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Čamernik, J.; Petrič, T. Leader–
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Featured Application: Findings presented in this study can be seen as beneficial in better un-
derstanding the collaborative dynamics that present themselves in human collaboration as well
as in the further development of novel robot control models. Implementing the leader–follower
role allocation studied in this paper into a robot control model allows the robot partner to assume
both the role of a follower and that of a leader when necessary. This can be especially useful in
social robotics for effective physical rehabilitation. In this regard the results could in the future
be incorporated in the design of a human–robot collaborative system that is able to support the
human user in more effective skill learning by adjusting its influence on the task performance.

Abstract: People often find themselves in situations where collaboration with others is necessary to
accomplish a particular task. In such cases, a leader–follower relationship is established to coordinate
a plan to achieve a common goal. This is usually accomplished through verbal communication.
However, what happens when verbal communication is not possible? In this study, we observe the
dynamics of a leader–follower relationship in human dyads during collaborative tasks where there is
no verbal communication between partners. Using two robotic arms, we designed a collaborative
experimental task in which subjects perform the task individually or coupled together through a
virtual model. The results show that human partners fall into the leader–follower dynamics even
when they cannot communicate verbally. We demonstrate this in two steps. First, we study how
each subject in a collaboration influences task performance, and second, we evaluate whether both
partners influence it equally or not using our proposed sorting method to objectively identify a
leader. We also study the leader–follower dynamics by analysing the task performance of partners
during their individual sessions to predict the role distribution in a dyad. Based on the results of our
prediction method, we conclude that the higher-performing individual performance will assume the
role of a leader in collaboration.

Keywords: human collaboration; leader–follower dynamics; role allocation; dyadic interaction;
human–robot interaction

1. Introduction

In our day-to-day lives, we often find ourselves in situations where collaborating with
other people is necessary to achieve a certain task. A social behaviour that innately occurs
in group collaboration is the leader–follower dynamic, where in order to perform a collabo-
rative task effectively, one of the partners in collaboration must assume the role of a leader
whether coordination is done through verbal [1] or non-verbal communication—through
physical interaction. This dynamic has been thoroughly researched from a psychological
and sociological perspective as seen in [2,3], however has yet to be addressed in the same
amount from a physical or kinematic standpoint. Sebanz et al. [4] reviewed aspects of
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developmental psychology, cognitive psychology, and cognitive neuroscience that con-
tribute to understanding human collaboration. It turned out that role allocation is one
of the important areas that has yet to be sufficiently researched. Since the publication
of the review, more progress in the research area of physical human collaboration has
been made. A study by Ganesh et al. found that the partners were able to improve their
task performance when collaborating with each other without verbal communication or
even knowing that they were collaborating. Furthermore, the study presented evidence
that the task performance of both partners improved to some degree, even when the part-
ner of the subject displayed lower task performance as an individual. This was further
studied in papers by Takagi et al. [5–7]. Similarly, a study by Batson et al. [8] showed
that the experiment group where participants were coupled together outperformed the
control group in solo trials, meaning collaborating with a partner also improved future solo
performance. However, there is no real consensus on whether coupled partners always
outperform solo performance, as studies by Che et al. [9] contradict the findings from
the aforementioned studies. Furthermore, a study by Beckers et al. [10] displayed that
although task performance improved when the subjects were in collaboration, there was
no improvement in task learning due to collaborating with a partner. This indicates that
the task at hand and coupling dynamics are important factors in human collaboration.

In [11,12] a study on pushing or pulling on opposite ends of a crank was performed.
Here they noted improved task performance during collaboration, despite the subjects
reporting that their partner was a hindrance. Similarly, evidence of the existence of a
haptic channel that improves the collaborative performance, either through direct contact
or interactive forces over a mutually manipulated object, was reported in [13]. Their work
indicated that haptic information may be the key component to solve the leader–follower
role allocation problem. In [14] they even proposed that one partner is responsible for
the plan and the other is responsible for executing the actions. On the other hand, in [15]
researchers found that rigidly coupled pairs perform tasks based on pre-programmed
motion plans, independent of their partner’s behaviour, which could explain the sense of
hindrance observed in [11,12]. The existence of an unequal control in human collaboration
was further observed in [16] and more recently investigated in [17].

In this study we would like to build upon the aforementioned findings on human col-
laboration and leader–follower role allocation by investigating whether the leader–follower
dynamics, or in other words the dominance of one partner in a physical collaborative task,
can be predicted through the observation of the partners’ individual task performance.
Based on the results of the study by Ganesh et al. [18], which show that partners with lower
individual task performance improved more than the partners with higher individual
task performance, and findings presented in [15], we hypothesise that the subject with
higher task performance as an individual has a greater influence over the collaborative
task, thus assuming the role of the leader. Here we further hypothesise that the method
of defining the higher-/lower-performing individual has additional influence on how
the leader–follower dynamics are predicted. In this context, we first examine how the
definition of higher-performing and lower-performing individuals influences the alloca-
tion of leader/follower roles before further exploring influences on the leader–follower
role allocation in human dyads. In addition, we examine whether the task performance
increases for both partners in collaborative tasks as was reported in [8,18].

2. Methods
2.1. Subjects

The study included twelve healthy male and four healthy female participants, with an
average height of 180.25 cm and 167.5 cm respectively. All subjects were right-handed.
The average age of the subjects was 28.3 years old. The subjects were grouped together
into dyads based on their height and sex, with subjects having similar height and the same
sex being grouped together. All participants had no prior experience with the experimental
setup, thus having the same skill level. Prior to their participation, the subjects were
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informed about the experimental procedure, potential risks, the aim of the study, and gave
their written informed consent in accordance with the code for ethical conduct in research
at Jožef Stefan Institute (JSI). This study was approved by the National Medical Ethics
Committee (No.: 0120-228/2020-3).

2.2. Experimental Setup

The experiments were conducted on a dual-arm Kuka LWR robot, seen in Figure 1,
which acted as a haptic interface between the subjects and the virtual environment. This
was achieved using a haptic controller for the robot arms developed in [19]. The haptic
controller allows the robot arms to be used as separate haptic interfaces or to be used as
one interface by coupling them together through a virtual dynamic model.

The virtual dynamic model consists of two points, each representing one end-effector
of the dual-arm robot, coupled together by a virtual rod. When a force is applied to any of
the two end-effectors, the dynamic model reacts by generating a proportional force to the
midpoint of the rod. This proportional force is described as the sum of the forces applied
to both end-effectors. Meaning, when coupled together the two partners move the same
virtual rod in unison by applying their individual force to each end-effector. This allows
the two partners to have an open channel of communication through haptic interaction,
similar to the haptic communication channel seen in [13].

Figure 1. Experimental setup of the study. The graphic user interface (GUI) can be seen on the screen
in front of the left subject. The GUI displays the starting point (black), target point (red), and the
controlled point (white) in real time.

Two monitors were used in the experiment, displaying a graphic user interface (GUI)
shown in Figure 1. Here, the red dot represents the target, whose position and size change
throughout the experiment. The black dot is the starting position and the white dot is
the moving point which the subjects control through the haptic interface. To match the
GUI, the movement of the robot arms was limited to a 2D plane. This was done by
constraining the z-axis of the robot’s end-effector (see Figure 1) to a static position via
the haptic controller. The static position of the z-axis was determined for each subject
individually so that the angle between the subject’s arm and forearm was 90 degrees in the
starting position.

2.3. Experimental Protocol

The leader–follower dynamics were studied on a reaching task, as it is one of the most
common tasks performed by humans on a daily basis. The reaching task was repetitive
so as to simulate repetitive motions commonly found in our daily lives such as the task
of pick-and-placing objects. Furthermore, the repetitive motion of the reaching task helps
with the implementation of Fitts’ law in the data analysis of the study.

Subjects stood in front of a screen, holding the handle of the robot with their right
hand, as shown in Figure 1. The experimental session began when the subjects moved the
controlled point on the screen to its starting position by moving the robotic arm. When
the controlled point was in its starting position, a random target appeared on the screen.
The subjects were instructed to reach this target as fast as possible and stay inside the
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target for at least 0.5 s, at which point the target disappeared. By keeping the movable
point inside the target for 0.5 s, we prevented the subjects from simply running over the
target without aiming for it. When the target disappeared, the subjects had to return to the
starting position.

Throughout the experiment, the subjects were not told whether they were performing
a collaborative or an individual task. However, although the partners were not explicitly
made aware of their connection, both subjects were able to sense the other partner’s
physical interaction through the haptic interface only when in collaboration. This meant
that, when the two subjects were coupled together, they could feel an external force that was
produced by their partner. This established an open channel for non-verbal communication
between the partners.

The reaching task was repeated 180 times, with subjects performing half of the tasks
individually and half in collaboration by being coupled together through the virtual model.
In the 180 trials, 9 different targets with varying distances (5 cm, 15 cm, and 25 cm) and
sizes (small, medium, and large) were used. In total, the experiment equalled to 20 cycles
in which the 9 different targets were used in random order. To exclude the influence of
human learning through repetitions on the performance in individual and collaborative
tasks, the subjects were separated into two groups, each consisting of four dyads—three
male and one female dyad. The first group conducted the first 10 cycles individually and
the last 10 cycles in collaboration, while the second group performed the first 10 cycles of
the experiment in collaboration and the last 10 cycles individually. With this we were able
to lower the influence of the sequence of performing individual and collaborative tasks on
the overall task performance.

2.4. Data Processing

In each session, motion data of the robot and force measurements from the force sensor
were collected. The target sequence and task duration for each trial were logged as well.
A table of the gathered data is available as Supplementary Material. Measurements were
sorted based on the type of experiment (individual or in collaboration) and the observed
subject of the dyad (higher-performing or lower-performing individual).

Determining the higher-performing and lower-performing subjects: Each dyad con-
sists of a higher- and a lower-performing partner with their role being determined based on
their performance in the individual experiment. To find the optimal method for determin-
ing a subjects role in a dyad, their performance was defined in three different ways—based
on (a) the average time needed to perform the reaching task, (b) the average maximum
velocity of each individual when performing the reaching task, and (c) Fitts’ law’s index of
performance (IP).

The sorting method (a), based on the mean time needed to perform the reaching task,
determines the higher- and lower-performing individual by averaging the measured time it
took the subject to reach the target throughout all individual trials. This was calculated for
each target separately. To calculate the overall mean time needed to perform a reaching task,
the calculated mean times for each target were averaged as well. The calculated mean times
were used for comparing the two individuals, where the individual with shortest mean
time in the individual experiment is determined to be the higher-performing individual.

The sorting method (b), which is based on the maximum velocity in individual
tasks, defines maximum velocity as the peak value of velocity during the reaching task.
An average maximum velocity (vmax) of an individual is calculated by averaging the
maximum velocities of each trial and target. In this method, the individual with higher
vmax is determined to be the higher-performing individual.

The sorting method (c) determines the higher- and lower-performing subject by im-
plementing Fitts’ law’s index of performance (IP). Fitts’ law describes the speed–accuracy
trade-off based on the time required to reach a target. As a measure of human performance,
Fitts proposed a metric called index of performance or IP, which is described as:
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IP =
ID
MT

, (1)

where MT is the measured movement time and ID is the index of difficulty, which has
several formats in literature as seen in [20,21]. In this study, the Shannon formulation [22]
was used, which is defined as:

ID = log2(
D
W

+ 1). (2)

Here, D is the distance of the target and W is the width of the target. The IP was
calculated for all targets in each trial. The calculated IPs were then averaged within each
target. The overall IP for each subject was then determined by calculating the average IP
from all targets. When comparing the IPs of both individuals, the subject with a higher IP
is determined to be the subject with the higher individual performance.

To find the optimal sorting method to define the higher-performing and lower-
performing individual, the standard error of mean (SEM), produced by each sorting
method when determining the leader in a collaborative task, was compared between the
sorting methods. Here, the lower SEM that a sorting method produces, the more certain
the sorting method is to use for defining the higher- and lower-performing individual as it
shows that the results were more consistent throughout all dyads.

Determining the leader–follower dynamics: The leader of the collaborating task was
determined by measuring and analysing the forces applied to the robot by each partner.
Force measurements were used as the base for determining the leader due to the fact that
the robot movement is determined solely by the force applied to its end-effector. This
means that the subject applying a higher force to the end-effector has a higher influence on
the robot movement. Due to this, the leader can be determined based on the difference in
the forces applied by the partners in collaboration (∆F):

∆F = |Fs| − |F i|, (3)

where Fi is the force applied by the partner with lower individual performance and Fs is
the force applied by the partner with higher individual performance. The overall leader of
each trial is defined as:

L =
∫ T

0
∆F(t)dt, (4)

where T is the measured time it took to reach the target. To determine the overall leader
for each target an average leader value L is calculated from all trials.

Determining task performance: The task performances of individual and collaborative
experiments were evaluated to see if the task performance improves when subjects are
in collaboration as was shown in [18]. This was done by taking into account the average
IP of subjects performing the task individually and of subjects performing the task in
collaboration. The average IP was calculated as described in the sorting method based on
the index of performance (Equation (1)).

Statistical analysis: The statistical analysis was performed using Statistics Toolbox
in MATLAB. Average movement times and average forces applied for reaching each
target were used for statistical analysis. The effects of the target difficulty on the move-
ment times, human effort, and role allocation in a dyad were investigated using two-way
repeated-measures ANOVA with independent variables (target size × target distance).
The differences between task performance based on individual or collaborative tasks were
tested using post hoc t-tests with Bonferroni correction. The level of statistical significance
used was the p-value of 0.05 for all statistical tests.

3. Results

Determining the higher-performing and lower-performing subject: Fitts’ law models
for each pair are shown in Figure 2 with subjects 1 and 2 not being yet determined as either
the higher- or the lower-performing subject. How different sorting methods influence the
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subject being defined as a lower-performing or a higher-performing individual is shown in
Table 1. Comparing the three sorting methods, results in Table 1 show that using any of the
three sorting methods determine the same subject to be the higher-performing individual,
with the exception of pair 2 and 4.

Figure 2. Fitts’ law models of individual and collaborative tasks for each pair, independent of the sorting method used.
Here, subjects are defined as subject 1 and subject 2 as they are not yet determined to be either higher-performing or the
lower-performing subjects. Whether subject 1 or 2 is determined to be the higher-performing individual and the other as
the lower-performing one can be found in Table 1 for different sorting methods.

Table 1. Table showing which subject was defined as the higher-performing individual based on all sorting methods.
The cells marked in gray show which sorting method produced a different higher-performing individual than the rest.

Higher-Performing Individual (Subject)
Sorting Method Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7 Pair 8

mean time 2 2 1 2 2 2 2 2
max. velocity 2 2 1 1 2 2 2 2
index of performance 2 1 1 2 2 2 2 2

Looking at Figure 3 however, the presented results suggest that predicting the leader
of the dyad improves when using the sorting method based on maximum velocity. This
can be seen in the decrease of the standard error of mean (SEM) for predicting the leader
when using the velocity sorting method, as shown in the bottom plot in Figure 3. As stated
in Section 2.4 a lower SEM shows that the results for determining the leader were more
consistent throughout all pairs, which in extension means that the sorting method produces
more accurate results. Based on these results, all further statistical analysis presented in
this paper was performed on data sorted using the maximum velocity approach.
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Figure 3. (a) Leading subject for all targets based on each sorting method, where the values represent
mean leader L[N] between the 8 pairs ± SEM. The bottom plot (b) shows comparison between SEM
of each sorting method for individual targets.

Determining the leader–follower dynamics: As stated in Section 2.4 (Determining the
leader–follower dynamics), the leader of the dyad in collaboration was calculated based on the
amount of the force applied to the robot by each partner during the overall task. Figure 4
represents the differences in the forces applied by the partner with a lower individual
performance (Fi) and partner with a higher individual performance (Fs) in a collaborative
task. Here, the values represent the average leading partner of the eight dyads including
SEM for each target. Equation (3) defines positive values as equal to the partner with the
higher individual performance (i.e., the subject with higher maximum velocity) leading the
collaborative tasks, while negative differences equal to the partner with lower individual
performance (i.e., the subject with lower maximum velocity) leading in the collaborative
tasks. Equation (3) also tells us how much the leading partner influences the task movement
based on the absolute value of the difference. Here, the higher the absolute values, the more
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dominant the leading partner was, while the values closer to 0 showcase that the amount
of exerted force from both partners was close to equal.

The forces applied by the partner with a lower individual performance (Fi) and partner
with a higher individual performance (Fs), the proportional force (F) as well as the differ-
ence between the partners’ forces (∆F) during a collaborative task, from which the leader
was calculated, are also presented for each pair and target separately in Figures A1–A9.
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Figure 4. Leading subject for each target, where the values represent mean leader L[N], calculated
using Equation (3), between the 8 pairs ± SEM.

Results presented in Figure 4 suggest that the subject displaying higher performance
in the individual trials will be the leader in the collaborative trials as the average leading
value for all targets are positive. We can also see that the influence of each partner on the
task is not constant but rather changes based on the target. Analysis of variance showed
that the difference in partner influence on the task performance was based on the target
distance (F(2,7) = 11.347, p = 0.001) and the target size (F(2,7) = 6.659, p = 0.009) with the
F and p value of the interaction between distance and size being (F(2,7) = 1.983, p = 0.125).
Here, the influence of the higher-performing individual on the task increased with the
increase in target size and target distance.

Determining task performance: Figure 5a shows the mean and standard error (SEM)
for the overall task performance in different experiment types with a higher value repre-
senting better overall task performance. Analysis of variance showed that the experiment
type has a significant influence on the overall task performance (F(2,7) = 14.847, p < 0.001).
A post hoc t-test showed that the task performance is statistically different between the
higher-performing and the lower-performing individual (t(7) = −4.450, p < 0.001) as well
as between the subject with a lower individual performance and subjects in collaboration
(t(7) = −4.949, p < 0.001). On the other hand, the task performance between the subject
with a higher individual performance and subjects in collaboration is not statistically different.
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Figure 5. Task performance of individual subjects and subjects in collaboration for (a) whole experi-
ment and for (b) each target separately. The task performance for each experiment is defined using
Fitts’ law index of performance (IP), where the performance is better with higher values. Note that ∗
denotes significant statistical difference and � denotes no statistical difference.

Analysis of variance showed as well that the target distance and target size have
a significant influence on the task performance for lower-performing individuals (size:
F(2,7) = 17.044, p < 0.001; distance: F(2,7) = 94.783, p < 0.001; size × distance: F(2,7) =
5.498, p = 0.002), higher-performing individuals (size: F(2,7) = 12.452, p < 0.001; distance:
F(2,7) = 194.926, p < 0.001; size × distance: F(2,7) = 1.990, p = 0.123), and subjects in
collaboration (size: F(2,7) = 17.685, p < 0.001; distance: F(2,7) = 187.351, p < 0.001; size
× distance: F(2,7) = 5.772, p = 0.005). This result is visualised in Figure 5b, where the
mean and standard errors (SEM) of task performance are shown for each target size and
distance separately.

4. Discussion

The goal of this study was to observe the leader–follower dynamics in dyadic inter-
actions and to evaluate whether these dynamics can be predicted in a dyad based on the
individual performance of the partners. We hypothesised that the influence of each partner
is not equally shared, but rather that the subject displaying higher performance in indi-
vidual tasks influences the collaborative task performance more, thus assuming the leader
role in a dyad. Furthermore, we hypothesised that the definition of higher-performing
and lower-performing subject in individual tasks will influence how the leader–follower
dynamics will be predicted in the collaborative task. Based on [18] we additionally hypoth-
esised that the performance of subjects will improve when in collaboration compared to
their individual performance.

In this study we showed that in each collaboration one partner has more influence on
the task performance than the other, meaning that the partner actively assumes the role of
a leader. We have also shown that the leader–follower dynamics can be predicted based on
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the subjects’ individual performance, as the higher performing subject in individual tasks
will most likely assume the role of a leader.

Determining the higher-performing and lower-performing subject: When comparing
the results from different sorting methods used to define the higher-/lower-performing
individuals, we have found that using any of the selected metrics to sort the partners before
defining the leader will produce similar results with an increase or decrease in the standard
errors of mean (SEM) and the number of dyads that have the same result as the average.
The differences in SEM are due to the fact that subjects in some dyad switch their role as
the higher-performing or the lower-performing partner based on the sorting method used.
These differences show that the definition of the higher- and lower-performing individual
is important when trying to predict the leader–follower dynamics in a collaborative task.
Due to this, the method used to define the higher- and lower-performing individual should
be taken into account when determining the accuracy and reliability of our predictions.

Here, results presented in Figure 3 suggest that the most reliable metric from the ones
used is the maximum velocity in task performance as it has the lowest SEM. The lowest
SEM can be explained as the fact that in the haptic interface used in this study and described
in [19], the velocity directly correlates to the amount of force exerted by each individual
when performing the task. When an individual with higher maximum velocity performs
the task using the proposed haptic interface, they use a larger amount of force than the
individual with lower maximum velocity. As the haptic interface is controlled through the
use of force, the individual with a larger force exertion will have more influence over the
control of the haptic interface, thus assuming the role of leader.

It is worth noting, however, that although maximum velocity was decided as the most
reliable metric based on its lowest SEM, other metrics on average also produce the same
result—predicting the higher-performing individual as the leader. This can be explained as
the selected metrics used to define the higher-/lower-performing individuals are correlated
with each other. For instance, IP is directly defined by the measured time, while measured
time directly depends on the subject’s velocity. Due to this, we could state that when
applied in real-life situations any metric used in this study can be used to define the higher-
performing or lower-performing individual and which metric is used should be decided
based upon its accessibility rather than its SEM. However, to solidify this statement a larger
scale study should be performed to observe whether the differences in results between the
metrics increase or decrease on a larger set of examples.

Determining the leader–follower dynamics: As stated previously, the results of this
study showed that the subject with higher performance in the individual tasks is most likely
to be the leader in a collaborative setting, which agrees with our hypothesis. This might
occur due to the subjects not needing to change their actions much between the individual
and collaborative tasks. In other words, when coupled together both subjects will use
approximately the same amount of force as in the individual trials, meaning that the subject
exerting a larger amount of force in the individual task will exert a larger amount of force
in the collaborative task as well, thus assuming the role of the leader. This explanation
can be further supported by the findings in [15], where they found that subjects perform
collaborative tasks based on pre-programmed motion plans, regardless of their partner.

What is interesting, however, is that ANOVA analysis showed that there is a statisti-
cally significant increase in the leading partner’s influence on movement when the size
and distance of the target increases, indicating that the leader–follower roles are propor-
tional, rather than being confined to pure leadership. This might be related to the fact
that reaching targets that are located closer to the starting point requires less aiming to
successfully perform the task and are more based on subjects’ reaction times. However, the
correlation between the size of the target and the influence of the leading partner on the
overall task manifests as the leader having a greater influence when the size of the target is
larger. Knowing both these factors we could hypothesise that the leading individual has
the greatest influence on the task performance between the starting section and finishing
section of the path, while when reacting and aiming, actions are mutually influenced by
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both partners. This indicates that the leader–follower roles are not consistent throughout
the task, but rather interchange dynamically as was also proposed and demonstrated for
human–robot collaboration in [23,24]. Here, both studies showed that dynamic exchange
of roles improves task performance, however in [24] the study reported that subjective
acceptance in participants has decreased when leader–follower roles were exchanged dy-
namically. Due to this, in future work leader–follower role distribution in human dyads
should be further explored by analysing the tasks in segments to better understand how
they occur naturally.

Determining task performance: The results of task performance seen in Figure 5
correlate to the discoveries presented in [18], where the results showed that the task
performance of both subjects improves in collaborative tasks, while subjects performing
a task with a lower-performing partner improve less than subjects performing the same
task with a higher-performing partner. This can be expected as in collaboration the forces
applied to the controlled point equal to the sum of forces from both individuals; meaning,
when both subjects exert approximately the same amount of force in a collaborative task
as they did in individual tasks, the force for each subject would increase by the force of
their partner, when comparing the individual and collaborative task separately. This in
turn leads to shorter task times and better task performance.

Statistical analysis also showed that the task performance is significantly influenced
by the size and distance of the target. This matches what we expect with Fitts’ law as
Equation (2) states that the difficulty of each target directly depends on its size and distance,
which subsequently affects the calculated index of performance or IP.

Contributions and future work: Results presented in this study can be seen as benefi-
cial in better understanding of collaborative dynamics that present themselves in human
collaboration as well as in the further development of novel robot control models. Im-
plementing dynamics found in human collaboration aids in the further improvement in
human–robot collaboration as the human partners find human-like behaviour of robots
more intuitive, as shown in [18,25]. Furthermore, a study by Ivanova et al. [26] found that
humans prefer a robot partner with human-like behaviour to an actual human partner
for motion assistance as they are more predictable than humans. In this regard, many
human-based control models have already been developed, such as [27–31], however, these
did not take into account the leader–follower dynamics found in human collaboration.
Instead, in the accounted human-based control models the robot partner always assumes
the role of the follower. Implementing the leader–follower role allocation studied in this
paper into a robot control model could on the other hand allow the robot partner to assume
both the role of a follower and that of a leader when necessary. The importance of role
distributions in human–robot collaboration has also been addressed in [32].

In addition, human-based control models for robots are regularly used in social
robotics for effective physical rehabilitation as seen in [33]. In this regard, the leader–
follower role allocation presented in this study can as well be beneficial when incorporated
in the design of systems that aid in human skill learning for either human or human–robot
dyads. Studies by Kager et al. in [34] and Avila Mirales et al. in [35] showed that practising
with a peer was more advantageous to the subject than with an expert. Knowing this,
the latter study suggested that the results show the possibility of teaching an expert user to
be an expert teacher as the expert teacher must learn how to support, instead of explicitly
leading the naive user, in order to leave room for the naive user to learn. Having this
in mind, the results presented in this paper have the potential to be used for matching
best-suited individuals together based on their solo performance to assure effective skill
learning. In the same regard the results can be incorporated in the design of a human–robot
collaborative system that is able to support the human user in more effective skill learning
by adjusting its influence on the task performance. However, to do so, in future work the
experiments should be performed so as to be able to observe skill learning of both partners
through time. Furthermore, it would be beneficial to examine whether the leader–follower
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dynamics observed in this study are maintained in new, more complex study cases such as
3D tasks.
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Appendix A

Figures A1–A9 show average force trajectories of the lower-performing and higher-
performing partner, as well as their collaborative force and the difference between the
partners’ forces, over the defined task for each pair and each target separately.

https://www.mdpi.com/article/10.3390/app11198928/s1
https://www.mdpi.com/article/10.3390/app11198928/s1


Appl. Sci. 2021, 11, 8928 13 of 23

Pair 1

0 0.2 0.4 0.6 0.8 1

-5

0

5

F
x 

[N
]

proportional force difference in absolute force

Pair 1

0 0.2 0.4 0.6 0.8 1

-10
0

10
20
30

F
y 

[N
]

Pair 2

0 0.2 0.4 0.6 0.8 1
-6
-4
-2
0
2
4

F
x 

[N
]

Pair 2

0 0.2 0.4 0.6 0.8 1
-20

0

20

F
y 

[N
]

Pair 3

0 0.2 0.4 0.6 0.8 1
-5

0

5

F
x 

[N
]

Pair 3

0 0.2 0.4 0.6 0.8 1

0

10

20

F
y 

[N
]

Pair 4

0 0.2 0.4 0.6 0.8 1
-10

0

10

F
x 

[N
]

Pair 4

0 0.2 0.4 0.6 0.8 1

0

10

20

F
y 

[N
]

Pair 5

0 0.2 0.4 0.6 0.8 1
-5

0

5

F
x 

[N
]

Pair 5

0 0.2 0.4 0.6 0.8 1
-20

0

20

F
y 

[N
]

Pair 6

0 0.2 0.4 0.6 0.8 1

-4

-2

0

2

F
x 

[N
]

Pair 6

0 0.2 0.4 0.6 0.8 1

0

10

20

F
y 

[N
]

Pair 7

0 0.2 0.4 0.6 0.8 1
-5

0

5

F
x 

[N
]

Pair 7

0 0.2 0.4 0.6 0.8 1

-5
0
5

10

F
y 

[N
]

Pair 8

0 0.2 0.4 0.6 0.8 1
t/MT [/]

-5

0

5

F
x 

[N
]

Pair 8

0 0.2 0.4 0.6 0.8 1
t/MT [/]

-20

0

20

F
y 

[N
]

S target, distance 0.05 m

Figure A1. Average force trajectories with standard deviation (shaded area) in x- and y-direction in collaborative task for
the small target at the distance of 0.05 m.
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Figure A2. Average force trajectories with standard deviation (shaded area) in x- and y-direction in collaborative task for
the small target at the distance of 0.15 m.
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Figure A3. Average force trajectories with standard deviation (shaded area) in x- and y-direction in collaborative task for
the small target at the distance of 0.25 m.
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Figure A4. Average force trajectories with standard deviation (shaded area) in x- and y-direction in collaborative task for
the medium target at the distance of 0.05 m.
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Figure A5. Average force trajectories with standard deviation (shaded area) in x- and y-direction in collaborative task for
the medium target at the distance of 0.15 m.
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Figure A6. Average force trajectories with standard deviation (shaded area) in x- and y-direction in collaborative task for
the medium target at the distance of 0.25 m.
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Figure A7. Average force trajectories with standard deviation (shaded area) in x- and y-direction in collaborative task for
the large target at the distance of 0.05 m.
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Figure A8. Average force trajectories with standard deviation (shaded area) in x- and y-direction in collaborative task for
the large target at the distance of 0.15 m.
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Figure A9. Average force trajectories with standard deviation (shaded area) in x- and y-direction in collaborative task for
the large target at the distance of 0.25 m.
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