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Abstract: A membranous shaped Ni/Zn layered double hydroxide based nanohybrid was obtained
using a low-cost template-free hydrothermal process at optimized growth conditions of 180 ◦C for 6 h.
The synthesized nanohybrid was structurally, texturally and morphologically characterized using
different techniques such as X-ray diffraction, FTIR, XPS spectroscopy, BET analysis and FESEM
microscopy. The adsorption performance of our product was estimated through the Azorubine dye
removal from synthetic wastewater. We therefore studied the synergic effects of Ni/Zn adsorbent
dosage, contact time, pH, adsorbate concentration, stirring speed and temperature on the Azorubine
adsorption efficiency. In this investigation, we obtained bi-structure based nanoadsorbent with
54% crystallinity order composed of nickel hydrate and zinc carbonate hydroxides in irregular
nanoflake-like mesoporous nanohybrid morphology. Interestingly, it was also revealed to have high
specific surface area (SSA) of around 110 m2 g−1 with important textural properties of 18 nm and
0.68 cm3 g−1 average pore size and volume, respectively. Moreover, the adsorption results revealed
that this novel Ni/Zn layered double hydroxide (Ni/Zn LDH) was an efficient adsorbent for Az
molecule and possesses an adsorptive ability exhibiting a short equilibrium time (60 min) and a high
Az adsorption capability (223 mg g−1). This fast removal efficiency was attributed to high contact
surface area via mesoporous active sites accompanied with the presence of functional groups (OH−

and CO3
2−). In addition, the Langmuir and Freundlich isotherms were studied, and the results fitted

better to the Langmuir isotherm.

Keywords: Ni/Zn layered double hydroxide; Azorubine; adsorption; nanohybrid; Carmoisine

1. Introduction

Nowadays, one of the major challenges for researchers in chemistry is the elimination
of dyestuff from liquid effluents before they are discharged to the external environment in
view of their harmful effects on aquatic and terrestrial life [1–4]. This kind of contaminant
has characteristics of excellent chemical stability, good solubility in water, high colority and
a complex aromatic structure, which decomposition under natural conditions is difficult.
The presence of these colorful contaminants in water can restrict light and oxygen getting
into water, leading to serious threats to the survival of aquatic organisms. Moreover, most
organic dyestuffs, such as azo and anthraquinone dyes, are toxic or carcinogenic to the
human body [5–8].

Amongst these dyes, Carmoisine (E 122), also named Azorubine (Az), is used mainly
in jams and preserves and was found by the US Certified Color Manufacturers Associ-
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ation to be unavoidably contaminated with low levels of beta-naphthylamine, which is
well known as a carcinogen [9]. It has also been found to be mutagenic in animal stud-
ies [10,11]. For that reason, their removal from effluent containing dye is necessary for our
environment protection.

However, the removal of dyes and their products from industrial wastewaters has
remained a daunting challenge until now. Various techniques have been used and de-
veloped to remove unwanted dyes from contaminated waters, such as photocatalysis,
advanced oxidation, electrochemical treatment, precipitation, solvent extraction, reverse os-
mosis and coagulation/flocculation [12–16]. However, these methods have low efficiencies,
high operational energy and produce secondary pollutants [17]. It is therefore of much
importance to develop cheap, cost effective and efficient methods to treat these dyes for
environmental remediation. Among those, adsorption is a simple, low-cost and effective
technique. For this, extensive varieties of adsorbents with higher uptake ability are avail-
able to remove the dyes from wastewater, such as SBA-15/graphene oxide nanocomposites,
functionalized SBA-15 [18,19] and ceramic membrane [20]. In addition, many nanomate-
rials with enhanced porosity and higher specific surface area such as MWNTs [19,21,22]
and SBA-15/diphenyl carbazon/SDS nanocomposite [19], Zn/Al LDHs intercalated by
dodecylsulfate and carbonate using hydrothermal method without calcination [23] have
shown also excellent uptake ability. Synthesized starch coated magnetic nanoparticles and
polymeric nanocomposites have been also used for the removal of the unspent dyes from
the industrial effluents [24]. Moreover, naturally available diatomaceous earth particles
surface was modified with mesoporous silica xerogel denotes as diatom xerogel material
as well as biosorbent materials have also proved their worth as useful and promising
adsorbents to remove the dyes from the industrial effluents [25,26].

Among the various nanomaterials, layered double hydroxides (LDHs) are recognized
as hydrotalcite compounds or anionic clays. They are layered materials containing a metal
hydroxide layer with a positive charge intercalated by negatively charged species [27–29].
Their general formula is [MII

1−xMIII
x(OH)2]x+[An−

x/nmH2O], where M2+ and M3+ situate
in the octahedral holes in a brucite-like layer and An− has occupied the hydrated inter-
layer regions [30]. LDHs have many characteristics such as interlayer anion-exchange
capacity, important surface area and surface with a positive charge, which support their
application as adsorbents. These properties make them effective adsorbents to uptake
organic/inorganic pollutants and principally their negatively charged species [31,32].

In the current work, we report, in the first part, on the successful synthesis of bi-
metallic (Ni/Zn) hydroxide based bi-structures nanohybrid in mesoporous almost spheri-
cal microsystem using simple one-step template-free urea-based hydrothermal technique
as high efficiency and low-cost growth process. Afterwards, in the second part, we present
their role as an azo dye adsorbent for adsorption application through the detailed investi-
gation of the adsorption process as well as the isotherm models and the kinetics.

2. Experimental Procedure
2.1. Reagents and Solutions

All the chemicals, urea (CH4N2O, Merck, purity ≥ 98%), nickel and zinc chloride
(Sigma-Aldrich, purity ≥ 99.99%) and Carmoisine dye (di-sodium salt of 2-(4-sulpho-
1-naphthylazo)-1-naphthol-4-sulfonic acid (C20H12N2Na2O7S2, Merck—Darmstadt, Ger-
many) were of analytical grade and used without further purification.

2.1.1. Adsorbent Ni/Zn Carbonate and/or Hydroxide Based Heterostructure Nanohybrid
Synthesis

Nickel (II) chloride hexahydrate (NiCl2 6H2O) (0.1 M) and zinc (II) chloride (ZnCl2)
(0.1 M) were dissolved in deionized water at room temperature. Afterwards, 0.5 M urea
aqueous solution was added into the above solution and ultrasonicated until a dark
green transparent solution was obtained, which was then transferred into a Teflon-lined
hydrothermal autoclave system. The latter was sealed, maintained at growth conditions of
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180 ◦C/6 h and then allowed to naturally cool down to room temperature. The obtained
green-colored products were filtered and washed with distilled water and ethanol several
times before drying in an oven at 80 ◦C overnight.

2.1.2. Adsorbent Characterization Techniques

The synthesized bi-transition metal hydroxide based nanohybrid was characterized
using several techniques in order to identify the hydrothermal process product properties,
such as structural, textural, morphology and composition, which influence its adsorption
performance for environment applications.

Powder X-ray diffraction patterns of our solid adsorbent were collected on an XRD
D8 ADVANCE-BRUKER AXS diffractometer equipped with a copper anticathode tube
(λCuKα = 1.5406 Å) and a graphite monochromator rear blade, operating at 40 kV–40 mA
and employing a scanning rate of 0.2◦ s−1 in the range 10◦–90◦.

Specific contact surface area (SSA) and porosity measurements were carried out using
N2 adsorption/desorption mechanism at nitrogen liquid temperature (77 K) on a Tristar
an ASap2420 sorptometer (Micromeritics) surface area analyzer using Brunauer–Emmett–
Teller (BET) and Barrett–Joyner–Halenda (BJH) methods, respectively.

Raman scattering measurement was carried out at room temperature using a Horiba
JobinYvon Lab-RAM Aramis confocal Raman spectrometer equipped with a cooled CCD
camera and an automated XYZ table at a laser excitation of 532 nm. Using a D2 filter, the
estimated laser power that reached the samples was 0.33 mW.

The morphological aspect of this nanohybrid was identified via a field emission
scanning electron microscopy FESEM (JEOL 6700-FEG microscope) operated at 3 kV.

Fourier-transform infrared (FTIR) spectra were recorded using a Bruker Vertex 77v
spectrometer with a 4 cm−1 resolution in [400–4000 cm−1] range controlled with an Opus
software analysis.

2.1.3. Analytical Method

A calibration curve was prepared using the standard solutions of Az with different
concentrations from 0.5 to 50 mg L−1. The efficiency of the proposed process was evaluated
by monitoring Az removal after measuring the absorbance at λmax = 519 nm.

The azo dye adsorption capacity qt (mg g−1)and the removal ratio R (%) were obtained
from the following relations:

qt = (C0 − Ct)
V
W

(1)

R (%) =
(C0 − Ct)

C0
∗ 100 (2)

where C0 and Ct are the initial and the equilibrium concentration of Az in the solution
(mg L−1), where W the adsorbent dry weight (g) and V is the suspension volume (l).

3. Adsorption Studies
3.1. Batch Adsorption

Batch adsorption tests were carried out at a constant temperature using a water bath.
The initial concentration of Azorubine solution was 50 mg L−1 for all experiments, except
for those carried out to determine the effect of the initial dye concentration. The adsorbent
was put in selected flask of 100 mL dye solution and vigorously stirred at 25 ◦C, except
experiments of the temperature effect. The experiments were conducted at natural pH of
mixtures without further adjustment, except also for the step of solution pH effect where
it was adjusted using (0.1 N) HCl or NaOH in separate experiments. Batch studies were
performed as function of the adsorbent rate ranging from (0.01 to 0.05 g), pH solution from
2 to 12 and adsorbate concentrations from 20 to 200 mg L−1.
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3.2. Isotherm Models

The adsorption isotherm was used to represent the adsorption capacity at different
solution concentrations that helps to have idea on the adsorbent and adsorbate interaction.
The experimental results were fitted using Langmuir [33] and Freundlich [34] models. The
Langmuir isotherm (Equation (3)) assumes a monolayer adsorption of the adsorbate on the
adsorbent surface using a given relation:

1
qe

=
1

qm
+

1
KL∗qm

+
1

Ce
(3)

where qm is the maximum adsorption capacity (mg g−1) and KL is the Langmuir constant
(L mg−1).

Nevertheless, the Freundlich adsorption isotherm (Equation(4)) as an empirical equa-
tion often used to describe the chemisorption on heterogeneous surface is given by the
following relation:

Ln qe = Ln KF +
1
n

Ln Ce (4)

where KF is the Freundlich constant and 1/nis the heterogeneity factor. In this Freundlich
equation, 1/n values between 0 and 1 indicate that the adsorption is favorable.

3.3. Kinetic Studies

The pseudo-first-order and pseudo-second-order kinetic models are described as
following [35]:

Ln
(
qe − qt

)
= Ln qe − K1t (5)

t
qe

=
1
qe

t +
1

K2qe
2 (6)

where qe (mg g−1) is the equilibrium adsorption capacity, qt (mg g−1) is the adsorption
capacity at time t; k1 (min−1) is the rate constant of the first-order adsorption and k2
(g·mg−1 min−1) is the rate constant of the second-order adsorption.

4. Results and Discussion
4.1. Characterization of Adsorbent

The description of the XRD pattern and FTIR spectrum of the as-synthesized Ni/Zn
based nanohybrid which will be used as adsorbent in this investigation are presented in
Figure 1. Figure 1a shows the formation of bi-nanostructures based on nickel hydrate
hydroxide (α-Ni(OH)2 0.75 H2O) and zinc carbonate hydroxide (Zn5(CO3)2 (OH)6) which
are assigned to rhombohedral [JCPDS no. 038-0715] and monoclinic [JCPDS no. 19-1458]
structure, respectively, with 54% crystallinity order.
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Figure 1. Adsorbent based on Ni/Zn LDH bi-nanostructure nanohybrid synthesized via hydrothermal process at 6h/180°C: 
XRD diffractogram (a) and FTIR spectrum (b). 

Table 1 summarizes the bi-phase nanohybrid structural characteristics depending to 
their diffractogram. 

Table 1. Structural characteristics of Ni/Zn based bi-phase nanohybrid. 

Phase a (Å) b (Å) c (Å) 
Zn5(CO3)2 (OH)6 13.83 6.19 5.386 

Ref. [JCPDS no.19 1458] 13.58 6.28 5.41 
α-Ni(OH)2.0.75H2O 3.06 

- 
24 

Ref. [JCPDS no.038-0715] 3.08 23.41 

The FTIR spectrum of this nanoadsorbent as shown in Figure 1b is typical of a hy-
drotalcite-like material showing a broad and intense band at 3336 cm–1thatcan be at-
tributed to hydroxyl (OH−) stretching vibrations from structural hydroxyl groups and in-
terlayer water molecules [36]. In addition, bands at 1362 cm−1 (υ3), 1043 cm−1 (υ1) and 745 
cm−1 (υ2) [37] show the presence of carbonate anion (CO32–) in the interlayer [38]. However, 
the bands at 953 and 836 cm−1 are associated withmetal–oxygen (M–O) and metal–hy-
droxyl (M–OH) groups in the lattice of LDHs. More precisely, below 642 cm−1, the rec-
orded bands are attributed to δ Ni/Zn-OH or ν Ni/Zn-O as reported in many studies [39–
41]. Moreover, the sharp band at 836 cm−1 is associated with in-plane quadrant bending 
[39–41]. These results clearly prove the XRD identification reported above. 

The morphological and textural properties of this Ni/Zn based LDH nanohybrid il-
lustrate that it possesses precisely special membranous morphology with non-homogene-
ous mesopores in an agglomerated way as shown in Figure 2a. 

  

Figure 1. Adsorbent based on Ni/Zn LDH bi-nanostructure nanohybrid synthesized via hydrothermal process at 6h/180 ◦C:
XRD diffractogram (a) and FTIR spectrum (b).
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Table 1 summarizes the bi-phase nanohybrid structural characteristics depending to
their diffractogram.

Table 1. Structural characteristics of Ni/Zn based bi-phase nanohybrid.

Phase a (Å) b (Å) c (Å)

Zn5(CO3)2 (OH)6 13.83 6.19 5.386
Ref. [JCPDS no.19 1458] 13.58 6.28 5.41
α-Ni(OH)2.0.75H2O 3.06 - 24

Ref. [JCPDS no.038-0715] 3.08 23.41

The FTIR spectrum of this nanoadsorbent as shown in Figure 1b is typical of a
hydrotalcite-like material showing a broad and intense band at 3336 cm–1thatcan be at-
tributed to hydroxyl (OH−) stretching vibrations from structural hydroxyl groups and
interlayer water molecules [36]. In addition, bands at 1362 cm−1 (υ3), 1043 cm−1 (υ1) and
745 cm−1 (υ2) [37] show the presence of carbonate anion (CO3

2–) in the interlayer [38].
However, the bands at 953 and 836 cm−1 are associated withmetal–oxygen (M–O) and
metal–hydroxyl (M–OH) groups in the lattice of LDHs. More precisely, below 642 cm−1,
the recorded bands are attributed to δ Ni/Zn-OH or ν Ni/Zn-O as reported in many
studies [39–41]. Moreover, the sharp band at 836 cm−1 is associated with in-plane quadrant
bending [39–41]. These results clearly prove the XRD identification reported above.

The morphological and textural properties of this Ni/Zn based LDH nanohybrid illus-
trate that it possesses precisely special membranous morphology with non-homogeneous
mesopores in an agglomerated way as shown in Figure 2a.
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distribution according to the BET and BJH model, respectively. The isotherm shows an 
hysteresis IV-type with SBET of about 110.38 m² g−1. However, the pores distribution illus-
trated inset this figure indicates the collection of multiporous nanohybrid with average 
pore size essentially centered at 2, 3, 24 and 32 nm, which demonstratetheir mesoporous 
texture nanohybrid (pores between 2 and 50 nm) [42]. This distribution confirms, again, 
the dishomogeneous porous morphology observed in almost micro/nanospheric mem-
branous architecture via FESEM microscopy as shown above. 
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well as the existing functional groups that act on the adsorption mechanism, XPS analysis 
was performed. Figure 3 shows the deconvolution of main asymmetric peaks (Ni2p, Zn2p, 
C1s, and O1s) of high-resolution core-level XPS spectra, using L/G fitting method consistent 
with the literature data [36,43]. Ni2p and Zn2p show that the oxidation state of these ele-
ments is mainly based on ions, namely Ni2+ (or Zn2+) as in previously reported data, which 
will be very beneficial in our adsorption process [36,44]. 
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Figure 2. FESEM micrographs (a) and their N2 adsorption-desorption isotherms (inset pore distribution) (b) of adsorbent
based of Ni/Zn bi-phase nanohybrid.

The specific surface area (SSA—SBET) of this bi-phase nanohybrid was estimated from
the adsorbed-desorbed nitrogen quantity in relation to its pressure at liquid boiling point
and under normal atmospheric pressure. Figure 2b shows the obtained information of
adsorption and desorption isotherms of nitrogen at 77 K and their pores size and volume
distribution according to the BET and BJH model, respectively. The isotherm shows an
hysteresis IV-type with SBET of about 110.38 m2 g−1. However, the pores distribution
illustrated inset this figure indicates the collection of multiporous nanohybrid with average
pore size essentially centered at 2, 3, 24 and 32 nm, which demonstratetheir mesoporous
texture nanohybrid (pores between 2 and 50 nm) [42]. This distribution confirms, again, the
dishomogeneous porous morphology observed in almost micro/nanospheric membranous
architecture via FESEM microscopy as shown above.
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To better understand the composition of the used nanohybrid based adsorbent as well
as the existing functional groups that act on the adsorption mechanism, XPS analysis was
performed. Figure 3 shows the deconvolution of main asymmetric peaks (Ni2p, Zn2p, C1s,
and O1s) of high-resolution core-level XPS spectra, using L/G fitting method consistent
with the literature data [36,43]. Ni2p and Zn2p show that the oxidation state of these
elements is mainly based on ions, namely Ni2+ (or Zn2+) as in previously reported data,
which will be very beneficial in our adsorption process [36,44].
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4.2. Adsorption Process from Aqueous Solutions
4.2.1. Adsorbent Dosage Effect on the Azorubine Removal

One of the parameters that significantly affect the adsorption capacity is the adsorbent
dosage [45]; Figure 4 illustrates theNi/Zn LDH dosage effect on Az adsorption. The
removal ratio of azo dye was increased when increasing the amount of Ni/Zn LDH
adsorbent that was used. High Az removal is observed, with the maximum reachinga
value of 97% with 30 mg L–1 adsorbent. Thiscan be attributed to the larger pore diameter
(around 24 nm), which favors Az removal at lower adsorbent dosages [45]. In addition, the
higher sorbent removal with Ni/Zn LDHs at low adsorbent dosage demonstrates the high
affinity between this adsorbent and the Az. Therefore, we fixed the adsorbent amount to
30 mg L−1forall subsequent experiments.
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4.2.2. Contact Time, pH, Stirring Speed and Temperature Effect on the Adsorption Process

The adsorption as a function of contact time was conducted at room temperature
(25 ◦C) using 30 mg L–1 of Ni/Zn LDH and is reported in Figure 5a. The azo dye uptake
was rather fast initially (first 25 min), then increased slowly up until 60 min, when the
equilibrium was reached with a removal ratio of 94.3%. At the beginning, there are
phenomena attributed to the existence of a large number of vacant active sites on the
adsorbent surface. However, the remaining vacant surface sites are less available for
adsorption with time probably due to the repulsive forces that occur between the Az
molecules and the Ni/Zn LDH surfaces [46].
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Otherwise, the decrease in the Az adsorption kinetics is due to the presence of carbon-
ates from LDH structure; the dye species are in competition with carbonate anions which
originate from strong interactions between the CO2 molecules and the strongest basic
sites in the LDH structure and, consequently, it takes more time to reach the adsorption
equilibrium [47].

The pH of the dye solution is also an important parameter which controls the rate of
synthetic azo dye solution degradation. In order to study this pH effect, the degradation
experiments were carried out using 30 mg of Ni/Zn hydroxide in a solution of 50 ppm
Az (Figure 5b) by varying the pH in the range 2–12 with addition of (0.1 M) either HCl or
NaOH. The adsorption process affected by the milieu pH is possibly due to the interactions
between the dye anions in the solution and the adsorbent surface charge contents [48,49].
Therefore, we noted firstly that the removal efficiency of Az increases from 82.52% to
96.02% when the pH is varied from 2 to 7, and the maximum was achieved at neutral pH.

Then, the removal rate decreases in basic environment from 33.96% to 27.54% in the
pH range from 10 to 12. This phenomenon can be attributed to the electrostatic attraction
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between the positively charged adsorbent surface layer and the anionic dye at pH less
than the point of zero chare (PZC), which is equal to 7.53 for our Ni/Zn LDH adsorbent.
Therefore, at lower pH (acidic region), the surface of Ni/Zn LDH adsorbent with more
positively charged (pH < pHPZC) leads to increase the percentage of dye removal due to
strengthening the attractive forces among the positive charge of the surface of the LDHs
and negative charge of the dye [50]. On the other hand, the surface of LDHs become
more negatively charged along with the increase in solution pH (pH > pHPZC), leading
to a decline inthe nanohybrid adsorption ability. This decrease phenomenon is related
to strong repulsion forces between the dye and negative surface of the LDHs containing
inorganic anions. Consequently, for pH values under the pHPZC, there can be two probable
mechanisms to propose for Az removed using this kind of LDH; the first mechanism
could concern the anionic exchange of carbonate anions in the interlayer with dye anions
Az-SO3

−, while the second is the fixation by adsorption with the positively charged surface
H2O+ of Ni/Zn LDH and the Az anions [23]. Therefore, these solutions were used directly
without any pH adjustment in the rest of the work.

According to the curves in Figure 5c, it can be seen that the capacity for retention
of the dye increases slightly with increasing stirring speed, which acts favorably on the
contact probability between substrate and support.

Figure 5d presents Az removal as a function of time at three different temperatures
(15, 25 and 45 ◦C) on Ni/Zn LDH adsorbent. A similar profile of the kinetic curves
is observed for the three temperatures, and the sorption kinetic increases slightly with
increasing temperature.

This indicates that the sorption process is endothermic. The phenomenon could be
ascribed to the improvement of the mobility and the penetration of Az molecules within
the Ni/Zn LDH based mesoporous bi-nanostructure by allowing the activation energy
barrier to be easily overcome [51].

4.2.3. Adsorbent Concentration Effect on the Adsorption Process

Figure 6 exhibitsthe adsorption capacity of the Ni/Zn LDH nanohybrid at various
initial concentrations of Az. It can be seen that the removal percentage decreases from 98%
to 66.8% and the Az adsorption amount increases from 123.74 to 710 mg g−1 when the Az
initial concentration is increased from 25 to 200 mg L−1. Therefore, the decrease in the dye
removal efficiency with an increase in the dye concentration may be related to the initial
amount of dye molecules (see pictures inset), which is lower than the available surface
active sites, making the adsorption ratio independent of the initial dye concentration.
Nevertheless, at higher concentrations, there would be fewer available sites than initial dye
molecules in the solution which affect the Az removal percentage [46,52].
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Moreover, our nanoadsorbent has a high elimination rate just in the first few minutes,
and the adsorption equilibrium time was 60 min. It shows that the adsorption on Ni/Zn
LDH nanohybrid asa micro/nanoporous system has a short equilibrium time, and the ad-
sorption rate of this nanohybrid is much faster than other general bulk layered compound.
This can be attributed to the mesoporous micro/nanosystem morphology, which is helpful
for molecular transport by virtue of its porous texture architectural feature [53–56].

4.3. Fitting Kinetic Models

The kinetic curves of Az adsorption onto Ni/Zn LDH nanohybrid are shown in
Figure 7a,b, and the parameters of these kinetics models were obtained by regression
analysis and listed in Table 2. We observed that the R2coefficients determinedfor the
pseudo-first-order model were higher than the pseudo-second-order model values for this
nanohybrid adsorbent.
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Table 2. Coefficients of pseudo-first-order (PFO) and pseudo-second-order (PSO) adsorption ki-
netic models.

Models Characteristics
Temperature K

288.15 K 298.15 K 318.15 K

Pseudo-first-
order (PFO)

model

qe-exp [mg g−1] 223.44 236.74 243.94
k1 [min−1] 0.0524 0.0523 0.0523

qe-cal [mg g−1] 241.29 240.44 240.44
R2 0.9949 0.9949 0.9949

Pseudo-second-
order (PSO)

model

k2 [min−1] 09.57 12.51 14.72
qe-cal [mg g−1] 384.61 344.83 333.33

R2 0.9419 0.9903 0.9961

In addition, the computed equilibrium uptakes of the pseudo-first-order (PFO) expres-
sion are closer to the experimental values, thus indicating the applicability of this model,
which can describe very well the Az sorption process onto Ni/Zn LDH nanoadsorbent via
a physical sorption [57].

4.4. Adsorption Isotherm Studies

In general, adsorption isotherms play a fundamental role in the optimization of
adsorbent consumption and explains the reaction between the pollutants and the adsorbent
material [58]. Hence, the choice of best isotherm fit was conductedby linear regression
analyses and a comparison of their correlation coefficients (R2).
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Equilibrium studies which express the dye adsorbent capacity are explained through
the adsorption isotherms. The kinetic curves of Az adsorption onto Ni/Zn LDH nanohy-
brid are shown in Figure 8, and their parameters were obtained by regression analysis and
listed in Table 3.
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Table 3. Langmuir and Freundlich constants for Az adsorption onto Ni/Zn LDH nanohybrid.

Models Isotherm
Constants

Temperature K

288 K 298 K 318 K

Langmuir

qe-exp [mg g−1] 223.44 236.74 243.94
R2 0.9952 0.9934 0.9871

KL [l mg−1] 0.376 0.270 0.099
Qmax [mg g−1] 227.273 243.902 294.118

RL 0.050 0.069 0.167

Freundlich
R2 0.9694 0.9779 0.8626

KF (mg g−1) 71.58 72.35 43.12
N 3.128 3.123 2.097

The values of the correlation coefficient R2 = 0.9952, 0.9934 and 0.9871 at 288, 298
and 318 K, respectively, of the Az adsorption process on our nanohybrid, demonstrate
good linearity with the Langmuir expression compared to the Freundlich model. This
result reveals the monolayer coverage of Az molecules on the NiZn/LDH nanohybrid
accompanied byan homogeneous adsorption process. Moreover, the equilibrium parameter
RL ( 1

1+bC0
) is in the range of [0–1], indicating that implying the Az adsorption process is

favorable. Moreover, the higher values of KF (71.58, 72.35 and 43.12 mg g−1) and N (3.128,
3.123 and 2.097) at 288, 298 and 318 K temperatures, respectively, indicate that this Ni/Zn
LDH nanohybrid has a higher adsorption capacity and affinity for the azo dye molecules,
revealing the favorability of this adsorption [59].

Moreover, the theoretical maximum adsorption capacity of Ni/Zn LDH mesoporous
nanoadsorbent calculated depending on the Langmuir model is 227.27 mg g−1, which is
four times more superior than that of other analogical or low-cost adsorbents such as the
3D magnetic hollow porous Ni-ferrites (3D-MHP-NiFe2O4) with qm = 53.13 mg g−1 [60]
and copper oxide with qm = 1.59 mg g−1 [59].

5. Conclusions

In summary, Ni/Zn layered double hydroxide based nanohybrid was obtained using
low-cost template-free hydrothermal process at 180 ◦C growth temperature during 6 h via
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the formation of two phases based of nickel hydrate hydroxide (α*−Ni(OH)2 0.75 H2O)
and zinc carbonate (Zn5(CO3)2 (OH)6), where the FTIR results also indicate the presence of
functional groups that favor their electrostatic attraction with the anionic dye.

This multiscale porous hydroxide based nanohybrid with irregular-like nanoflakes
in 3D spongeous shape hierarchical micro/nanostructures which possess very interesting
specific surface area around 110 m2 g−1with reasonable pore volume and pore size distri-
bution between [0.16–0.85 cm3 g−1] and [12–32 nm], respectively, is accompanied by mixed
oxidation states with two kinds of anions Ni2+ (or Zn2+) and Ni3+ (or Zn3+), allowing it to
be a very good nanoadsorbent.

The Az adsorption ability of this new kind of nanoadsorbent was systematically
investigated using kinetic and equilibrium studies as well as by examining the effect of
dosage adsorbents, initial adsorbate concentration, initial pH, temperature, etc. Thus, the
capacity sorption of Az increases with increasing Az concentration, with a very fast sorption
process whereby an equilibrium time of 60 min was obtained. The adsorption behavior of
dye onto this Ni/Zn LDH nanohybrid was obviously influenced by the pH with the best
removal efficiency at pH range from 6 to 7. We also, noted that our new nanoadsorbent
presents an important adsorption capacity (~223 mgg−1) compared to other materials.
Moreover, the sorption kinetic data were more suitable with the pseudo-first-order (PFO)
kinetic model. Langmuir adsorption isotherm model showed the best compatibility with
the experimental data in comparison with other isotherm models.
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