.
The sensitivity to Rs is somewhere in between. This means that a small variation of
these parameters can be tolerated since the corresponding degradation process is not
yet detrimental.

3. Description of the Proposed ANN Architecture

In the previous section, the relation among PV panel degradation and SDM parameters
variation was put into evidence by analyzing the I-V curves. On the other hand, the
parameters of the PV equivalent circuit change with respect to the irradiance and the
temperature of the solar cells. The relationship between them is nonlinear and cannot be
easily expressed by analytical equations; nonlinear regression methods can fail when any
preliminary information about the input–output relationships is provided. Many papers
have tried to characterize such behavior. However, it is strongly dependent on the PV
panel under test, and no general rules can be applied. Some examples are reported in [29].
In [30], the authors highlight that the fitting curve, which maps each SDM parameter as a
function of the environmental condition, also varies along the seasons, due to the influence
of the variable weather and environmental conditions.

As a consequence, a reliable identification of PV degradation phenomena cannot be
achieved if relationships among SDM parameters and the environmental condition are not
properly accounted for.

The capability of the ANN to train non-linear and unknown relations among variables
and to generalize these relationships when new input is provided to the ANN, is exploited
for solving this task. Since ANN does not require knowledge of the internal system
parameters, it implies reduced computational effort and represents a compact solution
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for multivariable problems. It is also a good candidate to be implemented on embedded
system for online operation.

Figure 3 shows the flow chart of the procedure proposed in this paper. In particular, it
describes the main steps for selecting the ANN input and target datasets and performing
the ANN training phases.

Database of I-V curves 
of healthy PV panel 

operating at different 
G and T

Apply an identification 
method for detecting 

SDM parameters

 ANN level #1  

Inputs = G,T

Associate the SDM 
parameters to each I-V  

curve
ANN level #2

Targets = healthy SDM parameters

Modify  SDM 
parameters to emulate 
PV panel degradation 

Generate degraded I-V  

curves in the same 
operating conditions of 

healthy I-V  curves 

Inputs = G,T, V,I points

Targets = degraded SDM parameters

SDM 
comparison

ANN learns the non-linear relationships of SDM 
parameters from Irradiance and Temperature 

ANN learns the non-linear relationships of SDM 
parameters from degradation phenomenon

ANN filters the SDM variation due to  
Irradiance and Temperature 

Select only 3 points 
around MPP as 

degraded I-V features  

Estimated Healthy 
SDM parameters 

Estimated degraded 
SDM parameters   

Quantitative 
estimation of the 
degradation effects

Stage 1

Stage 2

Figure 3. Flow chart for training the proposed ANN architecture.

In the first stage, the ANN predicts the equivalent circuit parameters by only measur-
ing the irradiance and temperature. Such parameters are assumed to be reference values
for the healthy operating condition. Indeed, for training this ANN, a proper number of
healthy I-V curves, acquired under different environmental conditions, are selected, and
the corresponding SDM parameters are used as the target dataset. As shown in [26], ANN
can provide a very good estimation of healthy SDM parameters for every environmen-
tal condition. This SDM parameters estimation is used as the baseline for detecting the
possible presence of degradation.

In a second stage, a more complex ANN architecture is trained to account for the
different types of degradation. For achieving this task, a modified set of I-V curves is
generated by using the single diode model with different sets of parameters that are
associated to realistic degradation phenomena. In this stage, the ANN receives as input
not only the irradiance and cell temperature, but also some points of the I-V curve, which
are necessary for taking into account the modification of the I-V curve shape due to
the degradation.

It is worth noting that in this paper, only three points around the maximum power
point are used. This allows to monitor the PV source’s state of health during normal
operation without the need for a complete scan of the I-V curve: measurement of the
voltage and current around the MPP suffices for the detection of degradation. More details
on the generation of degraded datasets are given in Section 4.2.

The two training phases are completely independent, having in common only part
of the input data (G and T) and providing two sets of SDM parameters. One output
represents the vector of estimated SDM parameters under the hypothesis that the PV panel
is not degraded—in a healthy condition—and the other one is the vector of estimated
SDM parameters associated to the real state of health. The difference between the two
estimations gives a measure of which parameter is changing and consequently, which type



Appl. Sci. 2021, 11, 8943 8 of 27

of degradation is occurring inside the PV panel. Details on how to configure the ANN
architecture are reported in Section 5.

4. Description of Experimental I-V Curves Database

For covering as much as possible the different outdoor operating conditions of real PV
arrays, a large database of experimental data is selected. The I-V curve dataset provided by
the National Renewable Energy Laboratory (NREL) was used at the beginning to develop
the proposed method. NREL has a public database with data measured for flat-plate
photovoltaic (PV) modules installed in three different cities in the USA (Cocoa-Florida,
Eugene-Oregon, and Golden-Colorado). The experimental process collected PV module
current–voltages curves and meteorological data samples from 2010 until 2014 [31]. The
work employed different PV technologies, such as single-crystalline silicon (c-Si), multi-
crystalline silicon (m-Si), cadmium telluride (CdTe), copper indium gallium selenide (CIGS),
amorphous silicon (a-Si) tandem and triple junction, amorphous silicon/crystalline silicon
or heterojunction with intrinsic thin layer (HIT), and amorphous silicon/microcrystalline
silicon. The database does not report specific commercial or manufacturer information
for avoiding any legal conflict. To describe the procedure proposed in this manuscript,
without the loss of generality, the multi-crystalline silicon PV module information is used.

The variables extracted and used for the procedure are the plane-of-array irradiance
(W/m2), the PV module back surface temperature (◦C), and the corresponding current–
voltage curve represented by a number of points ranging from 180 to 190 samples, depend-
ing on the voltage resolution settled on the tracer device.

Table 1 shows the features and ranges of measurements of the panel chosen for
performing the current analysis.

Table 1. Characteristics of the PV panel under study and ranges of the data measured.

Parameter Value

Technology Multi-crystalline silicon
Number of cells 36

Module Area 0.647 [m2]
STC Parameters

Isc 4.937 [A]
Voc 21.357 [V]
Imp 4.533 [A]
Vmp 17.072 [V]

Plane of Array irradiance (200–1300) [W/m2]
Range of Temperature (20–65) [◦C]

Number of points for each I-V curve [180–190]

The irradiance and temperature ranges also have a high impact over the performance
of the PV model. From the literature, it is well known that the single diode model is not
suitable for characterizing the PV devices at low irradiance values [32]. For this reason, in
this work, we refer to irradiance values in the range from medium to high irradiance, and
only I-V curves acquired with a irradiance level above 200 [W/m2] are used.

When it comes to the temperature, the single-diode model has no particular restrictions
about the ranges. Therefore, there are no restrictions about the ranges of temperature.
This work takes I-V curves acquired over a wide temperature range of [20–65] ◦C degrees.

High quality datasets is a key factor for training the ANN efficiently. To achieve this,
the data must first be collected and cleaned to remove errors (bad data), outliers, and
samples with excessive noise. If these practices are skipped or poorly executed, it becomes
difficult for the ANN to detect the true underlying models.

In certain cases, partial shading or measurement issues in the tracer device provide
I-V curves shapes that generate wrong SDM parameters. For this reason, the I-V curves in
the NREL database are preliminary analyzed, and the ones having an abnormal profile are
discarded. At the end, more than 20,000 I-V curves are available in the filtered database.
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It is worth noting that only a part of the available NREL database is necessary for the
ANN training phases; thus, the proposed approach can be applied in practical applications
where enough I-V curves are available for different irradiance and temperature conditions.
More details on the used I-V curve are given in the sections discussing the simulation and
experimental cases.

During the normal operation, only a few values of voltage and current (Vpv, Ipv)
around the MPP, irradiance (G), and PV panel temperature (T) measurements are used
as the inputs to the neural network. They are chosen since they are already measured
on photovoltaic installations. Therefore, it is possible to take advantage of such informa-
tion for online monitoring of the PV source’s state of health by means of the proposed
ANN architecture.

4.1. Generation of Training Set and Validation Set for a Healthy PV Panel

The reference values of the SDM parameters, the named target values, must be calcu-
lated for each experimental I-V curve that is used during the ANN training and validation
processes. Since the ANN training phase is performed offline, in this paper, the target
dataset can be generated by using the nonlinear least-square solver of Matlab to assure
high-quality fitting among the experimental I-V curves and the ones generated by the
single diode model.

Such a Matlab toolbox needs boundaries, a representative function, and the initial
values for the parameters. The boundaries represent the upper and lower limits that every
parameter could have. Table 2 shows the boundaries and the parameters initial values
configured for this work. They are based on the indication given in [33].

Table 2. Initial values and boundaries for the fitting.

Parameter
Boundaries

Initial Conditions
Lower Upper

Iph [A] 0 12 Isc
Isat [A] 1 × 10−12 1 × 10−3 1 × 10−3

η 1 2 1.5
Rs [Ω] 0 5 Rs0
Rsh [Ω] 50 10 × 103 Rsh0

Concerning the initial conditions summarized in Table 2, three special values are
defined there. First, the short-circuit current Isc is a characteristic value of every PV device.
Second, the slopes of the tangent lines Rso and Rsho. They are defined as follows:

Rsho = −
dV
dI


SC

, Rso = −
dV
dI


OC

(5)

Finally, the representative function that describes the PV generator is based on
Equation (1):

f = Iph − Isat · [e
(
Vpv + Ipv · Rs

ηVt
)

− 1]− [
Vpv + Ipv · Rs

Rsh
]− Ipv (6)

For every selected experimental I-V curve, and thus, for the known (G, T), the fitting
procedure calculates the set of five parameters p = [Iph, Isat, η, Rs, Rsh] that minimize the
mean square error between the experimental data and the I-V curve generated by using
the single-diode model. In this way, the p vector associated to the healthy I-V curve is the
target used to train the neural network.
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It is worth highlighting that the single diode model allows to describe the electrical con-
straint between I-V measurements (Vpv, Ipv) and SDM parameters in the following form:

f (Vpv, Ipv, p) = 0 (7)

but the ANN allows to detect the following unknown relations:

pH(G, T) = [Iph(G, T), Isat(G, T), η(G, T), Rs(G, T), Rsh(G, T)] (8)

where the vector pH(G, T) is the estimation of the healthy SDM parameters for the envi-
ronmental conditions G, T.

4.2. Generation of Training Set and Validation Set for a Degraded PV Panel

Although the NREL database collects I-V curves of PV panels operating in outdoor
conditions, there are no indications concerning the degraded I-V curves. In this paper, a
selection of I-V curve is performed by analyzing the I-V curve shape, slopes and operation
conditions in order to take from the NREL database only the healthy I-V curves. On the
other hand, experimental degraded I-V curves are not easily detectable because of the
difficulty of reproducing the large variety of degraded conditions and the long time the
measurement process takes for registering these kinds of phenomena. For these reasons,
the I-V degraded curves are reproduced artificially by still using the single diode model,
where variations on the SDM parameters are fixed and know a priori. In this way, it is
easy to generate enough I-V curves that are useful for the ANN training process. This is
a similar approach already adopted for emulating PV faults and mismatched operating
conditions in others’ fault identification methods [10,12,34].

The degraded I-V curves’ database have in common with the healthy I-V curves
database the same environmental conditions. The new database is generated by applying
the pseudo code shown in Table 3. Nhealthy is the number of experimental I-V curve taken
from the healthy database.

Table 3. Pseudo code for generating degraded I-V curves.

for n = 1 : Nhealthy
load irradiance and temperature G, T
load I-V curve as vectors Vpv, Ipv
load the vector p of healthy SDM parameters

for k = 1 : 5
assign a random variation (αk ∈ [αk,min, αk,max]) to

the k-th parameter: p(k)deg = αk · p(k)
calculate the I-V degraded curve by using Equation (1)

Ipv
deg = f (Vpv, pdeg)

save G, T, Ipv
deg, Vpv and pdeg in the degraded database

end
end

It is worth noting that a degradation effect is applied separately to each parameter;
thus, the database containing the degraded I-V curves is five times larger than the healthy
database. Moreover, to introduce a detectable I-V curve deformation, the applied parame-
ters degradation is randomly chosen, according to the boundaries shown in Table 4. Such
boundaries are chosen by taking into account that the sensitivity of the I-V curve with
respect to each SDM parameter is strongly different, as highlighted in Section 2.1.

An example of degraded I-V curve obtained artificially by starting from a healthy,
experimental I-V curve is reported in Figure 4. The figure also shows the only three points
that are used by the ANN to estimate the SDM parameters.
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Table 4. SDM parameters variation for generating degraded I-V curves.

Degradation Factor αk,min αk,max

Ideg
ph = α1 Iph 0.95 0.9

Ideg
sat = α2 Isat 2 10
ηdeg = α3η 0.98 0.9

Rdeg
s = α4Rs 2 6

Rdeg
sh = α5Rsh 1/3 1/20
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Figure 4. Healthy and degraded I-V curves with the selected points passed to the ANN.

5. Configuration of the Proposed Double Level ANN Architecture

This work uses a multi-layer feed-forward neural network. It comprises one input
layer, one hidden layer, and one output layer. The number of neurons in the input layer
is equal to the number of parameters that compound the input vector. The number of
neurons in the output layer is fixed by the number of parameters to identify, in this case, five
neurons (equal to the set of five parameters). The number of neurons in the hidden layer is
not fixed. It depends on the complexity of the problem, but some works conclude that the
best option is to choose the smallest configuration that reaches the desired performance
and accuracy [26].

The developed ANN is shown in Figure 5; it is composed of two levels trained
independently. The first level is devoted to estimate the parameters of the single diode
model by using as input only the irradiance and the PV panel temperature. It is trained by
using as target values the SDM parameters extracted with the MATLAB fitting procedure
associated to the healthy I-V curve. A number of Ntrial = 5000 experimental curves are
selected randomly from the NREL database in order to cover the different environmental
conditions. The selected dataset is distributed as 70% for the training set, 15% for the
validation set and 15% for the testing set. An inner layer with 20 neurons is used.

The second level of the ANN architecture is trained by using as target values the SDM
parameters associated to the degraded I-V curves. In this case, the input is a vector of eight
elements, including the irradiance, temperature, and voltages and currents of the three
points around MPP. They are equally spaced of 1 volt with respect to the MPP, as shown in
Figure 4.

A number of 5 · Ntrial curves are selected randomly from the degraded database in
order to cover the different environmental conditions and different kinds of parameter
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degradation. Additionally, in this case, the selected dataset is distributed as 70% for the
training set, 15% for the validation set and 15% for the testing set. An inner layer with 50
neurons is used.

The MATLAB Neural Network Toolbox® is employed for configuring, training and
testing the proposed architecture.

It is worth noting that, although in this manuscript all the elaborations are performed
on a PC, the trained ANNs can be exported in the Open Neural Network Exchange files [35]
and executed by the most common open-source platforms (e.g., TensorFlow®) for running
on embedded systems.

Alternatively, the MATLAB Compiler SDK® [36] can be used for compiling the
MATLAB® functions into a shared library for C/C++, .NET, Java, or Python projects
and executed on the most common development boards, e.g., Raspberry®, BeagleBone® or
DSP/FPGA-based architectures.

Moreover, microcontroller manufactures allow to train ANNs and develop optimized
codes directly by using their programming tools, thereby optimizing performance and
reducing development costs [37].

G, T,

V1, V2, V3

I1,  I2,  I3

Iph, Isat

Eta, Rs, Rsh
50 5

IphH, IsatH

etaH, RsH, RshH20 5

Level #1 ANN estimates healthy SDM parameters  

Level #2 ANN estimates degraded SDM parameters  

G, T

Figure 5. Proposed ANN architecture.

5.1. Dataset Normalization

Before passing the inputs and targets to the neural network architecture, it is necessary
to preprocess the dataset values for improving the performance of the training process.
The normalization process is important for neural network training because it adjusts the
different inputs and outputs ranges to a normalized range before applying them to the
neural network. In MATLAB, the normalization process is set by default and the values are
adjusted to fall in the range of [−1, 1]. However, in this case, a small bug is found that is
associated with the default normalization process. It is found that the default normalization
process has problems with inputs or targets that are too small, producing errors in the
training process. For instance, the common range for the saturation current Isat is in the
order of micro and nano amperes. These ranges of values prevent the training process from
finding a suitable fit for the targets.
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For solving this issue, the normalization process is implemented manually, and the
inputs and targets are adjusted in the following way:

input =
[

G
Gmax

,
T

Tmax

]
for ANN level #1

input =
[

G
Gmax

,
T

Tmax
,

Vi
Vmax

,
Ii

Imax

]
i ∈ [1, 2, 3] for ANN level #2

target =

[
Iph

Iph,max
,

log10(Isat)

log10(Isat,max)
,

η

ηmax
,

Rs

Rs,max
,

Rsh
Rsh,max

]

For the saturation current, the normalization is given on a logarithmic scale for better
representing the large range of variations of this parameter.

Since the neural network approximates its outputs inside the same range, it is also
necessary to convert the ANN results back into the same range rather than into the originals
inputs and targets.

5.2. Overfitting and Generalization

Another common problem of the neural network training process is overfitting. This
concept is associated with the way that the neural network learns the process and adjusts a
model for representing it. In a training process with overfitting, the neural network finds a
model that fits the set of data. Although the error in this process could be set as very small,
the neural network builds an overly complex model that is unable to identify the right
outputs for new data presented to the input. Therefore, the neural network memorizes the
behavior of the training data instead of building a model that generalizes the outputs for
testing or validation data.

A regularization method consists of modifying the performance function. In this
case, the default performance function used by the toolbox of Matlab is the mean square
error (MSE), defined in (9). This performance function can be tuned for focusing on
generalization by using the weights and bias of the neural network. Here, it is necessary to
add the mean values of the sum of weights (MSW) of the neural network to the performance
function. Equation (11) expresses the way to tune this configuration. The parameter γ
(performance ratio) allows the user to define the level of impact of the regularization. This
parameter must be defined in the range of [0–1]. In this case, the user must use their
expertise to find a trade-off between generalization and performance [38,39].

MSE =
1
N

N

∑
i=1

e2
i =

1
N

N

∑
i=1

(ti − ai)
2 (9)

MSW =
1
n

n

∑
j=1

w2
j (10)

Ẽ = γ ∗MSW + (1− γ) ∗MSE (11)

where N is the number of trials, and n is the total number of weights wi for all the
ANN nodes.

Here, the challenge is to choose the correct value for the performance ratio parameter
(γ). If the user uses a parameter that is too large, there is a risk of overfitting. On the
contrary, if the performance ratio parameter is too small, the neural network does not fit
the training data adequately.

Bayesian regularization is a neural network training algorithm that updates the
weights and bias values. The main characteristic of this algorithm is that it automati-
cally determines the optimal regularization parameters and the correct combination for
making up neural networks that generalize well. In the toolbox of Matlab, this function
uses the Jacobian for calculation; then, the performance must be the mean or sum of square
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errors. As a consequence, the training process must be assessed by MSE or by the sum
square error (SSE) performance functions [22,39].

The Bayesian regularization method does not need to configure a performance ratio
parameter. On the contrary, it automatically calculates the best parameters by focusing
on generalization.

In the following, the results concerning the ANN trained with Bayesian regularization
is proposed; they exhibit good identification of the SDM parameters in both healthy and
degraded conditions.

6. ANN Identification Results for Healthy Conditions

The continuous lines in the Figures 6–10 are the estimated SDM parameters provided
by ANN; they refer to the healthy conditions and put into evidence the intrinsic relation-
ships among SDM parameters with the environmental conditions for the PV panel under
test. It is worth noting that, apart from Iph, which is almost linear with G and practically
insensitive with respect to the temperature, the behavior of the remaining parameters is
completely different from the cases analyzed in [26,30]. This result is not very surprising,
given that the relationships among parameters and the environmental conditions change
significantly from panel to panel.
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Figure 6. ANN identification of the photoinduced current in healthy condition.
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Figure 7. ANN identification of the saturation current in healthy condition.
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Figure 8. ANN identification of the ideality factor in healthy condition.

200 400 600 800 1000 1200

Irradiance  G [W/m2]

0.05

0.1

0.15

0.2

0.25

S
e
ri
e
s
 r

e
s
is

ta
n
c
e
  
R

s
 [

]

ANN @  T=35°C

ANN @  T=40°C

ANN @  T=45°C

ANN @  T=50°C

Experimental @  T=35°C

Experimental @  T=40°C

Experimental @  T=45°C

Experimental @  T=50°C

Figure 9. ANN identification of the series resistance in healthy condition.
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Figure 10. ANN identification of the shunt resistance in healthy condition.
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To demonstrate the goodness of the ANN parameters estimation, in Figures 11 and 12,
the plots of experimental data, selected randomly from the NREL database, in comparison
with the reconstructed I-V curves obtained with the estimated parameters at low and high
irradiance conditions are shown.

The error area, defined as the difference in the area below the reconstructed I-V
curves and the area below the corresponding experimental I-V curve, is calculated for the
tested cases; a 5% maximum error is found for a few cases at low irradiance conditions.
This corresponds to the plots shown in Figure 11; however, the error can be considered
acceptable since, as is already remarked in [32], the single-diode model is less precise for
low irradiance conditions.
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Figure 11. Comparison of experimental data and reconstructed single-diode I-V curve with estimated
ANN parameters in healthy condition. In this case, the error area is 5%.
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Figure 12. Comparison of experimental data and reconstructed single-diode I-V curve with estimated
ANN parameters in healthy condition. In this case, the error area is 0.5%.

7. ANN Results with Simulated Degradation on I-V Curves

The capability of ANN to detect the degraded SDM parameters is tested in this
section by still using emulated degraded curves. Even if this is a limitation with respect to
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using real degraded curves, it allows to corroborate the methods with a well-controlled
degradation effect introduced artificially. For each k parameter (k ∈ [1, .., 5]), the analysis is
carried out by using the following procedure:

• Select randomly Ntest experimental healthy I-V curves from the NREL database (not
used during the ANN training phases) and save the related SDM parameters as the
vector p and environmental conditions (G, T).

• For each selected case, do the following:

1. Apply a fixed degradation factor αk to the k-th parameter of p.
2. Generate the degraded I-V curve by using Equation (1).
3. From the degraded I-V curve, select the voltage and current of 3 points equally

spaced around MPP and ordered in the vector [V1, V2, V3, I1, I2, I3].
4. ANN(level #1) estimates the healthy SDM parameters pH with [G, T] as input vector.
5. ANN(level #2) estimates the degraded SDM parameters pdeg with [G, T, V1, V2, V3,

I1, I2, I3] as input vector.
6. Calculate the percentage of parameters variation as follows:

∆p% =
pdeg − pH

pH
· 100 (12)

Figures 13–16 show some comparison between the degraded I-V curves (blue lines)
and the reconstructed I-V curves (light blue lines) obtained by using the pdeg parameters
estimated by means of ANN. In each figure, the healthy I-V curves (red lines) used to
generate the degraded curves and the 3 points passed to the ANN for estimating the SDM
degraded parameters are also reported. Of course, in an on-board operation, only steps 3–6
of the previous procedure are necessary since all ANN input are provided by the real-time
measurements.

As mentioned in Section 2.1, the sensitivity of the I-V curve with respect to each
SDM parameter, especially close to the maximum power point, is strongly different. In
particular, a variation of a few percentage points on Iph and η produces a significant
modification of the I-V curves, while the effect of Isat, Rs and Rsh is visible on the I-
V curve only for larger percentage variations. For this reason, different percentages of
degradation are considered in the examples shown in Figures 13–16. In Tables 5–9, the
corresponding ANN identification results are reported. The vector (pdeg) of degraded
SDM parameters estimation is compared with the healthy SDM parameters estimation
vector (pH) to calculate (∆p%) and find out which parameter has the most significant
percentage variation.

It is worth noting that, in order to establish which kind of degradation is most relevant,
the vector of maximum power variations ∆Pmpp,%, due to each parameter variation, is also
shown in the tables. It is estimated numerically as follows:

• Calculate the maximum power in healthy condition PH
mpp by using the single diode

model and healthy parameters (pH).
• For k ∈ [1, 5], do the following:

– Replace the parameter pH(k) with the corresponding degraded values pdeg(k)
– Estimate the maximum power Pk

mpp by still using the SDM.

– Calculate the ∆P(k)mpp,% =
Pk

mpp−PH
mpp

PH
mpp

· 100

The percentage error evaluation allows to appreciate rapidly the ANN capability to
detect the degradation on each SDM parameter and the related impact on the Pmpp.
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Figure 13. ANN identification of degraded curve with −5% of variation on Iph for two different
irradiance and temperature conditions.

Table 5. SDM parameters estimated with ANN for I-V curves of Figure 13.

Applied Degradation: Ideg
ph = 0.95Iph (−5%)

G [ W
m2 ] T [◦C] Iph [A] Isat [µA] η [-] Rs [Ω] Rsh [Ω]

695 49

pH 3.476 0.996 1.296 0.242 490
pdeg 3.297 0.900 1.284 0.255 277
∆p% −5.13 −9.6 −0.92 5.4 −43.5

∆Pmpp,% 0.9 −5.37 0.85 −0.96 −0.26 −0.77

955 53

pH 4.782 0.1562 1.296 0.247 466
pdeg 4.526 0.1480 1.295 0.238 356
∆p% −5.36 −5.3 −0.04 -3.8 −23.6

∆Pmpp,% 0.9 −5.47 0.39 −0.08 0.22 −0.27
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Figure 14. ANN identification of degraded curve with 200% of variation on Isat for two different
irradiance and temperature conditions.
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Table 6. SDM parameters estimated with ANN for I-V curves of Figure 14.

Applied Degradation: Ideg
sat = 3Isat (200%)

G [ W
m2 ] T [◦C] Iph [A] Isat [µA] η [-] Rs [Ω] Rsh [Ω]

1020 55

pH 5.083 2.001 1.300 0.248 491
pdeg 5.090 5.730 1.256 0.254 511
∆p% 0.13 186 −3.39 2.4 4.0

∆Pmpp,% 0.9 0.14 −9.13 −3.62 −0.19 0.03

435 42

pH 2.150 0.645 1.328 0.224 520
pdeg 2.175 1.882 1.288 0.229 559
∆p% 1.16 192 -3.02 2.1 7.4

∆Pmpp,% 0.9 1.25 −8.68 −3.05 −0.07 0.11
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Figure 15. ANN identification of degraded curve with −3% of variation on η for two different
irradiance and temperature conditions.

Table 7. SDM parameters estimated with ANN for I-V curves of Figure 15.

Applied Degradation: ηdeg = 0.96η (−4%)

G [ W
m2 ] T [◦C] Iph[A] Isat [µA] η [-] Rs [Ω] Rsh [Ω]

445 31

pH 2.194 0.204 1.331 0.219 496
pdeg 2.192 0.222 1.290 0.252 538
∆p% −0.07 8.8 −3.06 15.0 8.4

∆Pmpp,% 0.9 −0.1 −0.63 −3.1 −0.37 0.14

865 41

pH 4.311 0.445 1.296 0.240 449
pdeg 4.283 0.432 1.239 0.243 446
∆p% −0.67 −2.8 −4.41 0.85 −0.6

∆Pmpp,% 0.9 −0.67 0.23 −4.61 −0.07 −0.01
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Figure 16. ANN identification of degraded curve with 70% of variation on Rs for two different
irradiance and temperature conditions.

Table 8. SDM parameters estimated with ANN for I-V curves of Figure 16.

Applied Degradation: Rdeg
s = 1.7Rs (+70%)

G [ W
m2 ] T [◦C] Iph[A] Isat [µA] η [-] Rs [Ω] Rsh [Ω]

755 51

pH 3.791 1.195 1.293 0.244 490
pdeg 3.834 1.377 1.295 0.390 446
∆p% 1.16 15.2 0.175 59.6 −8.9

∆Pmpp,% 0.9 1.18 −1.19 0.16 −3.24 −0.09

795 26

pH 3.907 0.094 1.305 0.232 511
pdeg 3.963 0.090 1.294 0.367 449
∆p% 1.44 −4.0 −0.84 58.6 −12.2

∆Pmpp,% 0.9 1.48 0.31 −0.87 −2.58 −0.14

By analyzing the results shown in Tables 5–9, in particular ∆p%, it is evident that the
ANN allows to associate, with a good approximation, the degradation effect introduced
on the I-V curve to the corresponding SDM parameter. Nevertheless, in some cases, the
results of ANN parameters identification are not completely satisfactory. For instance, in
the first example of Table 5, the ANN estimates a −43.5% reduction in Rsh, which does
not correspond to a real degradation of such a parameter. The wrong estimation of Rsh,
which may occur also for the other SDM parameters, is due to the intrinsic nature of the
ANN to provide generalized results when the input data change. Moreover, since the I-V
curve sensitivity with respect to some parameters is very low, errors on the estimation of
these parameters are more likely and more frequent. The results can be improved if the
proposed procedure is repeated and the parameters degradation is detected by considering
their average values. Some examples are reported in the following section.
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Table 9. SDM parameters estimated with ANN for I-V curves of Figure 17.

Applied Degradation: Rdeg
sh = 0.2Rsh (−80%)

G [ W
m2 ] T [◦C] Iph[A] Isat [µA] η [-] Rs [Ω] Rsh [Ω]

835 44

pH 4.165 0.615 1.297 0.240 454
pdeg 4.170 0.614 1.304 0.247 107
∆p% 0.12 −0.1 0.55 2.7 −76.4

∆Pmpp,% 0.9 0.12 0.013 0.57 −0.16 −3.04

1000 53

pH 5.023 1.670 1.301 0.246 493
pdeg 5.051 1.791 1.298 0.243 191
∆p% 0.56 7.3 −0.18 −1.1 −61.2

∆Pmpp,% 0.9 0.57 −0.6 −0.24 0.09 −1.06
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Figure 17. ANN identification of degraded curve with −80% of variation on Rsh for two different
irradiance and temperature conditions.

7.1. Improving the ANN Results with Repeated Tests

By assuming that a degradation phenomenon is occurring permanently, the ANN
parameters identification method can be executed frequently (e.g., more than one time
per day) without affecting the normal operation of the PV system, and the ∆p% can be
estimated for all cases. Since the effective degradation of the PV panel is not related to the
changes in the environmental conditions, the average values of ∆p% are considered for
all tests collected in a short period (e.g., one day). Table 10 shows the average percentage
variation of the SDM parameters estimated with the ANN when the process described
in the previous section is repeated for a number of trials Ntest = 100 selected randomly
among different environmental conditions. Each row in the table refers to the parameters
variation reported in the first column. For example, for the first row, a −4% of induced
degradation on Iph is estimated, on average, with −3.73%.

It worth noting that some residual cross-coupled variations appear in the estimation
of the other parameters. Nevertheless, if we take into account the different sensitivities of
the I-V curve with respect to each parameter, these crossed variations can be acceptable.
Indeed by considering the sensitivity values reported in (4) and by referring to the first
row of Table 10, the −3.73% reduction in Iph is reflected in the reduction of 3.76% in the
delivered power, while a −22.3% of variation in Rsh corresponds to 0.69% power reduction.

Another small anomaly is in the second row where the identification of the variation
of the saturation current is not detected accurately (+103%) with respect to the induced
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degradation of +150% on Isat. In this case, part of the induced degradation on Isat is
translated in a variation of η. This can be easily justified by the fact that variations on Isat
and on η parameters produce the same deformation on the I-V curve (see S2 and S3 effects
in Figure 2); thus, for the ANN, it is more difficult to detect the origin of degradation when
they produce similar deformations on the I-V curve.

Finally, the last row indicates the average errors on the estimated SDM parameters
when no degradation is applied. Here, it is evident that in the presence of healthy curves,
the estimation of the SDM parameters variation tends toward small values, confirming that
no degradation is occurring.

Table 10. Average of SDM parameters variation (in %) estimated with ANN.

Degradation Factor Estimated Param. Variation

∆Iph,% ∆Isat,% ∆η% ∆Rs,% ∆Rsh,%

Ideg
ph = 0.96Iph (−4%)

−3.73 −0.9 0.09 10.5 −22.3
(1.52) (8.8) (0.68) (13.7) (20.4)

Ideg
sat = 2.5Isat (+150%)

0.57 103.0 −2.96 14.0 0.7
(1.39) (25.2) (0.63) (16.0) (3.8)

ηdeg = 0.97η (−3%)
−0.29 2.8 −3.30 4.8 0.1
(1.74) (8.0) (0.77) (10.6) (5.3)

Rdeg
s = 1.7Rs (+70%)

0.64 10.1 −0.12 61.1 −3.0
(1.18) (8.3) (0.58) (13.3) (7.4)

Rdeg
sh = 0.2Rsh (−80%)

0.06 5.9 0.30 10.4 −64.9
(0.85) (8.0) (0.54) (15.7) (13.7)

without deg. −0.87 −3.3 −0.76 −2.2 2.3
(1.62) (6.2) (0.44) (15.4) (11.1)

7.2. Comparison with Other ANN Solutions

In Table 11, the main characteristics of the proposed ANN architecture are compared
with other ANN solutions proposed in recent years—this is briefly commented on in the
introduction section. The table includes only the methods suitable for the online diagnosis
and faults detection of PV sources.

The comparison is made in terms of the ANN architecture, inputs required during
online operation, data for the training phase (usually performed in the offline mode), and
PV granularity, which means the level of applicability of the method (panel-, string- or
array-levels). The different types of detected faults and the level of complexity, which could
have a significant impact on the embedded system implementation, are also included in
the comparison.

It is worth noting that the solution described in [13] uses two independent ANNs,
similar to the approach developed in this manuscript, but the ANNs architecture and the
type of detected faults are completely different. The other methods are mainly devoted to
string or array diagnosis; thus, they are not suitable for detecting degradation in a single
PV panel.

The comparison also put into evidence that the selection of the appropriate method
strongly depends on the size of the PV source and on what types of faults must be detected.
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Table 11. ANN techniques for PV diagnosis and faults identification.

Ref. ANN Structure Inputs Data for the PV Detected Faults ComplexityTraining Phase Granularity

[9]
MLP-ANN or Vmpp, Impp, simulated

PV string
shadow, cell in open circuit, Medium

RBF-ANN Voc I-V curves shunted bypass diode,
in faulty conditions short circuit

[10] KELM + SLFN
Vmpp, Impp, experimental and PV string, partial shading, High

Voc, Isc, η,Rs simulated I-V curves in PV array string degradation,
healthy and faulty operation short circuit, open circuit

[11] RBF-ANN
PV power, long-term measure

PV array
PV panel disconnection, Low

irradiance of PV production, partial shading
irradiance

[34]
Deep Learnig down sampled simulated or

PV array
Rs degradation, High

ANN I-V curves, experimental partial shading,
G, T I-V curves short circuit, open circuit

[12] PNN
per unit values of simulated and

PV array
Rs degradation, High

Vmpp, Impp experimental partial shading,
Voc, Isc I-V curves short circuit, open circuit

[13] 2 PNN
irradiance, experimental large number of Medium

array’s temperature healthy I-V curves, PV array short-circuited panels
Vmpp,Impp simulated I-V curves

in faulty conditions

2 MLP-ANN

3 points Datasheet curves or

PV panel

panel degradation, Low
Proposed around MPP, healthy I-V curves, partial shading,
method irradiance simulated I-V curves hot spots,

panel temperature in degraded conditions by-pass diode failure
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8. ANN Results with Experimental Degraded I-V Curves

The developed method is also tested with experimental I-V curves, where the series
resistance degradation is applied by connecting in series to the PV module a small resistance
of value (∆Rs).

The experimental data refer to a Isofotón I-53 PV module installed on the roof of the
Department of Applied Physics II at the University of Málaga (latitude: 36.715◦ N ; longitude:
4.478◦ W; elevation: 60 m). The main data are summarized in Table 12. The measurement
equipment acquires simultaneously the I-V curves, the in-plane irradiance (G) and the PV
module temperature (T).

Figure 18 shows the effect of the induced Rs degradation on the I-V curves under the
same environmental conditions. We assume that the acquired I-V curves with ∆Rs = 0
correspond to the healthy conditions. The red points on the curves are the only values
passed to the ANN together with G and T for estimating the degraded SDM parameters.

Table 12. Isofotón I-53 main specifications.

Parameter Symbol Value

Maximum Output Power at STC [W] Pmpp 53
Voltage at Maximum Power [V] Vmpp 17.4
Current at Maximum Power [A] Impp 3.05
Short Circuit Current at STC [A] ISC 3.27
Open Circuit Voltage at STC [V] VOC 21.6

ISC temperature coefficient [A K−1] α 0.001326
VOC temperature coefficient [V K−1] β −0.07704

Number of Cells in series Ns 36
Cell Type sc-Si mono

Cell Area (cm2) Ac 104.4
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Figure 18. Experimental I-V curves with added series resistance for the same environmental conditions.

The ANN is trained only by using the healthy I-V curves in combination with the
single-diode model for emulating the degraded curves, as described in the flowchart of
Figure 3.

The experimental degraded curves are obtained with ∆Rs = 300 mΩ, ∆Rs = 1 Ω and
∆Rs = 1.5 Ω. For the healthy conditions, Rs = 364 mΩ; thus, the induced degradation is
82%, 274%, and 412%, respectively. The SDM parameters variations estimated with the
proposed ANN architecture are reported in Figure 19 for different irradiance conditions.
In that figure, the Rs parameter shows a trend that is in agreement with the expected
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values. The saturation current is slightly changing only at high irradiance, and thus, cannot
be associated to a permanent degradation effect; the other parameters do not exhibit a
significant variation with respect to the values estimated for healthy conditions. It is worth
noting that the variation of Isat for high irradiance values, that is, not associated to a real
degradation effect, could be due to the limited dataset used to train the ANN. Indeed,
only 75 healthy experimental I-V curves are available for this experimental example, and
they are not enough to cover all the operating conditions. An exhaustive experimental
campaign should be executed that could lead to further improvement of the performance of
the proposed method. Nevertheless, also for this reduced dataset, the proposed approach
is able to isolate the main degradation effects by using the SDM parameters estimation as
indicators of possible faults that could occur in the PV modules.
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Figure 19. ANN identification of series resistance for different induced degradation effect and for
different environmental conditions.

9. Conclusions

In this paper, the MLP artificial neural network is used for isolating faults and degra-
dation phenomena affecting photovoltaic panels. The parameters of the single diode model
are used as indicators of the main degradation phenomena. The SDM parameters are
strongly different from panel to panel and depend on the environmental conditions, PV
technology and manufacturing process. To identify the PV degradation through the SDM
parameters, the proposed method exploits two independent MLP-ANN architectures. The
first one is trained to estimate the SDM parameters of the healthy PV panel for the measured
environmental conditions. Since only G and T are the inputs for this MLP-ANN, it is able
to reproduce the non-linear relations existing among the SDM parameters of the healthy
PV panel and the environmental conditions. The second MLP is trained to estimate the
SDM parameters of the PV panel in the presence of degradation phenomena affecting the
I-V curve for the measured environmental conditions. This second MLP-ANN requires as
inputs G, T and three points of the I-V curve measured close to the MPP; thus, it estimates
the SDM parameters, including the environmental and degradation effects. To isolate the
degradation effect, the difference among the two MLP-ANNs is used.
The main benefits of the proposed solution are as follows:

• Simple ANN architectures that allows easy implementation on an embedded system.
• The ANN training process requires only experimental healthy I-V curves.
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• Does not require the complete I-V scan during the online operation since the ANN
accepts as input only three experimental points measured around the MPP.

The method is validated with simulation and experimental results showing a good
agreement between induced and estimated degradation. In line with the recent expansion
of IoT technologies for PV monitoring, the proposed approach represents a useful and
relevant AI-based diagnosis tool that can be used to optimize operation and maintenance
activities as well as enhance decision-making processes, thereby facilitating the integration
of PV systems in smart grids.
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