
applied
sciences

Article

A VR Truck Docking Simulator Platform for Developing
Personalized Driver Assistance

Pedro Ribeiro 1,*, André Frank Krause 1, Phillipp Meesters 1, Karel Kural 2, Jason van Kolfschoten 2,
Marc-André Büchner 1, Jens Ohlmann 1, Christian Ressel 1, Jan Benders 2 and Kai Essig 1,*

����������
�������

Citation: Ribeiro, P.; Krause, A.F.;

Meesters, P.; Kural, K.; van

Kolfschoten, J.; Büchner, M.-A.;

Ohlmann, J.; Ressel, C.; Benders, J.;

Essig, K. A VR Truck Docking

Simulator Platform for Developing

Personalized Driver Assistance. Appl.

Sci. 2021, 11, 8911. https://doi.org/

10.3390/app11198911

Academic Editors: Maria Torres Vega

and Michele Russo

Received: 1 July 2021

Accepted: 15 September 2021

Published: 24 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Communication and Environment, Rhine-Waal University of Applied Sciences,
47475 Kamp-Lintfort, Germany; andrefrank.krause@hochschule-rhein-waal.de (A.F.K.);
Phillipp.Meesters@hsrw.org (P.M.); Marc-Andre.Buechner2@hsrw.org (M.-A.B.);
Jens.Ohlmann@hsrw.org (J.O.); cr@hsrw.eu (C.R.)

2 School of Engineering and Automotive, HAN University of Applied Sciences,
6826 CC Arnhem, The Netherlands; karel.kural@han.nl (K.K.); Jason.vanKolfschoten@han.nl (J.v.K.);
Jan.Benders@han.nl (J.B.)

* Correspondence: pedro.ribeiro@hochschule-rhein-waal.de (P.R.); kai.essig@hochschule-rhein-waal.de (K.E.)

Abstract: Professional truck drivers frequently face the challenging task of manually backwards
manoeuvring articulated vehicles towards the loading bay. Logistics companies experience costs
due to damage caused by vehicles performing this manoeuvre. However, driver assistance aimed
to support drivers in this special scenario has not yet been clearly established. Additionally, to
optimally improve the driving experience and the performance of the assisted drivers, the driver
assistance must be able to continuously adapt to the needs and preferences of each driver. This paper
presents the VISTA-Sim, a platform that uses a virtual reality (VR) simulator to develop and evaluate
personalized driver assistance. This paper provides a comprehensive account of the VISTA-Sim,
describing its development and main functionalities. The paper reports the usage of VISTA-Sim
through the scenario of parking a semi-trailer truck in a loading bay, demonstrating how to learn
from driver behaviours. Promising preliminary results indicate that this platform provides means
to automatically learn from a driver’s performance. The evolution of this platform can offer ideal
conditions for the development of ADAS systems that can automatically and continuously learn
from and adapt to an individual driver. Therefore, future ADAS systems can be better accepted and
trusted by drivers. Finally, this paper discusses the future directions concerning the improvement of
the platform.

Keywords: virtual reality; machine learning; driver assistance systems; personalization; semi-trailer
truck

1. Introduction

The automotive sector became one of the largest investors in augmented (AR) and
virtual reality (VR) technologies and is expected to reach about $673 Billion by 2025 [1].
Particularly, the reduced time to market, the need for innovative products, application of
new technologies and the need to continually improve quality in the automotive sector has
led to an increase in the use of VR/AR applications for design, manufacturing, training
and component evaluation [2,3]. Another important factor is the possibility to identify
problems already in the early development process without the need for a time consuming
and expensive implementation of a physical prototype. Technical improvements over recent
years in hardware, software products and display technologies allow not only to model
the design of the different parts of an automobile, but also to simulate their functionality
in interactive and realistic driving simulations. These developments demonstrate that
VR/AR technologies are the place where interdisciplinary fundamental research and
engineering sciences meet to design and evaluate the techniques and processes of tomorrow.

Appl. Sci. 2021, 11, 8911. https://doi.org/10.3390/app11198911 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11198911
https://doi.org/10.3390/app11198911
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11198911
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11198911?type=check_update&version=2

Appl. Sci. 2021, 11, 8911 2 of 21

Such environments are the perfect “what-if machine” for creating rich audiovisual-haptic
immersions and situated experiences. They enable interactive systems that combine (real
and virtual) sensory, motor and cognitive experiences and can be explored in an application
and result-oriented manner, without the limitations of the technical feasibility of hardware
components and the structure/space requirements for different laboratory environments
and test car availability. In this way, designers, developers and customers can interact
with products that are still in the development stage, with virtual rooms for physically
correct visualizations and immersive simulations of driving dynamics in driving simulators.
Acceptance and UX studies in automated vehicles have so far primarily been examined
using surveys or flat-screen-based driving simulators. These simulators often evolved
into VR simulators, providing a higher degree of immersion. Therefore, in recent times,
VR simulators have become a helpful tool for researchers to investigate the influence of
different factors on driver response behaviours under different environmental and driving
conditions [4].

Another important development to study and predict driver behaviour became rea-
sonable through the rapid developments in AI technologies. With the advent of the 3rd
AI wave around 2020, AI started leading to machines capable of learning in a way that
is much more similar to how humans learn. These systems will be able to learn from
human behaviour, to understand context and meaning, and to use these capacities to adapt
to different application fields (in contrast to current systems which only work well in a
particular application environment). Modern AI approaches will also require fewer data
samples for training, and will learn and function with less supervision as well as commu-
nicate with humans in a natural, adaptive and anticipative way, leading finally towards
personalized and anticipative AI assistants. The three terms going along with the 3rd wave
of AI applications are: explainability, interpretability and transparency. Explainable AI
(XAI) means artificial intelligence in which the system outcome is made transparent so that
it can be interpreted and understood by a human (in contrast to current systems where
the input parameters and decision behaviour are hidden in a “black box”) [5,6]. With
these novel competencies, XAI aims to promote a greater understanding and trustiness
between humans and machines [7]. Therefore, future AI models must be able to explain
their decisions, make their decision behaviour transparent, and accept corrective input
from the user (augmented intelligence). The feedback from the user can also be used to
further train the AI.

Bringing both technologies (XAI and VR/AR simulations) together opens up new
perspectives in the development of intelligent vehicles which can learn from multimodal
driver data recorded in VR/AR simulations, but can also use the insights to provide
novice drivers with individualized and context-sensitive assistance if a deviation from
expert behaviour is detected. This allows not only optimized training environments, but
also the development of Advanced Driver Assistance Systems (ADAS), which can adapt
individually to continuous human driver input and explain their decision behaviour, as
well as provide adequate feedback. This will not only lead to a higher acceptance rate for
future ADAS, but also increase the drivers’ trust in these systems. This is crucial, as drivers
cannot be forced to make use of the system while logistics companies seek to limit the cost
of damage and unnecessary delays. This paper illustrates the approaches toward such an
intelligent VR-simulator platform for the design and evaluation of personalized ADAS for
the truck docking process.

To explore these novel approaches, a specific driving scenario was chosen. In this
scenario, truck drivers perform a rearward docking manoeuver towards a loading bay
(dock). The advantage of using this scenario lies in the limited operational design domain,
which is less complex and well-structured compared with other well-known driving
scenarios in which ADAS systems operate, such as lane change assistance or adaptive
cruise control. The rearward docking scenario, by nature, limits the number of vehicles
and the speed with which they operate. Additionally, by exploring this driving scenario,
it is also possible to profit from the fact that the loading bays are static and their position

Appl. Sci. 2021, 11, 8911 3 of 21

is well known. This driving scenario has been explored for several years, first within a
project INTRALOG targeting the development of autonomous rearward docking [8] and
currently through the VISTA project [9] (see Section 1.2). In the context of the VISTA project,
a VR Truck-Docking Simulator was developed on which this paper is based and which is
described in more detail in Section 2.

1.1. Background and Previous Work

Virtual reality technology has been applied in different areas of the automotive in-
dustry by diverse automotive manufacturers [10]. Marketing and sales are some of the
application areas in which manufacturers explored the potential of VR technologies. For
instance, VR environments that allow customers to configure a vehicle offer a more immer-
sive and enhanced experience to customers. Additionally, the manufacturer benefits from
a virtual showroom that saves resources such as space. Moreover, in the area of marketing
and sales, the possibility to offer a virtual test drive was explored. The advantage here
is that the automotive companies have a novel and powerful channel to advertise their
product, even when the car is not yet released. In the application area of vehicle design, VR
is used to support the development of the product. VR brings the advantage of improving
the decision-making process and the product quality and it also allows rapid prototyping
that might potentially reduce costs and the time-to-market.

In line with the application of VR by different automotive manufactures, the research
and development of novel concepts have also been explored with the support of VR plat-
forms. In fact, VR simulators have recently been used in the development and evaluation
of ADAS. A good example is the application of VR to training. Educating users to interact
with automated systems is considered highly important [11,12].

For example, learning about ADAS functionalities using a written manual has some
drawbacks such as misinterpretation or forgetfulness. On the other hand, training in a real
context might offer a richer and effective learning experience. However, there are not many
automatic driving cars available for testing. Additionally, training drivers in a real setting
is not risk-free: training drivers in some more dangerous scenarios (e.g., driver distraction)
would be valuable, but such scenarios are naturally avoided. Hence, researchers explored
VR simulators to train drivers. This provides drivers with the opportunity to have a safe
and risk-free interaction with ADAS, promoting the experience of different scenarios such
as the adaptive-cruise-control, or the automatic take-over request [13]. VR has several
benefits: (1) prototypical traffic and environmental situations can be repeated as many times
as necessary; (2) concepts such as a novel Human–Machine Interaction (HMI) approach
can be simulated as digital prototypes and can be easily integrated into the VR simulation,
saving time and money; (3) intensive tests with many participants might be executed,
leading to valuable insights.

In a recent study, researchers investigated the effectiveness of a light VR-simulator to
train automated vehicle drivers by comparing it against a fixed-base simulator [13]. This
light VR system, composed of a Head-Mounted Display (HMD) and a game racing wheel,
proved to promote an adequate level of immersion for learning about ADAS functionalities
and offered the advantage to be portable and cost-effective. Despite reinforcing the idea
that a VR-simulator is a valuable tool for training purposes in automated vehicles, the
results of this study also suggest that participants preferred the light VR system in terms of
usefulness, ease of use and realism.

Until now, researchers explored VR simulators and focused on the study of ADAS
and automotive HMI on passenger cars. However, the literature has rarely mentioned
VR simulators in the context of truck driving. Due to the increasing integration of ADAS
functionalities in trucks, there is a necessity to find new ways of developing and designing
ADAS for trucks. In a recent study, a light VR-simulator was used to examine different
HMI designs with the intention to assess culture-related effects on the perception of and
preference across German and Japanese truck drivers [14]. In this study, researchers
highlighted that the light VR-simulator allowed the quick and efficient evaluation of HMI

Appl. Sci. 2021, 11, 8911 4 of 21

designs. Besides this, researchers also suggested that the integration of eye-tracking might
be valuable to better understand driving behaviour and HMI usage.

Recently, there has been an increase in the usage of neural network approaches for the
analysis and prediction of driver behaviour based on input data retrieved from sensors
within the car and from the outside world. To predict the driving behaviour, habits and
intentions of the respective user in response to the external world and internal car-events,
driver models were developed [15,16]. To date, these models are static systems, tailored to
the average driver while not being sensitive to inter-driver and intra-personal differences,
needs or preferences [17]. Therefore, each evaluation test has to be performed with several
driver models representing the various driver types. A personalization of the system
currently can only be done at the beginning of the drive or by manual driver interaction. It
is believed that a continuous, individual adaptation to personal driving habits is crucial
for a good driving experience: a non-personalized system might otherwise annoy the
driver with too much or irrelevant information. Potential consequences might be that the
driver gets sidetracked or even disables the system, as well as loses trust and confidence
in the system. A continuous adaptation requires the synchronized integration of data
streams from different components. Only a holistic system that continuously adapts to
the individual user can reduce the number of accidents and road deaths by providing
user- and situation-relevant feedback. This guarantees an optimal user experience and a
reduction in the cognitive load for the driver. The application of neural network techniques
for time-series prediction and classification of individual driver behaviour can open up
new possibilities for the implementation of more flexible driver models.

Recurrent Neural Nets (RNN) are currently used in the automobile sector [18,19] and
are mainly used for time-series prediction and classification. They can analyze data and
behaviour over time, to identify temporal patterns and behaviours in the provided data
sets. RNNs are used to track and predict paths of moving objects (e.g., pedestrians) and
therefore to determine potential collisions. RNNs can also be used to predict human actions
and potential future events. For example, Li et al. [18] trained an RNN with long short-term
memory units to learn a human-like driver model that can predict future steering wheel
angles based on road curvature, vehicle speed and previous steering movements. They
argue that their approach provides more human-like steering wheel movements compared
to preview-based models and can therefore increase the acceptance of autonomous vehicles
if these will behave more like human drivers.

A research area that is gaining interest in the automotive research community concerns
the individualization of ADAS. The concept aims at the adaptation of the ADAS’ assistance
functions to the drivers’ preferences, skills and driving behaviour [17]. The authors suggest
that individualization is a continuous process in which the ADAS’ assistance functions
adapt based on the driver behaviour. In that sense, the implementation of the individualiza-
tion module must follow a driver-centric approach in which it continuously integrates the
input of the driver. Darwish and Steinhauer [20] recently explored an approach that uses
deep reinforcement learning to personalize the driving experience, focusing on a scenario
in which the adaptive cruise control function is used to keep an optimal distance to the
car in front. In this work, the authors emphasize that driver’s behaviour and preferences
are volatile, meaning that they can change rapidly depending on their experience and the
novelty of the situations in which drivers have to operate. Hence, the individualization
of ADAS is only achievable within a data-driven approach that is capable of performing
adaptation in real-time and by relying on a limited amount of data. A personalized ADAS
must be able to predict the driving behaviour, habits and intentions of the respective user.
Additionally, external environmental data (traffic signs, pedestrians, obstacles, events) has
to be available to the system using visual object recognition.

In fact, one of the greatest opportunities in exploring a VR-simulator in truck driving
contexts is that multi-dimensional driver data can be recorded to inform the design and
evaluation of ADAS functionalities, HMI concepts and driver models. For example, not
only data about the vehicle (e.g., steering, braking, gear, truck position), but also data about

Appl. Sci. 2021, 11, 8911 5 of 21

the driver can be recorded. For instance, the integration of a microphone can be useful to
record verbal behaviour and hand-tracking allows the study of manual interaction with
any vehicle device including HMI or non-verbal communication. Eye-tracking offers a
multitude of possibilities, such as determining where the driver is looking or the evaluation
of driving fatigue [21].

1.2. Content and Goals of the VISTA Project

While performing the docking manoeuvre at the distribution centre, the driver has
to operate a truck with one or even two attached trailers (truck combination) towards the
loading bay. Handling the manoeuvre properly is a challenge: the driver has constrained
visibility from the cabin and the manoeuvre area is limited in space. Additionally, the
manoeuvre must be performed in a place that has a dynamic nature (e.g., other trucks
manoeuvring, people walking, etc.), meaning that accidents can happen, resulting in
significant costs due to collision damage. For that reason, the Intelligent Truck Applications
in Logistics (INTRALOG) project developed and investigated the effect of an automated
docking system [8]. Path tracking and path planning algorithms have been developed for
logistic vehicle combinations with one or two articulations, for both forward and rearward
docking manoeuvres.

Although some of the main problems of this driving scenario could be attenuated with
the usage of sensors on the trailing vehicles and the usage of an automated docking system,
it would also imply that all the trucks need the same technology integrated, resulting in
significant costs. Moreover, trailers and trucks are often owned by different companies,
which complicates the possibility for trailer instrumentation. Furthermore, logistic com-
panies also have challenges in attracting skilled drivers, so they have a desire to provide
support to less-trained drivers. This induces a desire for docking support functionality,
suiting drivers with varying skills and experience. Based on these observations, a novel
approach is currently being explored in the project VISTA (VIsion Supported Truck docking
Assistant). The VISTA project aims to develop a framework integrating a camera-based
localization system to track in real-time the position of truck and trailer(s) during the
docking process at a distribution centre. Based on this localization system, the optimal
docking path from the current position to the final unloading station is calculated and
provided in the form of audiovisual assistive instructions (e.g., steering recommendation)
either displayed as an appropriately coloured light array located above the windshield or
on an HMI module displayed on a tablet placed on top of the cockpit in the truck cabin.

The target of the present research is to develop the VISTA-Sim, a platform that uses
a VR-simulator as an environment to investigate driver performance, train drivers and
develop and evaluate different forms of context-sensitive and personalized driver assistance
feedback systems. The driving scenario in which this platform is studied refers to the
docking of a truck combination towards the loading bay in a distribution centre. VISTA-Sim
has two main goals. First, the simulator will serve as a tool that allows the validation
of an HMI and different feedback components (such as lights or audiovisual hints, e.g.,
indication arrows or verbalized steering recommendations) designed for the VISTA project.
This offers a driver-centred design approach that allows making decisions in an early stage
of the project. The second goal is to use this platform as a tool to record data that can
be used by machine-learning algorithms to learn about novice- and expert behaviours,
allowing the implementation of a driver model. These insights can be used to estimate
individual driving behaviour or to detect differences from expert driver performance, in
order to provide context- and user-adequate feedback.

In summary, this paper proposes a novel and holistic approach to develop and evaluate
personalized driver assistance using VR technology.

2. VISTA VR-Simulator Platform (VISTA-Sim)

This section describes all the different components of the VISTA-Sim, as well as how
they cooperate to provide an immersive truck-docking experience (see Figure 1). In VISTA-

Appl. Sci. 2021, 11, 8911 6 of 21

Sim, the driver sits in front of a steering wheel with pedals and wears a Virtual Reality
headset with an integrated eye-tracker (see Figure 2b). Integrated into the VR truck cabin
is an HMI module showing the following conceptual features: bird-eye view, distance to
the docking station and steering recommendation.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 21

This section describes all the different components of the VISTA-Sim, as well as how

they cooperate to provide an immersive truck-docking experience (see Figure 1). In

VISTA-Sim, the driver sits in front of a steering wheel with pedals and wears a Virtual

Reality headset with an integrated eye-tracker (see Figure 2b). Integrated into the VR truck

cabin is an HMI module showing the following conceptual features: bird-eye view, dis-

tance to the docking station and steering recommendation.

Figure 1. The high-level view of the VISTA-Sim architecture.

(a) (b)

Figure 2. (a) Vista-Sim hardware setup, (b) Leap motion controller mounted on the HMD.

The system is composed of four main components: (1) path planner combined with

the path tracking controller which runs in Simulink [22]; (2) the VR-simulator that uses

the Unity 3D cross-platform game engine [23]; (3) the driver assistance HMI; and (4) the

Behaviour Analysis Module.

The general functionality can be described as follows: a user wears VR glasses that

display the environmental model of the driver’s outlook from the vehicle cabin whilst

operating in the distribution centre, and the HMI should support the user to successfully

park the vehicle combination at the loading bay. The environmental model consists of a

distribution centre, its surroundings, the vehicle combination and the integrated driver

assistance HMI. The environmental model and HMI are powered by a kinematic model

running in Simulink. The input for both the controller and the kinematic model is pro-

vided by the user through the physical steering wheel in terms of steer angle and pedal

positions as a response to the visual inputs.

2.1. VISTA-Sim Hardware

Figure 1. The high-level view of the VISTA-Sim architecture.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 21

This section describes all the different components of the VISTA-Sim, as well as how

they cooperate to provide an immersive truck-docking experience (see Figure 1). In

VISTA-Sim, the driver sits in front of a steering wheel with pedals and wears a Virtual

Reality headset with an integrated eye-tracker (see Figure 2b). Integrated into the VR truck

cabin is an HMI module showing the following conceptual features: bird-eye view, dis-

tance to the docking station and steering recommendation.

Figure 1. The high-level view of the VISTA-Sim architecture.

(a) (b)

Figure 2. (a) Vista-Sim hardware setup, (b) Leap motion controller mounted on the HMD.

The system is composed of four main components: (1) path planner combined with

the path tracking controller which runs in Simulink [22]; (2) the VR-simulator that uses

the Unity 3D cross-platform game engine [23]; (3) the driver assistance HMI; and (4) the

Behaviour Analysis Module.

The general functionality can be described as follows: a user wears VR glasses that

display the environmental model of the driver’s outlook from the vehicle cabin whilst

operating in the distribution centre, and the HMI should support the user to successfully

park the vehicle combination at the loading bay. The environmental model consists of a

distribution centre, its surroundings, the vehicle combination and the integrated driver

assistance HMI. The environmental model and HMI are powered by a kinematic model

running in Simulink. The input for both the controller and the kinematic model is pro-

vided by the user through the physical steering wheel in terms of steer angle and pedal

positions as a response to the visual inputs.

2.1. VISTA-Sim Hardware

Figure 2. (a) Vista-Sim hardware setup, (b) Leap motion controller mounted on the HMD.

The system is composed of four main components: (1) path planner combined with
the path tracking controller which runs in Simulink [22]; (2) the VR-simulator that uses
the Unity 3D cross-platform game engine [23]; (3) the driver assistance HMI; and (4) the
Behaviour Analysis Module.

The general functionality can be described as follows: a user wears VR glasses that
display the environmental model of the driver’s outlook from the vehicle cabin whilst
operating in the distribution centre, and the HMI should support the user to successfully
park the vehicle combination at the loading bay. The environmental model consists of a
distribution centre, its surroundings, the vehicle combination and the integrated driver
assistance HMI. The environmental model and HMI are powered by a kinematic model
running in Simulink. The input for both the controller and the kinematic model is provided
by the user through the physical steering wheel in terms of steer angle and pedal positions
as a response to the visual inputs.

2.1. VISTA-Sim Hardware

This section describes the hardware setup (see Figure 2a) for providing the immer-
sive experience of driving a truck, and specifically to perform docking manoeuvres at a
simulated distribution centre. Following a similar approach to Sportillo et al. [13], there

Appl. Sci. 2021, 11, 8911 7 of 21

was implemented a Light Virtual Reality Simulator that uses the Head-Mounted Display
(HMD) HTC VIVE Pro Eye [24], which provides stereoscopic vision with a resolution
of 1440 × 1600 pixels per eye, a refresh rate of 90 Hz and a field of view of 110 degrees.
The HMD is equipped with infrared sensors to track the user’s position in real-time by
detecting infrared pulses coming from two emitters. The HMD also comes with embedded
eye-tracking and headphones. This HMD provides a highly immersive VR experience,
while the user can freely observe the surrounding virtual world in any direction just by
turning the head. Additionally, it was used the Logitech G29 driving system [25], con-
sisting of a steering wheel and a set of pedals. With the driving system, the users can
control the truck in the virtual world. Finally, the system also integrates the Leap motion
controller [26], an optical tracking module to track user’s hand poses in real-time. The Leap
motion controller is mounted directly in front of the HMD, as can be seen in Figure 2b.

2.2. Path Planner and Path Tracking Controller

The main role of the path planner is to establish an optimal bi-directional reference
path for the vehicle combination, which connects the initial pose and the terminal pose rep-
resented by the loading dock. On the other side, the role of the path tracking controller is to
derive a steering angle based on the error between the actual pose of the vehicle and a pre-
viously established reference path. This error can subsequently be used to provide advice
to the driver. Given the low operational speed (below 2 m/s), both subsystems are based
on the assumption that the vehicle combination driving behaviour is perfectly kinematic,
and thus no tyre slip is assumed. A high-level description of both subsystems follows.

2.2.1. Path Planner

The path planner uses a lattice-based approach in combination with motion primitives,
where the environment is divided into a set of discrete states which can be connected and
which can create the complete solution for the path. In the first step, the operational
environment is described in terms of free and restricted space using polygons which
specify the location, shape and size of the obstacles in the sensed environment. The blue
polygon in Figure 3a depicts the available space, whereas the red polygons represent
the obstacles, whose positions are also consistent with the environmental models in the
VR. The state of the vehicle combination is defined by the position of the centre of the
semitrailer axle in the global coordinate system x2 and y2, the yaw angle of the semitrailer
θ2, and the articulation angle γ. Thus, the path planning problem is reduced to finding
the path between two discrete states in the path planning environment where the path
segments, called motion primitives, are generated (see Figure 3b). This is achieved by
solving an optimal control problem from one of the discrete states to the other, while using
the kinematic equations of the articulated vehicle and differential constraints which limit
the path curvature and steering angle rate and acceleration.

This guarantees that the created path segments are kinematically viable for the vehicle
and are still negotiable by the human driver given human physiological limitations in
actuation of the steering wheel. The detailed description of the optimal control problem
with a desired cost function to optimize some parameters, the kinematic constraints and its
solutions, can be found in [27,28].

Given a library of motion primitives, an algorithm is required to find an optimal
combination of motion primitives to traverse from one point to another, using the free
space within the operational environment and avoiding the obstacles. For this purpose, the
graph search algorithm A star algorithm is used with a collision detection module, which
checks for collisions while planning. The customized A star algorithm is also extensively
explained in [27].

Appl. Sci. 2021, 11, 8911 8 of 21
Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 21

(a) (b)

Figure 3. (a) Path planning environment with polygons; and (b) motion primitives of a truck semitrailer.

This guarantees that the created path segments are kinematically viable for the vehi-

cle and are still negotiable by the human driver given human physiological limitations in

actuation of the steering wheel. The detailed description of the optimal control problem

with a desired cost function to optimize some parameters, the kinematic constraints and

its solutions, can be found in [27,28].

Given a library of motion primitives, an algorithm is required to find an optimal com-

bination of motion primitives to traverse from one point to another, using the free space

within the operational environment and avoiding the obstacles. For this purpose, the

graph search algorithm A star algorithm is used with a collision detection module, which

checks for collisions while planning. The customized A star algorithm is also extensively

explained in [27].

2.2.2. Path Tracking Controller

The main role of the path following controller is to navigate the central turn point U

of the last vehicle unit (described by x2 and y2 in Figure 4) along the reference path, whilst

actuating the steering angle of the hauling unit δ. It is required that the controller is bi-

directional, thus working for both the forward and reverse motion in the docking ma-

noeuvre, and needs to be modular to be applicable to multiple vehicle combination lay-

outs. The control problem is formulated as a path following problem and uses a technique

of virtual tractor, fully described in [28]. Herewith, the vehicle combination is considered

with respect to a set of known reference nodes Ri, which constitute the reference path

generated by the path planner as shown in Figure 4. Each node Ri is defined by the posi-

tion represented by (Xref(i), Yref(i)) and orientation represented by θref(i), all measured in the

coordinate system e→0. Although the reference path is characterized by discrete nodes,

thanks to their high density, no interpolation is required. Subsequently, the lateral error

eyU can be obtained in the local coordinate system e→3 fixed to the controlled turn-point U

of the rear-most vehicle unit.

Figure 3. (a) Path planning environment with polygons; and (b) motion primitives of a truck semitrailer.

2.2.2. Path Tracking Controller

The main role of the path following controller is to navigate the central turn point
U of the last vehicle unit (described by x2 and y2 in Figure 4) along the reference path,
whilst actuating the steering angle of the hauling unit δ. It is required that the controller
is bi-directional, thus working for both the forward and reverse motion in the docking
manoeuvre, and needs to be modular to be applicable to multiple vehicle combination
layouts. The control problem is formulated as a path following problem and uses a
technique of virtual tractor, fully described in [28]. Herewith, the vehicle combination is
considered with respect to a set of known reference nodes Ri, which constitute the reference
path generated by the path planner as shown in Figure 4. Each node Ri is defined by the
position represented by (Xref(i), Yref(i)) and orientation represented by θref(i), all measured in
the coordinate system e→0. Although the reference path is characterized by discrete nodes,
thanks to their high density, no interpolation is required. Subsequently, the lateral error
eyU can be obtained in the local coordinate system e→3 fixed to the controlled turn-point U
of the rear-most vehicle unit.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 21

Figure 4. Determination of relevant reference point which is used to determine the tracking errors.

The lateral error reads:

𝑒𝑦𝑈
= ∆𝑦𝑐𝑜𝑠𝜃2 − ∆𝑥𝑠𝑖𝑛𝜃2

Besides the lateral error, the controller also employs an angular error eθU in order to

ensure the rearmost vehicle has the same orientation as the relevant reference point RREL.

The angular error is defined by:

𝑒𝜃𝑈
= 𝑓(𝑥) = {

𝜃𝑟𝑒𝑓 − 𝜃2,∧ |𝜃𝑟𝑒𝑓 − 𝜃2| ≤ 𝜋

𝜃𝑟𝑒𝑓 − 𝜃2 − 2𝜋𝑠𝑖𝑔𝑛(𝜃𝑟𝑒𝑓 − 𝜃2),∧ otherwise

To formalize the control problem, the classical model of nonlinear kinematic articu-

lated vehicle can be rewritten as follows:

𝑥̇(𝑡) = 𝑓(𝑥(𝑡)) + 𝑔(𝑥(𝑡), 𝑢(𝑡))

𝑦(𝑡) = [

𝑥2(𝑡)

𝑦2(𝑡)

𝜃2(𝑡)
]

In the model above, x = [θ0; x0; y0; θ2]T are system states representing the pose of the

hauling unit and yaw angle of the semitrailer, u = [δ] is the control input representing the

steering angle of the hauling unit, the velocity of the hauling unit v0 is known to be con-

stant, which can be either positive or negative, and y is the output which gives the pose

of the point U given by x2, y2, and θ2. To solve the control problem, the goal is to design

the control input u such that closed-loop stability is guaranteed and the controlled output

y follows the reference path, such that:

𝑒(𝑡) ≔ [
𝑒𝑦𝑈

(𝑡)

𝑒𝜃𝑈
(𝑡)

] = ℎ(𝑦(𝑡), 𝑅𝑖) → 0, for 𝑡 → ∞

In Figure 5, the control loop structure is depicted. As can be seen, it includes a known

set of reference path nodes from which the relevant nodes are selected based on the cur-

rent pose of point U, a controller, and a kinematic model of the articulated vehicle. The

controller consists of three blocks, these being an error definition, a driver model and the

inverse kinematic model, respectively. Further details are provided in [29], where the con-

troller is also subjected to the stability analysis and the robustness is tested by deployment

on the scaled vehicle lab-platform. Achieved results provided solid evidence that the

Figure 4. Determination of relevant reference point which is used to determine the tracking errors.

The lateral error reads:
eyU = ∆ycosθ2 − ∆xsinθ2

Appl. Sci. 2021, 11, 8911 9 of 21

Besides the lateral error, the controller also employs an angular error eθU in order to
ensure the rearmost vehicle has the same orientation as the relevant reference point RREL.

The angular error is defined by:

eθU = f (x) =

 θre f − θ2,∧
∣∣∣θre f − θ2

∣∣∣ ≤ π

θre f − θ2 − 2πsign
(

θre f − θ2

)
,∧otherwise

To formalize the control problem, the classical model of nonlinear kinematic articulated
vehicle can be rewritten as follows:

.
x(t) = f (x(t)) + g(x(t), u(t))

y(t) =

 x2(t)
y2(t)
θ2(t)


In the model above, x = [θ0; x0; y0; θ2]T are system states representing the pose of

the hauling unit and yaw angle of the semitrailer, u = [δ] is the control input representing
the steering angle of the hauling unit, the velocity of the hauling unit v0 is known to be
constant, which can be either positive or negative, and y is the output which gives the pose
of the point U given by x2, y2, and θ2. To solve the control problem, the goal is to design
the control input u such that closed-loop stability is guaranteed and the controlled output
y follows the reference path, such that:

e(t)
[

eyU (t)
eθU (t)

]
= h(y(t), Ri)→ 0, for t→ ∞

In Figure 5, the control loop structure is depicted. As can be seen, it includes a known
set of reference path nodes from which the relevant nodes are selected based on the current
pose of point U, a controller, and a kinematic model of the articulated vehicle. The controller
consists of three blocks, these being an error definition, a driver model and the inverse
kinematic model, respectively. Further details are provided in [29], where the controller is
also subjected to the stability analysis and the robustness is tested by deployment on the
scaled vehicle lab-platform. Achieved results provided solid evidence that the controller
framework may be employed also for “driver in the loop” applications, which is further
exploited in the VISTA project and the VR simulator.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 21

controller framework may be employed also for “driver in the loop” applications, which

is further exploited in the VISTA project and the VR simulator.

Figure 5. Controller structure.

2.3. Simulation Environment

The VR-simulator was developed using the Unity 3D game engine [23]. Unity is a

powerful platform for the development of a VR simulator offering a simple VR integra-

tion. In Unity, the GameObjects are the building blocks that compose the 3D scenes. A

GameObject is typically associated with a 3D object and aggregate one or more functional

components which determine the behaviour and appearance of the GameObject.

2.3.1. The Virtual Semi-Trailer Truck and the Distribution Centre

The VR-simulator allows the 3D representation of (i), the Volvo FH16 tractor unit and

a trailer and (ii) the distribution centre environment. The distribution centre environment

was modelled based on dimensions measured in the real world and consists of ten num-

bered loading docks and three parameterizable docking assist cameras. The floor of the

distribution centre area has floor-marking guidelines aligned with the loading dock. Ad-

ditionally, the texture of the floor can be easily changed whenever the simulator requires

different conditions. The surrounding environment is visualized using a realistic sky-

dome. Each loading dock also integrates a red and green light to inform the driver about

the remaining distance of the truck to the docking door in order to support the docking

process (see Figure 6a). Additionally, there is the possibility to determine the targeted

loading dock and to park trucks in any lane (see Figure 6b).

(a) (b)

Figure 6. (a) Distribution centre loading docks and the three docking assist cameras; (b) Distribution centre with a para-

metrized number of parked trucks.

Previous field studies with drivers wearing binocular mobile eye-tracking glasses

while doing the truck docking process in the real world revealed that they mainly switch

their gaze movements from the inside instruments to the mirrors. These results illustrate

how important it is to simulate the mirrors realistically. For this, the curvature of the mir-

rors is of particular importance. To render reflections, reflection probes are currently used

Figure 5. Controller structure.

2.3. Simulation Environment

The VR-simulator was developed using the Unity 3D game engine [23]. Unity is a
powerful platform for the development of a VR simulator offering a simple VR integra-
tion. In Unity, the GameObjects are the building blocks that compose the 3D scenes. A
GameObject is typically associated with a 3D object and aggregate one or more functional
components which determine the behaviour and appearance of the GameObject.

Appl. Sci. 2021, 11, 8911 10 of 21

2.3.1. The Virtual Semi-Trailer Truck and the Distribution Centre

The VR-simulator allows the 3D representation of (i), the Volvo FH16 tractor unit
and a trailer and (ii) the distribution centre environment. The distribution centre environ-
ment was modelled based on dimensions measured in the real world and consists of ten
numbered loading docks and three parameterizable docking assist cameras. The floor of
the distribution centre area has floor-marking guidelines aligned with the loading dock.
Additionally, the texture of the floor can be easily changed whenever the simulator requires
different conditions. The surrounding environment is visualized using a realistic skydome.
Each loading dock also integrates a red and green light to inform the driver about the
remaining distance of the truck to the docking door in order to support the docking process
(see Figure 6a). Additionally, there is the possibility to determine the targeted loading dock
and to park trucks in any lane (see Figure 6b).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 21

controller framework may be employed also for “driver in the loop” applications, which

is further exploited in the VISTA project and the VR simulator.

Figure 5. Controller structure.

2.3. Simulation Environment

The VR-simulator was developed using the Unity 3D game engine [23]. Unity is a

powerful platform for the development of a VR simulator offering a simple VR integra-

tion. In Unity, the GameObjects are the building blocks that compose the 3D scenes. A

GameObject is typically associated with a 3D object and aggregate one or more functional

components which determine the behaviour and appearance of the GameObject.

2.3.1. The Virtual Semi-Trailer Truck and the Distribution Centre

The VR-simulator allows the 3D representation of (i), the Volvo FH16 tractor unit and

a trailer and (ii) the distribution centre environment. The distribution centre environment

was modelled based on dimensions measured in the real world and consists of ten num-

bered loading docks and three parameterizable docking assist cameras. The floor of the

distribution centre area has floor-marking guidelines aligned with the loading dock. Ad-

ditionally, the texture of the floor can be easily changed whenever the simulator requires

different conditions. The surrounding environment is visualized using a realistic sky-

dome. Each loading dock also integrates a red and green light to inform the driver about

the remaining distance of the truck to the docking door in order to support the docking

process (see Figure 6a). Additionally, there is the possibility to determine the targeted

loading dock and to park trucks in any lane (see Figure 6b).

(a) (b)

Figure 6. (a) Distribution centre loading docks and the three docking assist cameras; (b) Distribution centre with a para-

metrized number of parked trucks.

Previous field studies with drivers wearing binocular mobile eye-tracking glasses

while doing the truck docking process in the real world revealed that they mainly switch

their gaze movements from the inside instruments to the mirrors. These results illustrate

how important it is to simulate the mirrors realistically. For this, the curvature of the mir-

rors is of particular importance. To render reflections, reflection probes are currently used

Figure 6. (a) Distribution centre loading docks and the three docking assist cameras; (b) Distribution centre with a
parametrized number of parked trucks.

Previous field studies with drivers wearing binocular mobile eye-tracking glasses
while doing the truck docking process in the real world revealed that they mainly switch
their gaze movements from the inside instruments to the mirrors. These results illustrate
how important it is to simulate the mirrors realistically. For this, the curvature of the
mirrors is of particular importance. To render reflections, reflection probes are currently
used as a solution (see Figure 7). Although this technique offers a realistic experience, it
also comes with some limitations. A reflection probe is similar to a camera that captures a
spherical view of the 3D scene in all directions. This implies that the objects located outside
the field of view increases the rendering effort per frame considerably. Since the truck has
six mirrors, it can add up to significant effects on the frame rate. The solution adopted
to overcome this problem was to dynamically deactivate or decrease the resolution and
refresh rate of the reflection probes based on the current camera direction as well as the
drivers’ field of view determined from the recorded eye-tracking data. Note that the driver
can also rotate each of the six mirrors in the simulator in order to meet his/her preferences.

Appl. Sci. 2021, 11, 8911 11 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 21

as a solution (see Figure 7). Although this technique offers a realistic experience, it also

comes with some limitations. A reflection probe is similar to a camera that captures a

spherical view of the 3D scene in all directions. This implies that the objects located out-

side the field of view increases the rendering effort per frame considerably. Since the truck

has six mirrors, it can add up to significant effects on the frame rate. The solution adopted

to overcome this problem was to dynamically deactivate or decrease the resolution and

refresh rate of the reflection probes based on the current camera direction as well as the

drivers’ field of view determined from the recorded eye-tracking data. Note that the

driver can also rotate each of the six mirrors in the simulator in order to meet his/her

preferences.

Figure 7. Mirrors with real-time reflections using reflection probes.

2.3.2. Driver Assistance Human-Machine Interface (HMI)

One of the central components of the VR-simulator that is integrated into the interior

of the Volvo FH16 truck cabin is the driver assistance HMI. To be more specific, a 3D

model of a tablet device was installed to run the driver assistance HMI and to present

audio and graphical instructions to the user. The tablet can be placed at two different lo-

cations (centre or left side) (see Figure 8). Note that in project VISTA, the VR-simulator is

used to evaluate a variety of HMI designs, not only limited to a tablet device-based HMI.

However, for this research, a tablet-based HMI version is used underneath.

(a) (b)

Figure 7. Mirrors with real-time reflections using reflection probes.

2.3.2. Driver Assistance Human-Machine Interface (HMI)

One of the central components of the VR-simulator that is integrated into the interior
of the Volvo FH16 truck cabin is the driver assistance HMI. To be more specific, a 3D model
of a tablet device was installed to run the driver assistance HMI and to present audio and
graphical instructions to the user. The tablet can be placed at two different locations (centre
or left side) (see Figure 8). Note that in project VISTA, the VR-simulator is used to evaluate
a variety of HMI designs, not only limited to a tablet device-based HMI. However, for this
research, a tablet-based HMI version is used underneath.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 21

as a solution (see Figure 7). Although this technique offers a realistic experience, it also

comes with some limitations. A reflection probe is similar to a camera that captures a

spherical view of the 3D scene in all directions. This implies that the objects located out-

side the field of view increases the rendering effort per frame considerably. Since the truck

has six mirrors, it can add up to significant effects on the frame rate. The solution adopted

to overcome this problem was to dynamically deactivate or decrease the resolution and

refresh rate of the reflection probes based on the current camera direction as well as the

drivers’ field of view determined from the recorded eye-tracking data. Note that the

driver can also rotate each of the six mirrors in the simulator in order to meet his/her

preferences.

Figure 7. Mirrors with real-time reflections using reflection probes.

2.3.2. Driver Assistance Human-Machine Interface (HMI)

One of the central components of the VR-simulator that is integrated into the interior

of the Volvo FH16 truck cabin is the driver assistance HMI. To be more specific, a 3D

model of a tablet device was installed to run the driver assistance HMI and to present

audio and graphical instructions to the user. The tablet can be placed at two different lo-

cations (centre or left side) (see Figure 8). Note that in project VISTA, the VR-simulator is

used to evaluate a variety of HMI designs, not only limited to a tablet device-based HMI.

However, for this research, a tablet-based HMI version is used underneath.

(a) (b)

Figure 8. (a) HMI installed on the left side; (b) HMI installed in a central position.

Through the HMI, the driver can obtain valuable information (see Figure 9). For
instance, the driver can check in which loading bay he/she has to park the truck, for which
the HMI displays the identification number of the loading bay target. Additionally, based
on the ideal path, the driver assistance HMI can inform in which direction the steering
wheel has to be rotated. For this, two dynamic visual representations are used: (i) the
stylized steering wheel complemented with an arrow and a text and (ii) the arrow-based
instruction that is complemented with the text. Furthermore, the HMI also provides
the distance to the loading bay and an embedded video feed of the camera system that
overwatches the docking area. Finally, complementary audio cues are used to represent

Appl. Sci. 2021, 11, 8911 12 of 21

steering angles and distance to the dock. This approach is employed to allow drivers to
receive information without explicitly looking at the HMI screen.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 21

Figure 8. (a) HMI installed on the left side; (b) HMI installed in a central position.

Through the HMI, the driver can obtain valuable information (see Figure 9). For in-

stance, the driver can check in which loading bay he/she has to park the truck, for which

the HMI displays the identification number of the loading bay target. Additionally, based

on the ideal path, the driver assistance HMI can inform in which direction the steering

wheel has to be rotated. For this, two dynamic visual representations are used: (i) the styl-

ized steering wheel complemented with an arrow and a text and (ii) the arrow-based in-

struction that is complemented with the text. Furthermore, the HMI also provides the dis-

tance to the loading bay and an embedded video feed of the camera system that over-

watches the docking area. Finally, complementary audio cues are used to represent steer-

ing angles and distance to the dock. This approach is employed to allow drivers to receive

information without explicitly looking at the HMI screen.

Figure 9. Driver assistance HMI screenshot.

2.3.3. Integration with Path Tracking Controller

In order to implement the inter-process communication between the Simulink pro-

cess and the Unity 3D process, a User Datagram Protocol (UDP) communication channel

was established. With this approach, Simulink transmits in real-time: (i) the tractor’s po-

sition and rotation; (ii) the trailer’s position and rotation; (iii) the velocity; (iv) steering

wheel angle; (v) the selected gear; (vi) the recommended steering angle; and (vii) the dis-

tance to the targeted docking station. These data are then received on the Unity side with

the help of a script that processes the incoming packets and then distributes the infor-

mation to the simulated truck. For example, based on the information received, the posi-

tion and rotation of the truck are updated in real-time. In a similar way, the recommended

steering angle and the distance to the targeted loading bay of the HMI’s GameObject are

updated in real-time and presented to the driver.

2.3.4. Tracking Systems

The VR-simulator uses the SRanipal-runtime to access the eye-tracking capabilities

of the HTC VIVE Pro Eye [24]. The HMD has an integrated binocular eye-tracker with a

sampling rate of 120 Hz, an estimated measured gaze accuracy of 0.5° as well as a tracka-

ble field of view of 110°. In the VR simulator, the main goal of eye-tracking is not only to

Figure 9. Driver assistance HMI screenshot.

2.3.3. Integration with Path Tracking Controller

In order to implement the inter-process communication between the Simulink process
and the Unity 3D process, a User Datagram Protocol (UDP) communication channel was
established. With this approach, Simulink transmits in real-time: (i) the tractor’s position
and rotation; (ii) the trailer’s position and rotation; (iii) the velocity; (iv) steering wheel
angle; (v) the selected gear; (vi) the recommended steering angle; and (vii) the distance
to the targeted docking station. These data are then received on the Unity side with the
help of a script that processes the incoming packets and then distributes the information
to the simulated truck. For example, based on the information received, the position and
rotation of the truck are updated in real-time. In a similar way, the recommended steering
angle and the distance to the targeted loading bay of the HMI’s GameObject are updated
in real-time and presented to the driver.

2.3.4. Tracking Systems

The VR-simulator uses the SRanipal-runtime to access the eye-tracking capabilities
of the HTC VIVE Pro Eye [24]. The HMD has an integrated binocular eye-tracker with a
sampling rate of 120 Hz, an estimated measured gaze accuracy of 0.5◦ as well as a trackable
field of view of 110◦. In the VR simulator, the main goal of eye-tracking is not only to
determine in real-time which objects the driver is directly focusing on but also which
objects he/she is looking at through the mirror (see Figure 10).

The simulator uses a combined gaze ray to determine which GameObject is focused
on. The combined gaze ray originates between the centre of the left and right cornea and is
cast through the intersection point of the left and right gaze ray (see Figure 11a). To use
the combined gaze ray in unity, its normalized direction vector is used to cast a raycast
from the VR camera against the scene. A GameObject that is hit by this ray is considered to
be the current focus of the driver. In order to detect which GameObjects are focused in a
mirror, the first ray is reflected off the surface it hits and is casted again in this direction
(see Figure 11b). This happens only when the first ray hits a GameObject that is tagged
as “mirror”. Whenever the second ray hits any GameObject or Terrain, then a spherecast
(i.e., a raycast that uses a sphere collider instead of a point) is cast. The spherecast moves

Appl. Sci. 2021, 11, 8911 13 of 21

along the normal of the hit surface (see Figure 11b) and returns all GameObjects inside the
sphere’s radius as indirect focuses. A spherecast was used here to compensate for tracking
errors caused by distortions in the mirror and imprecision of the eye-tracking algorithm
over longer distances.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21

determine in real-time which objects the driver is directly focusing on but also which ob-

jects he/she is looking at through the mirror (see Figure 10).

Figure 10. Using eye-tracking to identify the gazed object through a mirror.

The simulator uses a combined gaze ray to determine which GameObject is focused

on. The combined gaze ray originates between the centre of the left and right cornea and

is cast through the intersection point of the left and right gaze ray (see Figure 11a). To use

the combined gaze ray in unity, its normalized direction vector is used to cast a raycast

from the VR camera against the scene. A GameObject that is hit by this ray is considered

to be the current focus of the driver. In order to detect which GameObjects are focused in

a mirror, the first ray is reflected off the surface it hits and is casted again in this direction

(see Figure 11b). This happens only when the first ray hits a GameObject that is tagged as

“mirror”. Whenever the second ray hits any GameObject or Terrain, then a spherecast (i.e.,

a raycast that uses a sphere collider instead of a point) is cast. The spherecast moves along

the normal of the hit surface (see Figure 11b) and returns all GameObjects inside the

sphere’s radius as indirect focuses. A spherecast was used here to compensate for tracking

errors caused by distortions in the mirror and imprecision of the eye-tracking algorithm

over longer distances.

(a) (b)

Figure 11. Object detection schematic (a) the combined gaze ray, (b) detect which object is gazed through the mirror.

With the gaze data, besides identifying the objects the driver is looking at, it is also

possible to determine in which temporal order the driver picks up internal and external

Figure 10. Using eye-tracking to identify the gazed object through a mirror.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21

determine in real-time which objects the driver is directly focusing on but also which ob-

jects he/she is looking at through the mirror (see Figure 10).

Figure 10. Using eye-tracking to identify the gazed object through a mirror.

The simulator uses a combined gaze ray to determine which GameObject is focused

on. The combined gaze ray originates between the centre of the left and right cornea and

is cast through the intersection point of the left and right gaze ray (see Figure 11a). To use

the combined gaze ray in unity, its normalized direction vector is used to cast a raycast

from the VR camera against the scene. A GameObject that is hit by this ray is considered

to be the current focus of the driver. In order to detect which GameObjects are focused in

a mirror, the first ray is reflected off the surface it hits and is casted again in this direction

(see Figure 11b). This happens only when the first ray hits a GameObject that is tagged as

“mirror”. Whenever the second ray hits any GameObject or Terrain, then a spherecast (i.e.,

a raycast that uses a sphere collider instead of a point) is cast. The spherecast moves along

the normal of the hit surface (see Figure 11b) and returns all GameObjects inside the

sphere’s radius as indirect focuses. A spherecast was used here to compensate for tracking

errors caused by distortions in the mirror and imprecision of the eye-tracking algorithm

over longer distances.

(a) (b)

Figure 11. Object detection schematic (a) the combined gaze ray, (b) detect which object is gazed through the mirror.

With the gaze data, besides identifying the objects the driver is looking at, it is also

possible to determine in which temporal order the driver picks up internal and external

Figure 11. Object detection schematic (a) the combined gaze ray, (b) detect which object is gazed through the mirror.

With the gaze data, besides identifying the objects the driver is looking at, it is also
possible to determine in which temporal order the driver picks up internal and external
information for the truck docking process. As mentioned before, eye-tracking is also
used to improve the simulator performance by dynamically toggling the mirrors and the
camera used by the HMI. A Gaze-contingency-system is also controlled by eye-tracking
that switches the texture of non-focused windows to solid black. This system aims to
reduce the peripheral optical flow reducing nausea in the user [30].

Hand tracking is realized with the help of the Leap motion controller. The user’s hand
motions and gestures are captured and simultaneously mapped onto the virtual hands
of the driver. In this way, the user controls the virtual hands inside the simulator and
interacts with different objects, like the steering wheel or the HMI (see Figure 12). The
properties of the virtual hands can be adjusted according to the user’s needs (e.g., skin
colour, arm length).

Appl. Sci. 2021, 11, 8911 14 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 21

information for the truck docking process. As mentioned before, eye-tracking is also used

to improve the simulator performance by dynamically toggling the mirrors and the cam-

era used by the HMI. A Gaze-contingency-system is also controlled by eye-tracking that

switches the texture of non-focused windows to solid black. This system aims to reduce

the peripheral optical flow reducing nausea in the user [30].

Hand tracking is realized with the help of the Leap motion controller. The user’s hand

motions and gestures are captured and simultaneously mapped onto the virtual hands of

the driver. In this way, the user controls the virtual hands inside the simulator and inter-

acts with different objects, like the steering wheel or the HMI (see Figure 12). The proper-

ties of the virtual hands can be adjusted according to the user’s needs (e.g., skin colour,

arm length).

(a) (b)

Figure 12. (a) Driver interacting with the steering wheel, (b) or with elements of the HMI.

2.3.5. Data Recorder and Player

Another interesting functionality of the VR-simulator software is the possibility to

record and playback driving sessions. Concretely, it is possible to start the recording of a

time-stamped list of sample values in a JSON file or the utterances captured by the micro-

phone built in the HMI in an audio file at any time of a driving session. Specifically, in the

JSON file the following data is recorded: (i) the information provided by the

MATLAB/Simulink process (e.g., steering wheel angle, trailer’s position and rotation), (ii)

the eye-tracking data (e.g., pupil diameter, the direction of the gaze ray, as well as the list

of focussed objects) and (iii) the user’s head position and orientation. The recorded files

can be used later for two different purposes: First, the recorded files can be loaded and

played back in a unity program allowing the observation of the driver performance. The

second purpose is to use the information stored in the JSON file as a dataset that can be

applied for machine-learning research, e.g., to learn expert drivers’ truck docking behav-

iour from the recorded simulator data.

3. Driver Behaviour Analysis

The VISTA VR-Simulator Platform is well suited to perform research on ADAS sys-

tems. One important goal of ADAS is to provide individualised and anticipative feedback

that minimizes driver distraction and provides only situation-specific, highly relevant in-

formation. The system should adapt to the driver based on previous behaviour using

learning techniques, e.g., machine learning. If the trained system detects unexpected

driver behaviour in a familiar situation, it can trigger warnings or supportive feedback. In

Figure 12. (a) Driver interacting with the steering wheel, (b) or with elements of the HMI.

2.3.5. Data Recorder and Player

Another interesting functionality of the VR-simulator software is the possibility to
record and playback driving sessions. Concretely, it is possible to start the recording of
a time-stamped list of sample values in a JSON file or the utterances captured by the
microphone built in the HMI in an audio file at any time of a driving session. Specifically,
in the JSON file the following data is recorded: (i) the information provided by the MAT-
LAB/Simulink process (e.g., steering wheel angle, trailer’s position and rotation), (ii) the
eye-tracking data (e.g., pupil diameter, the direction of the gaze ray, as well as the list of
focussed objects) and (iii) the user’s head position and orientation. The recorded files can
be used later for two different purposes: First, the recorded files can be loaded and played
back in a unity program allowing the observation of the driver performance. The second
purpose is to use the information stored in the JSON file as a dataset that can be applied
for machine-learning research, e.g., to learn expert drivers’ truck docking behaviour from
the recorded simulator data.

3. Driver Behaviour Analysis

The VISTA VR-Simulator Platform is well suited to perform research on ADAS sys-
tems. One important goal of ADAS is to provide individualised and anticipative feedback
that minimizes driver distraction and provides only situation-specific, highly relevant
information. The system should adapt to the driver based on previous behaviour using
learning techniques, e.g., machine learning. If the trained system detects unexpected driver
behaviour in a familiar situation, it can trigger warnings or supportive feedback. In the
context of the truck-docking process, an ML model was trained to predict the driver’s
expertise on-the-fly within a certain time-frame (see Section 3.3). If a situation of low
expertise is detected, the system can provide context-sensitive feedback on the HMI to ease
the truck docking process. Figure 13 provides a general scheme of such an adaptive and
individualized ADAS.

Appl. Sci. 2021, 11, 8911 15 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 21

the context of the truck-docking process, an ML model was trained to predict the driver’s

expertise on-the-fly within a certain time-frame (see Section 3.3). If a situation of low ex-

pertise is detected, the system can provide context-sensitive feedback on the HMI to ease

the truck docking process. Figure 13 provides a general scheme of such an adaptive and

individualized ADAS.

Figure 13. ADAS concept. Sensor data are collected, classified and predicted by an individual driver model. Based on the

model output, feedback is generated, for example, if mismatches between sensor streams and model predictions are de-

tected or if situations of low driver performance are detected. The VR-simulator will be used for data collection, rapid

prototyping of feedback components and evaluation studies.

3.1. Driver Expert Interview

An interview was conducted with an expert driver to identify driver-performance

indicators that help to distinguish between expert- and novice-drivers. The expert was

asked to describe how experienced drivers would perform the docking manoeuvre step

by step and where the differences to novice drivers become visible. According to the ex-

pert, the most important parameters to distinguish experienced from novice drivers are:

(i) the relaxedness of the driver; (ii) the amount of steering movements; (iii) the amount of

breaking; (iv) the engine-rpm; (v) the frequency of gaze-switching between side-view mir-

rors; (vi) the number of collisions; (vii) the final parking angle; (viii) the overall time re-

quired for docking and the number of aborted docking attempts. The simulator allows to

directly measure the amount of steering movement, the amount of braking and gear shifts,

gaze-changes and head-movements, the parking angle and the overall docking-time.

3.2. Visualization of Expertise Performance Indicators

The required dataset for machine learning was recorded using the simulator. One

subject performed one warm-up trial (excluded) and thereafter several training-trials

(n = 16) of the docking manoeuvre. For each trial, the subject provided a self-rating of the

expertise level on a scale from one (worst) to five (best). The subject performed the dock-

ing task over the time span of a week, steadily improving in performance until a level

comparable to experienced drivers was reached.

The recorded dataset was analysed with respect to several performance indicators

extracted from the expert interview (Section 3.1). Trials were split into expert- and novice

trials: all trials with a self-rating above 3 were tagged as expert trials, and the remaining

were tagged as novice trials. Figure 14 shows that the analyzed performance indicators

(docking task duration, number of gear shifts, standard deviation of vehicle acceleration,

standard deviation of steering wheel movements and standard deviation of yaw head-

rotation) indeed seem to correlate with the expertise level, visible as non-overlapping

boxes in the box-plots. Expert trials show a shorter task duration, fewer gear shifts and a

lower standard deviation in the remaining performance indicators. Further statistical

analysis was not performed because of the comparatively small dataset.

Figure 13. ADAS concept. Sensor data are collected, classified and predicted by an individual driver model. Based on
the model output, feedback is generated, for example, if mismatches between sensor streams and model predictions are
detected or if situations of low driver performance are detected. The VR-simulator will be used for data collection, rapid
prototyping of feedback components and evaluation studies.

3.1. Driver Expert Interview

An interview was conducted with an expert driver to identify driver-performance
indicators that help to distinguish between expert- and novice-drivers. The expert was
asked to describe how experienced drivers would perform the docking manoeuvre step
by step and where the differences to novice drivers become visible. According to the
expert, the most important parameters to distinguish experienced from novice drivers are:
(i) the relaxedness of the driver; (ii) the amount of steering movements; (iii) the amount
of breaking; (iv) the engine-rpm; (v) the frequency of gaze-switching between side-view
mirrors; (vi) the number of collisions; (vii) the final parking angle; (viii) the overall time
required for docking and the number of aborted docking attempts. The simulator allows to
directly measure the amount of steering movement, the amount of braking and gear shifts,
gaze-changes and head-movements, the parking angle and the overall docking-time.

3.2. Visualization of Expertise Performance Indicators

The required dataset for machine learning was recorded using the simulator. One
subject performed one warm-up trial (excluded) and thereafter several training-trials
(n = 16) of the docking manoeuvre. For each trial, the subject provided a self-rating of
the expertise level on a scale from one (worst) to five (best). The subject performed the
docking task over the time span of a week, steadily improving in performance until a level
comparable to experienced drivers was reached.

The recorded dataset was analysed with respect to several performance indicators
extracted from the expert interview (Section 3.1). Trials were split into expert- and novice
trials: all trials with a self-rating above 3 were tagged as expert trials, and the remaining
were tagged as novice trials. Figure 14 shows that the analyzed performance indicators
(docking task duration, number of gear shifts, standard deviation of vehicle acceleration,
standard deviation of steering wheel movements and standard deviation of yaw head-
rotation) indeed seem to correlate with the expertise level, visible as non-overlapping boxes
in the box-plots. Expert trials show a shorter task duration, fewer gear shifts and a lower
standard deviation in the remaining performance indicators. Further statistical analysis
was not performed because of the comparatively small dataset.

Appl. Sci. 2021, 11, 8911 16 of 21

Figure 14. The figure shows pronounced differences in (a) task duration, (b) number of gear shifts, (c) vehicle acceleration
changes, (d) steering wheel movements, (e) head yaw-rotation and (f) trailer-cabin angular changes for two selected
expertise levels (novice and expert).

3.3. Expertise Estimation Using Machine Learning

As shown in the previous section, there is a strong correlation between the expertise
level of a driver and a number of performance indicators. Therefore, a small neural
network should be able to estimate the expertise of a complete docking manoeuvre. Here,
the question asked was whether such a network can also estimate the driver performance
given a much shorter time-window from an ongoing docking manoeuvre. Such a network
could then be used to inform a feedback component to provide support within a reasonable
timeframe (see Figure 15).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21

Figure 14. The figure shows pronounced differences in (a) task duration, (b) number of gear shifts, (c) vehicle acceleration

changes, (d) steering wheel movements, (e) head yaw-rotation and (f) trailer-cabin angular changes for two selected ex-

pertise levels (novice and expert).

3.3. Expertise Estimation Using Machine Learning

As shown in the previous section, there is a strong correlation between the expertise

level of a driver and a number of performance indicators. Therefore, a small neural net-

work should be able to estimate the expertise of a complete docking manoeuvre. Here, the

question asked was whether such a network can also estimate the driver performance

given a much shorter time-window from an ongoing docking manoeuvre. Such a network

could then be used to inform a feedback component to provide support within a reason-

able timeframe (see Figure 15).

Figure 15. Driver expertise prediction. A neural network estimates the current expertise of the driver. Observable values

like the steering wheel angle, the truck velocity and the current gear are aggregated over a sliding window (width = 50 s)

and fed into the network. The network output provides an estimation of the current driver expertise within this time

frame.

Figure 15. Driver expertise prediction. A neural network estimates the current expertise of the driver. Observable values
like the steering wheel angle, the truck velocity and the current gear are aggregated over a sliding window (width = 50 s)
and fed into the network. The network output provides an estimation of the current driver expertise within this time frame.

Appl. Sci. 2021, 11, 8911 17 of 21

To test the idea, a multilayer perceptron was trained on the regression task to estimate
the driver’s expertise given only the following locally observable values: the steering
wheel angle, the cabin-trailer angle, the truck velocity, the current gear, the drivers head
yaw-rotation and optionally a list of gazed objects within the time-frame (acquired using
eye-tracking, see Section 2.3.5). Locally observable values are comparatively easy to
measure, are readily available in real vehicles (e.g., from the CAN-Bus) and do not require
external cameras and sophisticated computer vision.

Dataset pre-processing: Each stream of local data in the dataset was individually
scaled to the range [−1, 1], to ease network training. Categorical like the current gear was
one-hot encoded or multi-hot encoded (gazed objects from eye-tracking). The values were
then down-sampled from 90 to 1 Hz using a block-wise average. It was found that using
the block-wise average method gave slightly better results than another down sampling
method (two-stage downsampling with an order 8 Chebyshev type I filter, see python
package scipy.signal.decimate). An explanation for this might be that the closely related
moving average method is optimal for filtering white noise while preserving sharp edges
in data streams [31].

Sliding window: A sliding window (width = 50 s) was moved frame-by-frame (1
Hz) over each trial of the down-sampled dataset. The data within each window were
either further processed by extracting the performance indicators shown in Section 3.2 and
Figure 14, or concatenated into a long input vector for the neural network (“raw data” in
Figure 16). For example, 150 training samples can be extracted from a 200-s trial.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21

To test the idea, a multilayer perceptron was trained on the regression task to esti-

mate the driver’s expertise given only the following locally observable values: the steering

wheel angle, the cabin-trailer angle, the truck velocity, the current gear, the drivers head

yaw-rotation and optionally a list of gazed objects within the time-frame (acquired using

eye-tracking, see Section 2.3.5). Locally observable values are comparatively easy to meas-

ure, are readily available in real vehicles (e.g., from the CAN-Bus) and do not require ex-

ternal cameras and sophisticated computer vision.

Dataset pre-processing: Each stream of local data in the dataset was individually

scaled to the range [−1, 1], to ease network training. Categorical like the current gear was

one-hot encoded or multi-hot encoded (gazed objects from eye-tracking). The values were

then down-sampled from 90 to 1 Hz using a block-wise average. It was found that using

the block-wise average method gave slightly better results than another down sampling

method (two-stage downsampling with an order 8 Chebyshev type I filter, see python

package scipy.signal.decimate). An explanation for this might be that the closely related

moving average method is optimal for filtering white noise while preserving sharp edges

in data streams [31].

Sliding window: A sliding window (width = 50 s) was moved frame-by-frame (1 Hz)

over each trial of the down-sampled dataset. The data within each window were either

further processed by extracting the performance indicators shown in Section 3.2 and Fig-

ure 14, or concatenated into a long input vector for the neural network (“raw data” in

Figure 16). For example, 150 training samples can be extracted from a 200-s trial.

Figure 16. Results of neural network-based expertise estimation given three different inputs: 1. extracted features, 2. raw-

data and 3. raw-data + gazed objects (eye-tracking). The boxplots show N = 50 repetitions of leave-one-out cross-validation

(see text for more details). (a) Average root-mean-squared error of predictions from the target rating. (b) Average standard

deviation of predictions. (c) Average absolute deviation of the mean prediction from the target rating.

Network layout and training: A small multilayer perceptron with one hidden layer

(n = 5 neurons, ReLU activation function) and a single, linear output neuron was imple-

mented using Keras, a high-level neural network API for Tensorflow [32]. The single out-

put neuron will provide an expertise rating with the same scale as that used for the self-

rating, see Section 3.2. Hence, the network was trained on the regression task of estimating

the driver expertise within the sliding-window time-frame. The specific training setup

was: Adam Optimizer using gradient clipping (clipnorm = 1.0); a batch size of 25 and a

fixed number of 15 epochs. The mean-squared error was used as the loss function.

Network evaluation: The performance of a trained network can significantly fluctu-

ate mainly for two reasons: 1. local minima encountered during training (depending on

initial weight values) and 2. the specific split of samples into the training- and test-dataset.

For small datasets, a random splitting can be either advantageous or “unfair”; for exam-

ple, if there are many difficult samples found in the test-dataset. To reduce such problems,

n-fold cross validation is often used [33]. Here, leave-one-out cross-validation was used:

one trial was excluded from the training-dataset respectively, until each trial was used as

Figure 16. Results of neural network-based expertise estimation given three different inputs: 1. extracted features, 2. raw-
data and 3. raw-data + gazed objects (eye-tracking). The boxplots show N = 50 repetitions of leave-one-out cross-validation
(see text for more details). (a) Average root-mean-squared error of predictions from the target rating. (b) Average standard
deviation of predictions. (c) Average absolute deviation of the mean prediction from the target rating.

Network layout and training: A small multilayer perceptron with one hidden layer
(n = 5 neurons, ReLU activation function) and a single, linear output neuron was imple-
mented using Keras, a high-level neural network API for Tensorflow [32]. The single output
neuron will provide an expertise rating with the same scale as that used for the self-rating,
see Section 3.2. Hence, the network was trained on the regression task of estimating the
driver expertise within the sliding-window time-frame. The specific training setup was:
Adam Optimizer using gradient clipping (clipnorm = 1.0); a batch size of 25 and a fixed
number of 15 epochs. The mean-squared error was used as the loss function.

Network evaluation: The performance of a trained network can significantly fluctuate
mainly for two reasons: 1. local minima encountered during training (depending on initial
weight values) and 2. the specific split of samples into the training- and test-dataset. For
small datasets, a random splitting can be either advantageous or “unfair”; for example,
if there are many difficult samples found in the test-dataset. To reduce such problems,
n-fold cross validation is often used [33]. Here, leave-one-out cross-validation was used:
one trial was excluded from the training-dataset respectively, until each trial was used

Appl. Sci. 2021, 11, 8911 18 of 21

as the test-dataset once. The final result of leave-one-out cross-validation is the average
mean-squared error over all the individual test-datasets.

3.4. First Evaluation of the Behaviour Analysis Module

Three different variants were tested for expertise-estimation using a neural network.
They differed in the way the input values were presented to the neural network. Variant 1
used the performance indicators described in Section 3.2 as input features. Variant 2
used the “raw” data streams as described in Section 3.2, concatenated into a large, one-
dimensional input vector. Variant 3 added a list of gazed objects (multi-hot encoded) to
variant 2. To get a fine-grained insight into the effects of the different variants, a repetition
of the cross-validation procedure described above was performed 50 times. The resulting
boxplots (see Figure 16) indicate no substantial differences regarding the average root-
mean-squared-error (RMSE) between the three variants, with variant 1 having a slightly
lower error on average. The network can achieve almost the same RMSE given raw data
streams, but the standard deviation of the predictions increased. Contrary to expectations,
adding eye-tracking data did not improve the RMSE. A reason for this might be the dataset:
given a very small dataset, adding more potentially helpful features might degrade network
performance due to overfitting. This shows once again that machine-learning using small
datasets is a challenging task. In summary, for all variants, the average RMSE is around one,
meaning that the expertise estimation-even with this small dataset-can be used to trigger
supportive feedback in an ADAS, e.g., if the estimation falls below a certain threshold.

4. Outcomes and Conclusions

This paper presented the VISTA-Sim, a platform that uses a VR-simulator and AI
technologies to develop and evaluate personalized driver assistance. VISTA-Sim provides
a holistic approach that allows: (i) the development of driver assistance concepts; (ii) the
simulation of scenarios in which driver assistance is used; (iii) the training of driving skills
in specific scenarios; (iv) the recording of multimodal interaction data from driving sessions;
(v) the evaluation of driver assistance concepts and driver performances; (vi) the automatic
learning from multimodal driver data; and (vii) the development of driver models capable
of effectively describing different human drivers. This approach was realized by develop-
ing a custom platform and consequently benefits from the possibility to easily extend it
through the integration of new modules, functionalities and scenarios. As such, this paper
demonstrated the exploration of this approach within a very particular and controlled
scenario in which truck drivers perform the rearward docking manoeuvre on logistics
areas towards loading bays. This scenario offers ideal conditions for the exploration of
this approach because it presents reduced levels of complexity when compared with other
typical ADAS scenarios. A thorough search of the relevant literature yielded that this is
the first attempt at using a VR-based holistic approach to develop driving assistance to
this very specific scenario. Within the docking manoeuvre scenario, the potential of this
platform was explored to allow the development of personalized driving assistance by
providing means to learn from multimodal driver data, optimize training environments
and ultimately guarantee that the automated driving support is effectively accepted and
trusted. Additionally, it was reported that the conduction of a preliminary test in which the
scenario of a docking manoeuvre was explored to record driver performances which were
then used by the behaviour analysis module. The preliminary results indicate that the be-
haviour analysis module was able to identify the expertise level of each performance. This
suggests that an improved iteration of the platform has the potential to perform a real-time
and continuous evaluation of the driver’s expertise and adapt the driver assistance HMI to
be personalized to the current needs of the driver. More concretely, these promising first
results suggest that, despite the inherent technical challenges, this platform can evolve
to be capable of automatically learning from small datasets, deal with label noise coming
from a subjective rating, and ultimately learn and adapt ADAS systems to increase their
acceptance and trustiness.

Appl. Sci. 2021, 11, 8911 19 of 21

Finally, it is important to highlight that the exploration of a VR-simulator brings
significant advantages when compared with the real-world, for instance, the data collection
in a VR-simulator is a practical and simple process in which driving situations can be
repeated in a very controlled way, guaranteeing access to clean multimodal driver data.
Additionally, since a variety of tridimensional data (e.g., vehicle or gazed objects) is
being recorded, these data can be at any moment revisited and analysed from different
perspectives and for different purposes. It is envisioned that by exploring the data collection
benefits offered by the VR-simulator and by employing machine-learning techniques, an
opportunity is presented to endeavour through the unexplored field of building driver
models using data-driven methods and ultimately pursue the creation of more accepted
and trusted driving assistance systems.

5. Future Work

Our simulator is a constantly evolving platform for ADAS research that is continuously
adapted to new technologies. As such, it offers opportunities for new research areas and
technical improvements. Below is provided a non-exhaustive list of potential future work.

Machine Learning improvements: The machine learning results presented in this pa-
per indicate that even small neural networks can estimate the driver’s expertise. Therefore,
efforts will be directed toward the extension of the ML approach to behaviour prediction
(what will the driver do next?) and continuous learning concepts. The current generation
of neural networks are often static and do not change once the training process has been
completed. Therefore, they cannot adapt and change over time, contrary to the networks
of living neurons found in human and animal brains. A new trend in machine learn-
ing, called “lifelong learning”, strives to overcome this limitation [34]. Such an approach
would be ideally suited to the task of building an ADAS that continuously learns from and
adapts to the individual user. However, the implementation of “lifelong learning” poses
several challenges, including effects like “catastrophic forgetting”, where new, incoming
training data tend to overwrite previous knowledge, causing a sudden drop in network
performance [34,35]. Furthermore, it is planned to perform careful evaluation studies
to test the functionality and the user acceptance of such a self-adapting system. For the
behaviour analysis module, it is planned to use not only local variables to estimate the
driver expertise. Training the ML model using global data (e.g., absolute trailer and cabin
positions and angles with respect to an external world-coordinate system) will improve
expertise estimation, as preliminary experiments with the dataset from Section 3.4 indicates.
Global data are easily available within the VR-Simulator, but are much harder to acquire
in real-world scenarios using, e.g., stationary cameras. A real-world tracking system is
currently implemented in the VISTA project [9].

Trust in algorithms: Trust in algorithms and systems is another important future
research topic. For example, an ADAS geared towards autonomous driving needs to
explain its decisions to strengthen the trust of the user in the system. The effectiveness
of an ADAS to establish trust and to provide proper, individualized feedback needs to
be evaluated using psychometric tools (e.g., questionnaires) and physiological markers.
Another method to increase acceptance and trust is to give the user the freedom of choice,
for example, concerning the feedback modalities of the HMI [36] or the way the system
adapts to the user. For example, the user should have the choice to use a static, non-
adapting system, should be able to select an adaptation speed and should be able to reset
the system to an initial state. Therefore, the system should be highly customizable and
provide a way to create and select individual user profiles.

The VR-Simulator provides another interesting opportunity: Within VR, it is possible
to test simulated AR devices. In that sense, the use of the VR-Simulator to test and evaluate
hardware aspects of AR devices is intended (e.g., field of view) as are different concepts for
AR-based HMI. This will allow us to get a better understanding of best practices regarding
feedback generation and interaction with future and upcoming AR-Glasses.

Appl. Sci. 2021, 11, 8911 20 of 21

VR-Simulator Rendering improvements: Existing high-end VR headsets (e.g., Varjo 3)
and future, upcoming headsets will have a much higher resolution than the headset
currently used (HTC VIVE Pro). Therefore, this headset will be even more demanding
for rendering the VR world. Especially regarding the current approach for calculating
reflections for the mirrors (implemented through reflection probes). Future work should
explore alternative solutions for implementing the vehicle mirrors, for example using Ray
Tracing or specialized shaders. Additionally, the overall performance can be improved
using foveated rendering.

Author Contributions: Conceptualization and methodology, P.R., K.E. and A.F.K.; software, P.R.,
A.F.K., P.M., M.-A.B., J.O., K.K. and J.v.K.; validation, P.R., K.E. and A.F.K.; formal analysis, P.R., K.E.
and A.F.K.; investigation, P.R., K.E. and A.F.K.; resources, P.R., K.E. and A.F.K.; writing—original
draft preparation, P.R., K.E., A.F.K., P.M., M.-A.B., J.O. and K.K.; writing—review and editing, P.R.,
K.E., A.F.K., P.M., M.-A.B., J.O., K.K., J.B. and C.R.; supervision, K.E.; project administration, J.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is supported within the Interreg V-A VISTA project, co-financed by the Euro-
pean Union via the INTERREG Deutschland-Nederland programme, the Ministerium für Wirtschaft,
Innovation, Digitalisierung und Energie of Nordrhein-Westfalen and the Province of Gelderland.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The behaviour-analysis dataset can be downloaded from: https://
hochschule-rhein-waal.sciebo.de/s/IFTgQWH461cOk72 (accessed on 23 August 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, S. Global AR/VR Automotive Spending 2017 and 2025. Available online: https://www.statista.com/statistics/828499

/world-ar-vr-automotive-spending/ (accessed on 28 June 2021).
2. Choi, S.H.; Cheung, H.H. A Versatile Virtual Prototyping System for Rapid Product Development. Comput. Ind. 2008, 59, 477–488.

[CrossRef]
3. Lawson, G.; Salanitri, D.; Waterfield, B. Future Directions for the Development of Virtual Reality within an Automotive

Manufacturer. Appl. Ergon. 2016, 53, 323–330. [CrossRef] [PubMed]
4. Taheri, S.M.; Matsushita, K.; Sasaki, M. Virtual Reality Driving Simulation for Measuring Driver Behavior and Characteristics. J.

Transp. Technol. 2017, 7, 123. [CrossRef]
5. Gunning, D.; Aha, D. DARPA’s Explainable Artificial Intelligence (XAI) Program. AI Mag. 2019, 40, 44–58. [CrossRef]
6. Sanneman, L.; Shah, J.A. A Situation Awareness-Based Framework for Design and Evaluation of Explainable AI. In Explainable,

Transparent Autonomous Agents and Multi-Agent Systems; Calvaresi, D., Najjar, A., Winikoff, M., Främling, K., Eds.; Springer
International Publishing: Cham, Switzerland, 2020; pp. 94–110.

7. Nam, C.S.; Lyons, J.B. Trust in Human-Robot. Interaction; Academic Press: Cambridge, MA, USA, 2020; ISBN 978-0-12-819473-7.
8. Kusumakar, R.; Buning, L.; Rieck, F.; Schuur, P.; Tillema, F. INTRALOG—Intelligent Autonomous Truck Applications in Logistics;

Single and Double Articulated Autonomous Rearward Docking on DCs. IET Intell. Transp. Syst. 2018, 12, 1045–1052. [CrossRef]
9. Benders, J. VISTA—Towards Damage-Free and Time-Accurate Truck Docking. Available online: https://vistaproject.eu/

(accessed on 28 June 2021).
10. Ihemedu-Steinke, Q.C.; Erbach, R.; Halady, P.; Meixner, G.; Weber, M. Virtual Reality Driving Simulator Based on Head-Mounted

Displays. In Automotive User Interfaces: Creating Interactive Experiences in the Car; Meixner, G., Müller, C., Eds.; Human–Computer
Interaction Series; Springer International Publishing: Cham, Switzerland, 2017; pp. 401–428, ISBN 978-3-319-49448-7.

11. Körber, M.; Baseler, E.; Bengler, K. Introduction Matters: Manipulating Trust in Automation and Reliance in Automated Driving.
Appl. Ergon. 2018, 66, 18–31. [CrossRef] [PubMed]

12. Zahabi, M.; Razak, A.M.A.; Shortz, A.E.; Mehta, R.K.; Manser, M. Evaluating Advanced Driver-Assistance System Trainings
Using Driver Performance, Attention Allocation, and Neural Efficiency Measures. Appl. Ergon. 2020, 84, 103036. [CrossRef]
[PubMed]

13. Sportillo, D.; Paljic, A.; Ojeda, L. Get Ready for Automated Driving Using Virtual Reality. Accid. Anal. Prev. 2018, 118, 102–113.
[CrossRef] [PubMed]

14. Diederichs, F.; Niehaus, F.; Hees, L. Guerilla Evaluation of Truck HMI with VR. In Virtual, Augmented and Mixed Reality. Design
and Interaction; Chen, J.Y.C., Fragomeni, G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–17.

15. Lin, N.; Zong, C.; Tomizuka, M.; Song, P.; Zhang, Z.; Li, G. An Overview on Study of Identification of Driver Behavior
Characteristics for Automotive Control. Math. Probl. Eng. 2014, 2014, e569109. [CrossRef]

https://hochschule-rhein-waal.sciebo.de/s/IFTgQWH461cOk72
https://hochschule-rhein-waal.sciebo.de/s/IFTgQWH461cOk72
https://www.statista.com/statistics/828499/world-ar-vr-automotive-spending/
https://www.statista.com/statistics/828499/world-ar-vr-automotive-spending/
http://doi.org/10.1016/j.compind.2007.12.003
http://doi.org/10.1016/j.apergo.2015.06.024
http://www.ncbi.nlm.nih.gov/pubmed/26164106
http://doi.org/10.4236/jtts.2017.72009
http://doi.org/10.1609/aimag.v40i2.2850
http://doi.org/10.1049/iet-its.2018.0083
https://vistaproject.eu/
http://doi.org/10.1016/j.apergo.2017.07.006
http://www.ncbi.nlm.nih.gov/pubmed/28958427
http://doi.org/10.1016/j.apergo.2019.103036
http://www.ncbi.nlm.nih.gov/pubmed/31987518
http://doi.org/10.1016/j.aap.2018.06.003
http://www.ncbi.nlm.nih.gov/pubmed/29890368
http://doi.org/10.1155/2014/569109

Appl. Sci. 2021, 11, 8911 21 of 21

16. Wang, W.; Xi, J.; Chen, H. Modeling and Recognizing Driver Behavior Based on Driving Data: A Survey. Math. Probl. Eng. 2014,
2014, e245641. [CrossRef]

17. Hasenjäger, M.; Heckmann, M.; Wersing, H. A Survey of Personalization for Advanced Driver Assistance Systems. IEEE Trans.
Intell. Veh. 2020, 5, 335–344. [CrossRef]

18. Li, A.; Jiang, H.; Zhou, J.; Zhou, X. Implementation of Human-Like Driver Model Based on Recurrent Neural Networks. IEEE
Access 2019, 7, 98094–98106. [CrossRef]

19. Sallab, A.E.; Abdou, M.; Perot, E.; Yogamani, S. Deep Reinforcement Learning Framework for Autonomous Driving. Electron.
Imaging 2017, 2017, 70–76. [CrossRef]

20. Darwish, A.; Steinhauer, H.J. Learning Individual Driver’s Mental Models Using POMDPs and BToM; IOS Press: Amsterdam,
The Netherlands, 2020; pp. 51–60.

21. Xu, J.; Min, J.; Hu, J. Real-Time Eye Tracking for the Assessment of Driver Fatigue. Healthc Technol. Lett. 2018, 5, 54–58. [CrossRef]
[PubMed]

22. MathWorks Simulink—Simulation und Model-Based Design. Available online: https://de.mathworks.com/products/simulink.
html (accessed on 25 June 2021).

23. Unity, U. Unity 3D Platform. Available online: https://unity.com/ (accessed on 9 June 2021).
24. HTC Corporation VIVE Pro Eye. Available online: https://www.vive.com/eu/product/vive-pro-eye/overview/ (accessed on

9 June 2021).
25. Logitech Logitech G29 Steering Wheels & Pedals. Available online: https://www.logitechg.com/en-eu/products/driving/

driving-force-racing-wheel.html (accessed on 9 June 2021).
26. Ultraleap Leap Motion Controller. Available online: https://www.ultraleap.com/ (accessed on 9 June 2021).
27. Devasia, D. Motion Planning with Obstacle Avoidance for Autonomous Docking of Single Articulated Vehicles; HAN University of

Applied Sciences: Arnhem, The Netherlands, 2019.
28. Kannan, M. Automated Docking Maneuvering of an Articulated Vehicle in the Presence of Obstacles. Ph.D. Thesis, České Vysoké

Učení Technické v Praze, Prague, Czech Republic, 2021.
29. Kural, K.; Nijmeijer, H.; Besselink, I.J.M. Dynamics and Control Analysis of High Capacity Vehicles for Europe; Technische Universiteit

Eindhoven: Eindhoven, The Netherlands, 2019.
30. Hettinger, L.J.; Riccio, G.E. Visually Induced Motion Sickness in Virtual Environments. Presence Teleoper Virtual Env. 1992, 1,

306–310. [CrossRef]
31. Smith, S.W. The Scientist and Engineer’s Guide to Digital Signal. Processing; California Technical Publishing: San Diego, CA, USA,

1997; ISBN 978-0-9660176-3-2.
32. Chollet, F. Keras GitHub. Available online: https://github.com/fchollet/keras. (accessed on 26 June 2021).
33. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer

Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0.
34. Parisi, G.I.; Kemker, R.; Part, J.L.; Kanan, C.; Wermter, S. Continual Lifelong Learning with Neural Networks: A Review. Neural

Netw. 2019, 113, 54–71. [CrossRef] [PubMed]
35. Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-

Barwinska, A.; et al. Overcoming Catastrophic Forgetting in Neural Networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526.
[CrossRef] [PubMed]

36. Coelho, J.; Duarte, C. The Contribution of Multimodal Adaptation Techniques to the GUIDE Interface. In Universal Access in
Human-Computer Interaction. Design for All and eInclusion; Stephanidis, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 337–346.

http://doi.org/10.1155/2014/245641
http://doi.org/10.1109/TIV.2019.2955910
http://doi.org/10.1109/ACCESS.2019.2930873
http://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
http://doi.org/10.1049/htl.2017.0020
http://www.ncbi.nlm.nih.gov/pubmed/29750113
https://de.mathworks.com/products/simulink.html
https://de.mathworks.com/products/simulink.html
https://unity.com/
https://www.vive.com/eu/product/vive-pro-eye/overview/
https://www.logitechg.com/en-eu/products/driving/driving-force-racing-wheel.html
https://www.logitechg.com/en-eu/products/driving/driving-force-racing-wheel.html
https://www.ultraleap.com/
http://doi.org/10.1162/pres.1992.1.3.306
https://github.com/fchollet/keras.
http://doi.org/10.1016/j.neunet.2019.01.012
http://www.ncbi.nlm.nih.gov/pubmed/30780045
http://doi.org/10.1073/pnas.1611835114
http://www.ncbi.nlm.nih.gov/pubmed/28292907

	Introduction
	Background and Previous Work
	Content and Goals of the VISTA Project

	VISTA VR-Simulator Platform (VISTA-Sim)
	VISTA-Sim Hardware
	Path Planner and Path Tracking Controller
	Path Planner
	Path Tracking Controller

	Simulation Environment
	The Virtual Semi-Trailer Truck and the Distribution Centre
	Driver Assistance Human-Machine Interface (HMI)
	Integration with Path Tracking Controller
	Tracking Systems
	Data Recorder and Player

	Driver Behaviour Analysis
	Driver Expert Interview
	Visualization of Expertise Performance Indicators
	Expertise Estimation Using Machine Learning
	First Evaluation of the Behaviour Analysis Module

	Outcomes and Conclusions
	Future Work
	References

