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Abstract: In this work, a new version of the Harmony Search algorithm for solving multi-objective
optimization problems is proposed, MOHSg, with pitch adjustment using genotype. The main
contribution consists of adjusting the pitch using the crowding distance by genotype; that is, the
distancing in the search space. This adjustment automatically regulates the exploration–exploitation
balance of the algorithm, based on the distribution of the harmonies in the search space during the
formation of Pareto fronts. Therefore, MOHSg only requires the presetting of the harmony memory
accepting rate and pitch adjustment rate for its operation, avoiding the use of a static bandwidth or
dynamic parameters. MOHSg was tested through the execution of diverse test functions, and it was
able to produce results similar or better than those generated by algorithms that constitute search
variants of harmonies, representative of the state-of-the-art in multi-objective optimization with HS.

Keywords: Harmony Search; metaheuristics; multi-objective optimization; crowding

1. Introduction

Most real engineering problems are multi-objective in nature, since commonly they
present several objective functions to be optimized that are compromised with each other,
that is, the improvement of one produces the deterioration of another. Therefore, with-
out a function priority, a unique solution cannot be determined as in a single objective
optimization. Instead, multi-objective optimization seeks to obtain the best compromises.
The best compromised solutions are known as non-dominated and form the Pareto-optimal
front [1].

Harmony Search (HS) is a metaheuristic algorithm developed by Geem et al. [2],
emulating musical improvisation. It was proposed as a mono-objective algorithm and has
been successfully applied in practical and scientific problems [3–6]. HS integrates three
resources for the quantitative optimization process: use of a harmonic memory (HM),
pitch adjustment, and randomization [7]. The implementation of multi-objective HS is a
growing trend in scientific research, and its use for solving highly complex problems is
considered a future challenge [8]. The first multi-objective cases solved by HS [9–11] were
engineering problems treated with the weighting function method. In [11,12], the authors
began to handle the Pareto front term, without explicitly establishing a multi-objective HS
algorithm. In [13], Xu et al. developed for the first time a multi-objective HS to generate
a Pareto-optimal front of five points for a robotics model. Ricart et al. [14] established
two formal multi-objective proposals known as MOHS1 and MOHS2. Both of them are
very similar to the single objective form of HS but with a fundamental difference in the
ranking of the harmonies. Sivasubramani et al. [15] presented a proposal similar to MOHS2
(denominated as MOHS3 in this paper) that incorporates the crowding distancing and
dynamic pitch adjustment proposed by Mahdavi et al. [16]. Nekooei et al. [17] developed a
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multi-objective memetic algorithm by combining HS and PSO. However, it greatly differs
from the original structure of HS.

In its original structure, HS is very effective at identifying promising areas in the
solution space (exploration) but presents difficulties in carrying out refined searches (ex-
ploitation). For this reason, it is required to improve the balance between exploration and
exploitation. There are two trends in this sense [18]. The first one is based on the synergistic
combination of HS with other metaheuristic algorithms. In [19–21], PSO is applied to give
a social component to the pitch adjustment. In [22,23], the authors proposed hybrid algo-
rithms to improve the exploitation in HS by combining it with Artificial Bee Colony (ABC)
and Stochastic Hill Climbing. However, these alternatives are often disruptive to the con-
ceptual essence of HS. The second stream focuses on improving the pitch adjustment [24,25].
In [26], pitch adjustments with fixed parameters are proposed, using bandwidths that are
proportional to the range of each variable. On the other hand, in [7,16,27], the authors
propose the use of dynamic parameters to intensify exploitation as the algorithm execution
advances. Gupta [28] proposed an HS variant using non-lineal dynamic parameters with a
Gaussian distribution for the Harmony Memory Accepting Rate (HMCR) and bandwidth
with a social component. In the case of multi-objective HS, the conventional mono-objective
pitch and the dynamic pitch adjustments of Mahdavi et al. [16] have barely been imple-
mented, both based on their effectiveness for single-objective problems. However, Pareto
fronts can be generated for different dispersion degrees of the search space, also known as
decision space [29]. Currently, most multi-objective HS proposals present a lack of analysis
of the behavior of harmonies in the search space during the formation of Pareto fronts.

In this paper, the Multi-Objective HS algorithm MOHSg is proposed. The main contri-
bution consists in the pitch adjustment using the crowding distance by genotype, that is,
the distancing in the search space. This adjustment automatically regulates the exploration–
exploitation balance of the algorithm, based on the distribution of the harmonies in the
search space during the formation of Pareto fronts. Therefore, MOHSg only requires the
presetting of the HMCR and the Pitch Adjustment Rate (PAR) for its operation, avoiding
the use of the static bandwidth parameter required by the MOHS2 variant, and the dy-
namic parameters of bandwidth and PAR needed in MOHS3. The proposed algorithm was
evaluated with a set of well-known test functions, generating similar or better results than
those obtained by the MOHS2 and MOHS3 algorithms. The work is structured as follows:
Section 2 presents the pitch adjustment variants reported in the literature, the rankings
necessary for the multi-objective approach with a Pareto-optimal front, and the algorithms
MOHS2 and MOHS3, while the crowding distancing by genotype and the pitch adjustment
are described in Section 3. The proposed MOHSg algorithm is detailed in Section 4, and in
Section 5, the experimentation and discussion of the results are carried out. Section 6
corresponds to the final discussion of the work, and Appendix A presents the test functions
applied for the algorithm evaluation.

2. Non-Disruptive Multi-Objective HS Algorithms

The objective of this section is to present the MOHS2 and MOHS3 algorithms since
they are representative alternatives for multi-objective HS. These algorithms will be used
in a comparative analysis with the new MOHSg proposal, since in all cases the original
conception of HS is preserved (non-disruptive algorithms), and the differences lie entirely
in the pitch adjustment. First, it is necessary to review the pitch adjustment variants
reported in the literature and their impact on the multi-objective approach, as well as the
description of the ranking that is required for the Pareto-optimal front.
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2.1. Pitch Adjustment Variants

Several pitch adjustment techniques have been proposed for HS [20]. In the original
version, the pitch adjustment for a new variable xi that belongs to a solution vector ~x =
(x1x2x3. . . xM) with M design variables is given by expression (1):

xi =

{
HM(r, i) + rand(−1, 1)× bw, probability (PAR)
HM(r, i), probability (1− PAR)

(1)

where N is the number of harmonies; r is a random integer from 1 to N; rand(−1, 1) is
a random number generated between −1 and 1; bw is the bandwidth; and PAR is the
pitch adjustment rate. PAR and bw are preset to fixed values. This scheme is used by
Ricart et al. [14] in the MOHS2 algorithm, where diverse problems are solved with fixed
values for PAR and bw that are proportional to the range of each variable.

Tuo et al. [26] proposed one of the most used pitch adjustment methods with fixed
parameters, with a fixed value of PAR, and a value of bw for each variable given by
Equation (2), where Lb and Ub are the lower and upper limits of the specific variable,
respectively:

bw =
(Ub − Lb)

1000
(2)

Mahdavi et al. [16] presented an improvement to HS through the linear increase of PAR
and the exponential decrease of bw in every iteration, as shown in Equations (3) and (4)
where PARmin and PARmax are the minimum and maximum values of PAR, respectively;
g is the current iteration; NI is the total number of iterations; and bwmax and bwmin are the
maximum and minimum bandwidth, respectively. This encourages exploration in the early
iterations of the algorithm and the subsequent intensification of exploitation. This scheme
was applied by Sivasubramani et al. [15] to the development of the MOHS3.

PAR(g) = PARmin + (PARmax − PARmin)×
g

NI
(3)

bw(g) = bwmax × exp
[

ln
(

bwmin
bwmax

)
× g

NI

]
(4)

Portilla-Flores et al. [7] proposed a fixed PAR, and a bw that decreases exponentially
depending on the range of each variable, as shown in Equation (5), where a is a positive
constant in the range from 0 to 1. It generates a bw value for each variable, eliminating the
parameters required in [16].

bw =
(Ub − Lb)

ga (5)

In [27], Wuang and Huang presented a pitch adjustment with decreasing PAR, PARmin
set to 0 and PARmax set to 1, as calculated in Equation (6). The pitch adjustment for xi is
given by expression Equation (7). The self-adaptive bandwidth bw is based on harmonic
memory awareness, that is, depends on the extreme values of HM , where min(HM)i and
max(HM)i are the minimum and maximum values of the ith variable in HM, respectively.
Thus, the selection of PAR and bw values is eliminated.

PAR(g) = PARmax − (PARmax − PARmin)×
g

NI
(6)

xi =


HM(r, i) + (max(HM)i − HM(r, i))× rand(0, 1), probability (0.5× PAR)
HM(r, i) + (min(HM)i − HM(r, i))× rand(0, 1), probability (0.5× PAR)
HM(r, i), probability (1− PAR)

(7)
Omran and Mahdavi, inspired by PSO, proposed the random selection of variables

from the best HM vector for the pitch adjustment, eliminating the bw parameter and
adding a social dimension to the algorithm [19]. This is indicated in Equation (8), where
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xbest
k is a random variable of the best solution vector. PAR grows linearly, as shown in

Equation (3).

xi =

{
xbest

k , probability (PAR)
HM(r, i), probability (1− PAR)

(8)

As can be seen, only two proposals for pitch adjustment have been brought to the multi-
objective extensions of HS. In the case of the fixed pitch adjustment proposal, it is evident
that both in single-objective and multi-objective optimization it has the disadvantage of
an immobile exploration–exploitation balance during the entire execution. The proposals
for pitch adjustment with dynamic bandwidth are based on the fact that as iterations pass,
promising areas will be formed, and the exploitation will be more important. However,
in the case of multi-objective problems, this behavior does not necessarily occur. Therefore,
a proposal for pitch adjustment based on the real harmony distribution in the search space
is required, such as the pitch adjustment by genotype.

2.2. Ranking

The main difference between the mono-objective HS and the multi-objective proposals
is the ranking of harmonies. In mono-objective problems, the ranking of solutions by
their quality is based on the objective function. However, there is a number of ranking
strategies to impulse the generation of higher-quality Pareto fronts for multi-objective
problems [30]. MOHS2 uses a non-dominated ranking, while MOSH3 and the proposed
MOSHg algorithm apply the ranking presented by Deb et al. [31], which consists in:

1. Non-dominated ranking.
2. Ranking based on crowding distance by phenotype.

The non-dominated ranking classifies the solutions depending on their level of domi-
nance, while the ranking by crowding is used as a second criteria for a second-level ranking
related to the overcrowding of the solutions.

2.2.1. Non-Dominated Ranking

Given two solutions x1 and x2, x1 dominates x2 if and only if x1 is not worse than
x2 for every objective function, and x1 is strictly better than x2 at least in one objective
function. For the minimization case, it is equivalent to:

fi(x1) ≤ fi(x2), i = 1, . . . N

fi(x1) < fi(x2), f or some i ∈ [1, . . . N]

where N is the number of variables in a harmony.
If x2 is not dominated by x1 and x1 is not dominated by x2, then the solutions are

non-dominated by each other. The number of times that a solution xi is dominated by other
solutions corresponds to its dominance level. The different dominance level can be obtained
by a non-dominated ranking, that is, the different Pareto fronts of each solution [31–33].

Algorithm 1 presents the non-dominated ranking of HM. As can be seen, the domi-
nance levels of each solution are saved in vector Front, and the non-dominated elements
have a Front value of 1 (optimal Pareto front).
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Algorithm 1 Non-dominated ranking of HM
1 set N as number of harmonies;
2 Front = ones(N, 1) vector of length N initialized with 1’s;
3 for i← 1 to N do
4 for j← 1 to N + 1 do
5 if HM(j, :) ≺ HM(i, :) then
6 Front(i) = Front(i) + 1; /* where ≺ denotes dominance
7 else
8 if HM(i, :) ≺ HM(j, :) then
9 Front(j) = Front(j) + 1;

2.2.2. Crowding Distance by Phenotype

The crowding distance provides an estimate of the density of solutions surrounding
a solution. It is used in multi-objective optimization to increase diversity, giving priority
to the most dispersed solutions (with the highest crowding value). In other words, it
encourages exploration in sparsely populated areas. It constitutes a second criterion for
the ranking, since it ranks the solutions of the same front decreasingly with respect to
the crowding distance. When this distance works in the space of the objective functions,
it stimulates dispersion on the Pareto fronts, and is known in the field of bio-inspired
algorithms as phenotype crowding [29,34]. It is expressed in Equation (9), where No f is
the number of objective functions; f j+1

i and f j−1
i are the neighbor points (posterior and

previous, respectively) of the analyzed point f (j)
i with j = 2, . . . , (N − 1); fimax and fimin

are the maximum and minimum values of the ith objective function, respectively.

Cr =
No f

∑
i=1

(
f j+1
i − f j−1

i
fimax− fimin

)
(9)

Algorithm 2 corresponds to the crowding distance by phenotype, where Cr is the
vector of crowding distancing, In is the position index of the ranked objective-function
vector, No f is the number of objective functions, and Fo is the matrix of values of the
objective functions. Note that the crowding distance operates between solutions of the
same Pareto front, that is, the crowding of the solutions of the first front only takes into
account the solutions of the first front, and so on. The extreme solutions of each front will
be infinite crowding values.

Algorithm 2 Crowding distance by phenotype
1 set Nrank as number of fronts;
2 Cr = zeros(N, 1) vector of length N initialized with 0’s;
3 for v← 1 to Nrank do
4 Nv = sum(Front == v); /*number of solutions of front v
5 Frv = (Front == v) ; /*index vector of front v
6 Cr = zeros(Nv, 1); /*crowding values of front v;
7 for j← 1 to No f do
8 Fov = Fo(Frv, j) ;
9 Fov = Fov/(max(Fov)−min(Fov); /*normalization

10 In = sort(Fov); /*determination of neighboring points;
11 Crv(In(1)) = Cr− v(In(end)) = ∞; /*extreme values;
12 for k← 2 to N − 1 do
13 Crv(In(k)) = Crv(In(k)) + Fov(In(k + 1))− Fov(In(k− 1));

14 Cr(Frv) = Crv

2.3. MOHS2 and MOHS3 Algorithms

The MOHS2 and MOHS3 variants retain the original conception of the HS algorithm.
Both alternatives were developed in a multi-objective way through the rankings described
in the previous section. Both algorithms generate a random harmonic memory HM1 in the
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first iteration, and by means of this memory usage, pitch adjustment and randomization
operators, they generate a new harmonic memory HM2, with the same dimensions as the
initial one. Both memories form an extended matrix HM1−2 that is ranked and truncated
in half to form the HM1 for the next iteration.

Algorithm 3 corresponds to MOHS2 [14]. Steps 1–4 constitute the initialization of the
algorithm. The main cycle cover steps 5–14, where the new harmonic memory HM2 is
generated. Although MOHS2 uses only non-dominated ranking, in this work, the ranking
proposed by Deb et al. [31] (step 15) is applied, because of the improvements experienced by
the conformation of the fronts with the crowding distancing criterion. Finally, the harmonic
memory HM1 of the next iteration is formed in step 16.

Algorithm 3 MOHS2
1 define objective functions;
2 define HMCR, PAR, f w; /* fw: proportion parameter of bandwidth
3 generate randomly initial HM1;
4 evaluate the objective functions with HM;
5 while g < max number of iterations do
6 while i <= N do
7 if rand < HMCR then
8 r = rand(1, k) ;
9 if rand < PAR then

10 bw = (Ubi − Lbi)× f w/100;
11 new X(i) = HM(r, i) + rand(−1, 1)× bw(r, i);
12 else
13 new X(i) = HM(r, i)

14 else
15 new X(i) = rand(Lbi , Ubi)

16 rank according to Deb et al. [31] to H1−2 = HM1 ∪ HM2 ;
17 truncate H and assign to HM1

The MOHS3 pseudo-code [15] is shown in Algorithm 4. Steps 1–4 constitute its
initialization (note that MOHS3 uses dynamic parameters in pitch adjustment according to
Mahdavi et al. [16]). The main cycle cover steps 5–17, where the new harmonic memory
HM2 is generated. As mentioned before, the criterion of Deb is used to rank HM1−2 in
step 18. Finally, the harmonic memory HM1 of the next iteration is formed in step 19.

Algorithm 4 MOHS3
1 define objective functions;
2 define HMCR, PARmin, PARmax , bwmin, bwmax ;
3 generate randomly initial HM1;
4 evaluate the objective functions with HM ;
5 while g ≤ max number of iterations do
6 PAR = PARmin + (PARmax − PARmin)× g/NI ;
7 bw = bwmax × exp(ln(bwmin/bwmax)× g/NI) ;
8 while H2 is not complete do
9 while i ≤ N do

10 if rand < HMCR then
11 r = rand(1, k) ;
12 if rand < PAR then
13 new X(i) = HM(r, i) + rand(−1, 1)× bw(r, i);
14 else
15 new X(i) = HM(r, i)

16 else
17 new X(i) = rand(Lbi , Ubi)

18 rank according to Deb et al. [31] to H1−2 = HM1 ∪ HM2 ;
19 truncate H and assign to HM1
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3. Proposed Pitch Adjustment by Genotype

The proposed pitch adjustment is inspired by genotype crowding distancing, which is
also used in multi-objective optimization. These two operations are described below.

3.1. Crowding Distance by Genotype

When the crowding distance operates in the space of the decision variables, it encour-
ages dispersion in the search space. In the field of bio-inspired algorithms, this operation is
known as genotype crowding [29,34], and is expressed in Equation (10); where M is the
number of variables; xj+1

i and xj−1
i are the neighboring points (after and before, respec-

tively) of the point that is analyzed, xj
i , for j = 2, . . . , (N − 1); ximin and ximax are the

minimums and maximums of the variable ith of the HM.

Cr =
M

∑
i=1

(
xj+1

i − xj−1
i

ximax− ximin

)
(10)

It is important to note that the proximity of two solutions on the objective space does
not necessarily imply proximity in the search space, as shown in Figure 1. Pareto fronts can
be generated for different dispersion degrees of the search space. In [29], a deep analysis of
multi-objective problems solved by NSGA with crowding by genotype and phenotype can
be found.

x2

x1

f2

f1

Decision space Objetive space

Figure 1. An example with two neighboring solutions in the front that are distant from each other in
the search space.

The crowding distance by genotype is determined in a very similar way to the crowd-
ing by phenotype previously exposed, with the difference that it is calculated between
the variables, as described in Algorithm 5. The number of objective functions No f was
substituted by the number of variables M in step 7, while in steps 8–10 and 13, the matrix
of objective functions was replaced by HM.

Algorithm 5 Crowding distance by genotype
1 set Nrank as number of fronts;
2 Cr = zeros(N, 1) vector of length N initialized with 0’s;
3 for v← 1 to Nrank do
4 Nv = sum(Front == v); /*number of solutions of front v
5 Frv = (Front == v) ; /*index vector of front v
6 Cr = zeros(Nv, 1); /*crowding values of front v;
7 for j← 1 to M do
8 HMv = HM(Frv, j) ;
9 HMv = HMv/(max(HMv)−min(HMv); /*normalization

10 In = sort(HMv); /*determination of neighboring points;
11 Crv(In(1)) = Cr− v(In(end)) = ∞; /*extreme values;
12 for k← 2 to N − 1 do
13 Crv(In(k)) = Crv(In(k)) + HMv(In(k + 1))− HMv(In(k− 1));

14 Cr(Frv) = Crv
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3.2. Pitch Adjustment by Genotype

According to the previous subsection, the Pareto-optimal front can be reflected in
the search space both by dispersed solutions and by close solutions that form promising
areas. This can be determined by means of crowding distance by genotype, opening two
possibilities:

1. Intensify exploitation as the algorithm advances, but this time depending on the
conformation of promising areas.

2. Maintain higher exploration in dispersed solutions and higher exploitation in promis-
ing areas, with the objective of achieving a better balance of the algorithm, based on
the behavior of HM during the formation of the Pareto-optimal front.

Therefore, a pitch adjustment based on the crowding distance by genotype is proposed
as established in expression (11), where bw is obtained from Equation (12):

xi =

{
HM(r, i) + rand(−1, 1)× bw(r, i), probability (PAR)
HM(r, i), probability (1− PAR)

(11)

bw(r, i) =
xj+1

i − xj−1
i

2
(12)

For the upper and lower extremes of each front, bw is given by Equations (13) and (14),
respectively:

bw(r, i) = xi − xj−1
i (13)

bw(r, i) = xj+1
i − xi (14)

Since the bandwidth bw(r, i) is the crowding distance component of the variable xi for
the solution vector in the position r, Equation (12) includes no summation operator. That is,
xi may vary by adjusting the pitch up to a range equal to the distance from the neighboring
points. An example considering an HM with four harmonies is shown in expression
(15), where a non-dominated ranking was performed and harmonies 1,2,4 turned out to be
non-dominated (Front 1) while harmony 3 was dominated only once (Front 2):

HM =


9 7 1
3 1 9
6 2 4
2 5 8


→ Harmony 1 (Front 1)
→ Harmony 2 (Front 1)
→ Harmony 3 (Front 2)
→ Harmony 4 (Front 1)

(15)

Suppose that a variable x2 in the new harmony is created by pitch adjustment, and the
parameter r is randomly generated with a value 4. The substitution of these values in
expression (11) produces Equation (16), for calculating x2:

x2 = HM(4, 2) + rand(−1, 1)× bw(4, 2) (16)

Vector 4 is a part of Front 1. Since the analyzed variable is xj
2 = HM(4, 2) = 5, the neigh-

boring points are 7 and 1, from harmonies 1 and 2, respectively. Equations (17) and (18) are
generated by substituting these values in Equations (12) and (16). Note that solution vector 3 is
not considered because it belongs to Front 2.

bw(4, 2) =
(xj+1

2 − xj−1
2 )

2
=

(7− 1)
2

(17)

x2 = 5 + rand(−1, 1)× 3 (18)

4. Proposed HS (MOHSg)

The effectiveness of metaheuristic algorithms is driven by two fundamental compo-
nents: exploration and exploitation. The proper balance between these two components
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greatly influences the algorithm efficiency. Highly exploit-focused algorithms explore only
a fraction of the search space and tend to become stuck in the local optimum. On the other
hand, highly scan-focused algorithms converge very slowly, and the solution time can be
very long.

HS proposals with a fixed exploration–exploitation balance are unable to adjust their
behavior as required by the problem. On the other hand, the proposals with variable
parameters do not contemplate the distribution of solutions in the search space, which,
as seen above, can have different configurations for the formation of the Pareto-optimal
front. Instead, the proposal presented in this paper is capable of balancing the exploration
and exploitation by adjusting the pitch, based on the distribution of the solutions in the
search space. Therefore, it does not require parameters such as the static bandwidth used
in MOHS2, nor dynamic parameters such as those required by MOHS3.

Description

The main differences between MOHSg (described by Algorithm 6) and the original
mono-objective HS version lie in the HM ranking and in the pitch adjustment operation by
genotype. The algorithm requires the presetting of the harmonic memory consideration
HMCR and pitch adjustment PAR parameters. The execution starts generating a random
initial harmonic memory HM1. For each iteration, a new harmonic memory HM2 is
generated with the same dimensions as the initial one and is made up variable by variable
applying the memory usage operators, pitch adjustment by genotype and randomization.
Both memories are combined to form an extended matrix HM1−2 that is ranked according
to the ranking criteria of Deb et al. [31]. Finally, the ranked matrix is truncated in half to
form the HM1 of the next iteration.

Algorithm 6 Proposed algorithm MOHSg
1 define objective functions;
2 define HMCR, PAR;
3 generate randomly an initial HM1;
4 evaluate the objective functions with HM1 ;
5 rank HM1 according to Deb et al. [31] ;
6 generate bw by Cr, applying the crowding with genotype described in Algorithm 5;
7 while g ≤ max number of iterations do
8 while H2 is not complete do
9 while i ≤ N do

10 if rand < HMCR then
11 r = rand(1, k) ;
12 if rand < PAR then
13 new X(i) = HM(r, i) + rand(−1, 1)× bw(r, i);
14 else
15 new X(i) = HM(r, i)

16 else
17 new X(i) = rand(Lbi , Ubi)

18 rank H1−2 = HM1 ∪ HM2, according to Deb et al. [31];
19 truncate H1−2 and assign to HM1 ;
20 generate bw by Cr with genotype

5. Experimentation and Results

In this section, the MOHS2, MOHS3 and MOHSg algorithms are used to solve six prob-
lems reported in the literature [35,36], designated as P1 to P6, that are specifically designed
for measuring the performance of multi-objective optimization algorithms. The problems
were selected taking into account the variety of their characteristics, such as (I) the shape
of the Pareto-optimal fronts (PFs) and the Pareto-optimal sets (PSs), (II) the coexistence of
local and global PSs (multi-modality) (III) the number of decision variables and objective
functions. In all the problems presented, it is possible to determine the real PS and the real
PF, which allows the evaluation of the results obtained by each algorithm. The algorithms
were programmed in Matlab R2018a on a Windows 10 platform. Computational experi-
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ments were performed on a PC with a 2.67 GHz Intel(R) Core (TM) i7 processor and 8 GB
of RAM. The test problems are included in Appendix A.

5.1. Performance Indicators

Every problem was solved with 20 independent runs of each algorithm. An execu-
tion includes 10,000 evaluations of the objective function, with the exception of problem
P6, which required 20,000 evaluations per run. In fact, the number of objective-function
evaluations measures the computational cost. For the graphic appreciation of the results,
the integrations of PSs and PFs of the 20 executions are made. In each figure, the number of
solution vectors that make up each front is specified. Additionally to the graphical apprecia-
tion, the performance indicators described in the following subsection were applied for the
quantitative comparison of the results. The performance indicators were calculated for each
execution, and presented through its mean value (average), best value (best), worst value
(worst), and standard deviation (Std. Dev). The best results are highlighted. Considering
that metrics can be misleading in multi-objective optimization according to Coello and
Cortés [37], it can be illuminating to consider two main factors: (I) if the solutions belong
to the real PF, and (II) how uniform the distribution of solutions along the Pareto front is.

5.1.1. Error Ratio, ER

This parameter (Equation (19)) was proposed by Van Veldhuizen [38] to indicate the
percentage of solutions from the non-dominated vectors that are not in the real PF, where n
is the number of non-dominated solution vectors that were generated, and ei is 0 or 1 if the
vector is non-dominated by the PF real or not, respectively. The ideal value is ER = 0 since
every vector generated by the algorithm belongs to the real PF.

ER =

n

∑
i=1

ei

n
(19)

5.1.2. Spacing, S

This indicator was proposed for Schott [39] as a way to measure the variance of
neighboring vectors in the PF. It is calculated by Equations (20) and (21), where d is the
media of all di, with i, j = 1, . . . , n,

S =

√
1

n− 1

n

∑
i=1

(d− di)2 (20)

di = minj(| f i
1 − f j

1|+ | f
i
2 − f j

2|) (21)

5.1.3. Inverter Generational Distance, GD

This indicator was introduced by Van Veldhuizen and Lamont [40] as a way of esti-
mating how far the elements of the PF obtained by the algorithm are from the real PF. It
is represented by Equation (22), where n is the number of generated vectors, and di is the
Euclidian distance between the generated vectors and the ones of the real PF.

GD =

√
n

∑
i=1

d2
i

n
(22)

Coello and Cortés [37] recommend using the real PF as a reference, that is, each
vector of the real PF is measured with its nearest neighbor of the PF obtained to avoid
measurement problems when the generated front has few members, and this is what it is
known as Inverted generational distance. In this work, GD was used both in the search
space (GDx) and in the space of objective functions (GD f ).
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5.2. Parameter Tuning

In order to achieve a reasonably good performance for the three algorithms, several
previous experiments were carried out, modifying their parameters until producing the
best performances. For the case of MOHS2 and MOHS3, it started from the parameters rec-
ommended in the original developments [14,15]. As can be verified in Table 1, for MOHS2,
only the HMCR parameter was varied, while MOHS3 kept the parameters proposed in
the original work. For the case of P6, which has three objective functions (many-objective),
the parameters of the three algorithms were modified in order to obtain a better exploration,
as shown in Table 2.

Table 1. Parameters for problems P1 to P5.

Value

Parameter MOHSg MOHS2 MOHS3

HMCR 0.95 0.70 0.85

PARmin 0.80 0.70 0.20
PARmax 2.00

bwmin — 1% 0.45
bwmax 0.90

Table 2. Parameters for problem P6.

Value

Parameter MOHSg MOHS2 MOHS3

HMCR 0.40 0.50 0.70

PARmin 0.60 0.10 0.80
PARmax 2.00

bwmin — 1% 0.45
bwmax 0.90

5.3. Analysis of Results
5.3.1. Problem P1

Figure 2 shows the integrated PFs resulting from the solution of problem P1, as well
as its real PF (convex front). The legend indicates the number of points that make up
each front. Note that all the algorithms converged to the solution of the real PF. However,
in the detail view, points appear belonging to the three algorithms (specially the MOHS3
algorithm) that do not belong to the real PF, that is, they are dominated by that front. In the
search space, it can be observed that the PS has an abrupt change in behavior (Figure 3).
The algorithms found most of the solutions in the left region of the set, while in the right
side, a higher dispersion is observed, especially for the proposed algorithm MOHSg.

Table 3 shows the statistical analysis of the behavior of the algorithms for P1, where
the best values are indicated in bold type. As can be seen in the error rates, an average of
21.8% of the vectors obtained by MOHSg do not belong to the real PF, while for MOHS2
and MOHS3 they constitute 28% and 41%, respectively. Likewise, it can be observed that, in
general, the PFs and PSs nearest to the real PF and PS were obtained by MOHS3, with the
drawback that approximately half of its points are dominated by the real PF. The best
distributed fronts correspond to the proposed MOHSg algorithm, followed by MOHS2
and MOHS3.
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Figure 2. Pareto fronts for problem P1.

Then, it is concluded that for this test function, MOHS3 presented a poor performance
because it produced the PFs with the lowest population and with the highest proportions
dominated by the real PF. MOHSg had a slight superiority in both the error ratio and the
uniform distribution with respect to MOHS2. However, this last algorithm surpassed the
proposed one in terms of the proximity in relation to PS and real PF. Thus, MOHS2 and
MOHSg presented a similar performance for this problem.

MOHS2 PS true

MOHS3 PS true

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x
1

-10

0

10

20

x 2

MOHSg PS true

Figure 3. Pareto sets for problem P1.

5.3.2. Problem P2

In Figure 4, the concave PF generated for problem P2 can be seen. The most populated
front corresponds to the MOHS2 algorithm, followed by MOHS3 and MOHSg very close
to each other. Note that in this problem, the concave front is made up of two PSs in the
search space, as shown in Figure 5. The PFs and PSs obtained are more populated and
better distributed than in P1, as can be seen in the results tabulated below.
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Table 4 presents the statistical analysis of the algorithms. It can be observed that the
best error ratio corresponds to the MOHS2 algorithm with 7.65% (mean value) followed
by MOHSg with 11.95% and MOHS3 with 12.83%. The fronts and sets nearest to the real
PF and PS correspond to those obtained by MOHS3, followed by the results of MOHS2
and MOHSg. The best distribution of the PFs corresponds to MOHS2, followed by the
proposed algorithm MOHSg and MOHS3. In this problem, MOHS2 produced the most
populated integrated front, and the fronts with the lowest error ratio and with the best
uniform distribution of all the variants. Therefore, it can be concluded that MOHS2 had
the best overall performance for this test function.

Table 3. Statistic analysis for problem P1.

MOHS2 MOHS3 MOHSg

Average 2.800× 10−1 4.105× 10−1 2.183× 10−1

Error Best 1.500× 10−1 3.350× 10−1 1.500× 10−1

ratio Worst 4.300× 10−1 4.950× 10−1 2.900× 10−1

Std. Dev. 7.222× 10−2 4.322× 10−2 3.945× 10−2

GDf

Average 1.145× 10−2 4.401× 10−3 1.545× 10−2

Best 6.990× 10−3 3.662× 10−3 7.658× 10−3

Worst 2.291× 10−2 5.560× 10−3 2.469× 10−2

Std. Dev. 3.748× 10−3 5.009× 10−4 4.787× 10−3

GDx

Average 18.21× 10−1 17.85× 10−1 21.31× 10−1

Best 11.47× 10−1 7.248× 10−1 8.722× 10−1

Worst 25.56× 10−1 32.58× 10−1 36.73× 10−1

Std. Dev. 3.746× 10−1 7.091× 10−1 7.283× 10−1

Spacing

Average 1.389× 10−2 17.39× 10−1 1.151× 10−2

Best 5.869× 10−3 5.434× 10−3 7.874× 10−3

Worst 5.500× 10−2 1.097× 10−1 2.276× 10−2

Std. Dev. 1.269× 10−2 31.22× 10−1 3.980× 10−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f 2

MOHS2(2325)
MOHS3(2002)

MOHSg(1973)
PF true

Figure 4. Pareto fronts for problem P2.



Appl. Sci. 2021, 11, 8931 14 of 24

MOHS2
PS true

MOHS3
PS true

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x
1

0

0.5

1

1.5

2

x 2

MOHSg
PS true

Figure 5. Pareto sets for problem P2.

5.3.3. Problem P3

As can be seen in Figure 6, problem P3 has a local PF and a global PF, which drives
the algorithms to be trapped in the local optimum. Both fronts are discontinuous and are
divided into four solution regions. In Figure 7, the local and global PSs for this problem
can be seen, divided into four regions and with a linear behavior. The most populated
PFs corresponded to MOHSg and MOHS2 with 3919 and 3863 points, respectively, while
MOHS3 obtained a much lower front with 1013 points. The mentioned figures show the
convergence of the three algorithms to global solutions. The lowest error ratio in Table 5
corresponds to MOHSg with 1.43%, followed by MOHS2 with 2.95 % and MOHS3 with an
extremely unfavorable 77.9%. The fronts nearest to the real PF and PS also correspond to
MOHSg followed by MOHS2 and MOHS3. In the case of distribution, MOHSg had the
best average performance, although the lowest standard deviation corresponds to MOHS2.
In this problem, MOHSg clearly presented the best performance.

Table 4. Statistic analysis for problem P2.

MOHS2 MOHS3 MOHSg

Average 7.650× 10−2 1.283× 10−1 1.195× 10−1

Error Best 4.000× 10−2 8.000× 10−2 9.000× 10−2

ratio Worst 1.150× 10−1 1.650× 10−1 1.650× 10−1

Std. Dev. 1.623× 10−2 2.551× 10−2 1.884× 10−2

GDf

Average 2.635× 10−3 2.457× 10−3 2.699× 10−3

Best 2.287× 10−3 2.194× 10−3 2.242× 10−3

Worst 3.027× 10−3 2.850× 10−3 3.303× 10−3

Std. Dev. 2.208× 10−4 1.627× 10−4 2.470× 10−4

GDx

Average 2.948× 10−2 2.863× 10−2 3.848× 10−2

Best 2.594× 10−2 2.640× 10−2 3.085× 10−2

Worst 3.563× 10−2 3.199× 10−2 4.948× 10−2

Std. Dev. 2.441× 10−3 1.795× 10−3 3.963× 10−3

Spacing

Average 3.474× 10−3 2.904× 10−2 1.639× 10−2

Best 2.777× 10−3 2.735× 10−3 2.757× 10−3

Worst 6.162× 10−3 1.162× 10−1 9.262× 10−2

Std. Dev. 6.972× 10−4 3.555× 10−2 2.535× 10−2
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Table 5. Statistic analysis for problem P3.

MOHS2 MOHS3 MOHSg

Average 2.950× 10−2 7.790× 10−1 1.425× 10−2

Error Best 1.500× 10−2 4.400× 10−1 5.000× 10−3

ratio Worst 6.500× 10−2 9.700× 10−1 4.000× 10−2

Std. Dev. 1.297× 10−2 1.453× 10−1 7.993× 10−3

GDf

Average 2.564× 10−3 4.829× 10−3 2.414× 10−3

Best 2.273× 10−3 4.110× 10−3 2.179× 10−3

Worst 2.984× 10−3 5.993× 10−3 3.079× 10−3

Std. Dev. 1.791× 10−4 4.899× 10−4 2.465× 10−4

GDx

Average 1.623× 10−3 3.204× 10−3 1.544× 10−3

Best 1.522× 10−3 1.869× 10−3 1.442× 10−3

Worst 1.816× 10−3 5.904× 10−3 1.664× 10−3

Std. Dev. 6.387× 10−3 1.127× 10−3 6.139× 10−5

Spacing

Average 4.260× 10−3 6.460× 10−2 3.005× 10−2

Best 3.679× 10−3 4.906× 10−3 2.615× 10−3

Worst 4.780× 10−3 1.322× 10−1 3.843× 10−2

Std. Dev. 2.677× 10−4 1.759× 10−2 2.921× 10−2

5.3.4. Problem P4

Like in the previous case, problem P4 has a discontinuous front, but this time divided
into 10 regions (Figure 8). In Figure 9, it can be seen that the PS is also divided into 10
linear regions, but in this problem, there is only one global front. As shown in Table 6,
the three algorithms generated fronts of approximately 3900 points, for an error ratio in the
best of cases of 1.38% for MOHSg followed by 2.18% and 2.70% for MOHS3 and MOHS2,
respectively. The fronts and sets nearest to the real PF and PS corresponded to MOHS3,
followed by MOHSg and MOHS2. Similarly, the best distributed fronts were obtained
using MOHS3, while MOHSg showed very close values.

In this case, the MOHS3 algorithm presented a fairly low error ratio, as well as the
fronts and sets nearest to the real PF and PS. It also generated the best uniform distribution
values of PF. Therefore, it is concluded that MOHS3 offered the best performance for this
test function.
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Figure 8. Pareto fronts for problem P4.
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5.3.5. Problem P5

Unlike the previous cases, problem P5 has three decision variables. In addition, it
presents two PSs (one local and one global) that make up a local and global PF, as shown
in Figures 10 and 11. The most populated front corresponds to the proposed algorithm
MOHSg (3402 points), followed by MOHS2 (2987), while MOHS3 produced a significantly
smaller front (1438). As can be seen in Table 7, the error ratio also differs drastically, with the
best in 8.95% for MOHSg, followed by 18.58% for MOHS2, and in the worst case MOHS3
returned a value of 70%. The PF closest to the real one was obtained by MOHS2, closely
followed by MOHSg, while the PS closest to the real one was obtained by MOHS3. The PFs
with the best uniform distribution (mean value) were obtained by MOHSg.

For this problem, MOHSg obtained a much more populated front than MOHS2 or
MOHS3, as well as a significantly lower error ratio. In Figure 11, it can be contrasted
that MOHSg does not cover all the real PS, and it is also manifested in the GDx values.
However, it has the best average value of uniform distribution in the PFs. Therefore, it can
be concluded that MOHSg has the best overall performance for this problem.
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Figure 10. Pareto fronts for problem P5.
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Table 6. Statisticalanalysis for problem P4.

MOHS2 MOHS3 MOHSg

Average 2.725× 10−2 2.175× 10−2 1.375× 10−2

Error Best 5.000× 10−3 5.000× 10−3 0.000
ratio Worst 4.500× 10−2 3.500× 10−2 3.000× 10−2

Std. Dev. 1.118× 10−2 7.993× 10−3 8.867× 10−3

GDf

Average 3.280× 10−3 2.643× 10−3 3.203× 10−3

Best 3.036× 10−3 2.502× 10−3 2.683× 10−3

Worst 3.586× 10−3 2.903× 10−3 4.612× 10−3

Std. Dev. 1.570× 10−4 1.010× 10−4 5.389× 10−4

GDx

Average 7.234× 10−4 5.239× 10−4 6.242× 10−4

Best 6.314× 10−4 4.633× 10−4 5.058× 10−4

Worst 9.297× 10−4 6.222× 10−4 7.374× 10−4

Std. Dev. 7.805× 10−5 3.946× 10−5 6.383× 10−5

Spacing

Average 5.168× 10−3 4.420× 10−3 4.479× 10−3

Best 4.811× 10−3 3.359× 10−3 3.555× 10−3

Worst 5.547× 10−3 6.183× 10−3 6.416× 10−3

Std. Dev. 2.198× 10−4 8.600× 10−4 7.011× 10−4

Table 7. Statistical analysis for problem P5.

MOHS2 MOHS3 MOHSg

Average 1.858× 10−1 7.023× 10−1 8.950× 10−2

Error Best 6.000× 10−2 6.200× 10−1 3.000× 10−2

ratio Worst 3.700× 10−1 7.550× 10−1 1.650× 10−1

Std. Dev. 1.001× 10−1 3.683× 10−2 4.273× 10−2

GDf

Average 1.287× 10−2 1.936× 10−2 1.356× 10−2

Best 1.206× 10−2 1.690× 10−2 1.265× 10−2

Worst 1.457× 10−2 2.232× 10−2 1.418× 10−2

Std. Dev. 5.929× 10−4 1.244× 10−3 6.003× 10−4

GDx

Average 2.528× 10−2 3.960× 10−2 1.261× 10−1

Best 3.770× 10−2 3.570× 10−2 9.731× 10−2

Worst 1.345× 10−1 4.479× 10−2 1.776× 10−1

Std. Dev. 2.842× 10−2 2.497× 10−3 2.201× 10−2

Spacing

Average 3.280× 10−2 6.154× 10−2 2.861× 10−2

Best 2.366× 10−2 4.690× 10−2 2.457× 10−2

Worst 5.100× 10−2 7.738× 10−2 3.439× 10−2

Std. Dev. 8.211× 10−3 8.395× 10−3 2.430× 10−3

5.3.6. Problem P6

The MMF14_a problem has three decision variables and three objective functions, making
it a many-objective problem. As explained above, in this problem the number of evaluations
was modified to 20,000 and the parameters of the three algorithms were tuned in order to
improve the quality of the solutions. Note that this problem has two global surfaces of PSs
that correspond to a single concave global PF (Figures 12 and 13). Additionally, the generated
PFs converge to the real PF, also covering the two surfaces that make up the PSs. The most
populated front was obtained by MOHS3, followed by MOHS2 and MOHSg. The best error
ratio corresponds to MOHS3 with 34.95%, while for MOHS2 and MOHSg the error ratios were
47% and 50%, respectively, as indicated in Table 8. The front closest to the real PF was also
obtained from the MOHS3 algorithm, while the sets closest to the real PS were obtained by
MOHSg. In the case of the uniform distribution of the PF, the best mean value corresponds to
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MOHS3 while the best recorded point value was obtained by MOHSg. Thus, MOHS3 produced
the best solution, since it generated the most populated front of the three algorithms, as well as
the lowest error ratio by a considerable margin. This algorithm also yielded the best mean GD f
and uniform distribution values.
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Figure 11. Pareto sets for problem P5.
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Figure 13. Pareto sets for problem P6.

Table 8. Statistic analysis for problem P6.

MOHS2 MOHS3 MOHSg

Average 4.710× 10−1 3.495× 10−1 4.998× 10−1

Error Best 3.900× 10−1 2.950× 10−1 4.400× 10−1

ratio Worst 5.300× 10−1 4.000× 10−1 5.700× 10−1

Std. Dev. 3.813× 10−2 2.946× 10−2 3.299× 10−2

GDf

Average 9.482× 10−2 9.229× 10−2 9.464× 10−2

Best 9.129× 10−2 8.838× 10−2 9.073× 10−2

Worst 1.003× 10−1 9.854× 10−2 9.848× 10−2

Std. Dev. 2.519× 10−3 2.913× 10−3 2.135× 10−2

GDx

Average 7.868× 10−2 8.357× 10−2 7.692× 10−2

Best 7.240× 10−2 7.698× 10−2 7.227× 10−2

Worst 8.891× 10−2 9.456× 10−2 8.118× 10−2

Std. Dev. 4.093× 10−3 4.468× 10−3 2.245× 10−2

Spacing

Average 8.465× 10−2 7.959× 10−2 8.248× 10−2

Best 7.110× 10−2 6.991× 10−2 6.080× 10−2

Worst 1.024× 10−1 9.121× 10−2 1.198× 10−1

Std. Dev. 9.119× 10−3 5.567× 10−3 1.302× 10−2

6. Final Discussion

In this work, a multi-objective HS algorithm (MOHSg) is proposed, whose funda-
mental contribution consists of the pitch adjustment based on the crowding distancing by
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genotype, that is, the crowding distancing that works in the search space. This algorithm is
capable of automatically adjusting the exploration and exploitation by adjusting the pitch,
based on the distribution of solutions in the search space during the formation of the Pareto
front. Therefore, MOHSg only needs the presetting of the harmonic memory and pitch ad-
justment parameters for its operation, without requiring the static bandwidth parameter of
the MOHS2 variant nor the dynamic bandwidth and pitch adjustment parameters needed
by the MOHS3 algorithm.

For the test of the proposed algorithm, six multi-objective optimization problems were
used with a diversity of characteristics regarding the shape of the Pareto-optimal fronts
and Pareto-optimal sets, the coexistence of local and global solutions (multi-modality),
and the number of decision variables and objective functions. MOHSg was able to produce
similar or better results to those generated by the MOHS2 and MOHS3 algorithms, which
constitute HS variants representative of the state-of-the-art in multi-objective optimization.
Specifically, MOHSg produced the best results in three of the proposed problems, while in
the rest, it registered competent results, excelling in some punctual performance indicators.

From this comparative study, it can be concluded that the harmonic search algorithm
based on pitch adjustment by genotype is an effective tool for solving multi-objective
optimization problems. As part of future work, the application of the proposed algorithm
to the solution of multi-objective problems with functional restrictions is proposed.
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Appendix A

Description of the test multi-objective problems.

Appendix A.1. P1

Minimize {
f1 = |x1 − 2|
f2 = 1−

√
|x1 − 2|+ 2(x2 − sin(6π|x1 − 2|+ π)2

where 1 ≤ x1 ≤ 3; −1 ≤ x2 ≤ 1.
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Appendix A.2. P2

Minimize 
f1 = |x1|

f2 =

{
1− x2

1 + 2(x2 − sin(π|x1|))2 0 ≤ x2 ≤ 1
1− x2

1 + 2(x2 − 1− sin(π|x1|))2 1 ≤ x2 ≤ 2

where −1 ≤ x1 ≤ 1; 0 ≤ x2 ≤ 2.

Appendix A.3. P3

Minimize {
f1 = x1
f2 = g(x2) · h( f1, g)

g(x2) = 2− exp

[
−2 log(2) ·

(
x2 − 0.1

0.8

)2
]

sin6(2πx2)

h( f1, g) = 1−
(

f1

g

)2
− f1

g
sin(2πq f1)

where q is the number of discontinuities of the front, q = 4 for this problem; 0 ≤ x1 ≤ 1;
0 ≤ x2 ≤ 1.

Appendix A.4. P4

Minimize {
f1 = x1
f2 = g(x2) · h( f1, g)

g(x2) = 1 + 10x2

h( f1, g) = 1−
(

f1

g

)2
− f1

g
sin(2πq f1)

where q is the number of discontinuities of the front, q = 10 for this problem; 0 ≤ x1 ≤ 1;
0 ≤ x2 ≤ 1.

Appendix A.5. P5

Minimize {
f1 = x1

f2 = g(t)
x1

g(t) = 2− exp

[
−2 log(2) ·

(
t− 0.1

0.8

)2
]

sin6(2πt)

t = x2 +
√

x3

where 0.1 ≤ x1 ≤ 1.1; 0.1 ≤ x2 ≤ 1.1; 0.1 ≤ x3 ≤ 1.1.

Appendix A.6. P6

Minimize 
f1 = cos

(
π
2 x1
)

cos
(

π
2 x2
)
(1 + g(x))

f2 = cos
(

π
2 x1
)

sin
(

π
2 x2
)
(1 + g(x))

f3 = sin
(

π
2 x1
)
(1 + g(x))

g(x) = 2− sin2
(

2π

(
x3 − 0.5 sin(πx2) +

1
4

))
where 0 ≤ x1 ≤ 1; 0 ≤ x2 ≤ 1; 0 ≤ x3 ≤ 1.
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