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Abstract: The paper presents an original method for the template synthesis of biomimetic porous 
composites using polyferrophenylsiloxane (PFPS) and the skeleton of the sea urchin 
Strongylocentrotus intermedius as a structuring template. The study aimed to form an organosilicon 
base of a composite with an inverted structure relative to the original structure of the sea urchin 
shell with a period of structure movement of about 20 µm and ceramic composites fabrication with 
the silicate base with an average pore size distribution of about 10 µm obtained by the reaction of 
PFPS with the inorganic base of the sea urchin test under conditions of calcination at 1000 °C 
followed by acid etching. The composition and morphology of the obtained composites were 
investigated by IR, XRD, XPS, EDX, and SEM techniques and by mercury porosimetry; the 
parameters of the porous structures depend on the selected methods of their synthesis. The 
proposed method is of fundamental importance for developing methods for the chemical synthesis 
of new biomimetics with a unique porosity architecture based on environmentally friendly natural 
raw materials for a vast practical application. 
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1. Introduction 
Synthetic materials that mimic biological systems’ structural and functional 

properties represent a class of biomimetic materials included in modern materials science. 
The methods of their production determine the level of technological progress in the 
creation of new generation materials. Biomimetic materials demonstrate excellent 
properties as optical [1] and electrochemical [2] sensors, anodic materials for Li-ion 
batteries [3], corrosion-resistant products [4], triboelectric nanogenerators [5], and other 
engineering devices [6]. Additionally, these materials proved their indisputable 
advantage for the tasks of biomedicine as biomaterials for regeneration of bones [7] and 
skin tissues [8], as drug delivery agents [9], antibacterial systems [10], antioxidants [11], 
etc. 

A separate important area of biomimetics application is the technology of membrane 
and filtration purification of liquid [12,13] and gaseous media [14,15] from various 
pollutants: heavy metals, organic substances, combustion products, or radioactive 
components. In these processes, biomimetic materials characterized by such fundamental 
properties as the permeability and permeability of liquid or gas flows through their 
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volume and the ability to include functionally active surface centers. The properties of 
these membranes and filters that absorb pollutants are determined mainly by the structure 
and composition of biomimetic components. Purification of components occurs through 
physicochemical processes, including the effects of molecular sieving through the pores 
and specific chemical interactions between the pore surface and the solute. A recent 
review by Tu et al. [16] presents their studies that show that the characteristics of porosity 
(type of pores, pore size distribution, pore density, aperture) are the key factors that 
determine the efficiency of biomimetic membranes for various applications. Interestingly, 
the structural parameters of the materials are also crucial for electrochemical applications 
[17–19]. 

These functional structures with the required transport pores are created based on 
template synthesis using inorganic and polymer patterns (templates) that form a porous 
framework [20,21]. The sea urchin test, which is an organic–inorganic biocomposite, is of 
great interest as such a template. As shown in the skeletons of the sea urchins 
Heterocentrotus mamillatus [22] and Strongylocentrotus intermedius [23], these skeletons are 
characterized by their complex bicontinuous porous structure, also known as stereome, 
which often also exhibits controlled gradients of porosity and structural change [24]. At 
the same time, individual skeletons based on stereomes are single crystals based on calcite 
containing magnesium [23,25], which indicates the chemical activity of the inorganic base 
of the sea urchin skeleton when used as a raw material in chemical synthesis. 

Considering the possibilities of chemical and biochemical application of the sea 
urchin skeletons to create new functional materials, we investigated the chemical 
interaction of organosiloxans with the sea urchin skeleton as a pore-forming template for 
obtaining new materials with a developed porous structure. The method proposed in this 
work can be of fundamental importance for determining the possibility of obtaining 
ordered porous composite materials for a vast practical application, including 
technologically demanded highly porous cellular membranes or filters. 

2. Materials and Methods 
2.1. Reagents 

The skeleton of the sea urchin Strongylocentrotus intermediateus (Sea of Japan) was 
used as a template for porous ceramic frame formation. Polyferrophenylsiloxane (PFPS) 
and FeCl3·6H2O (99.98 % purity) were used as a precursor for the fabrication of 
composites. Dimethylsulfoxide (DMSO) and toluene were used as solvents. 

2.2. Methods of Synthesis 
2.2.1. Synthesis of PFPS 

Synthesis of PFPS was carried out according to the previously developed methods 
[26]. A mixture of 27.0 g FeCl3·6H2O (0.1 M) and 94 g of DMSO dissolved in 150 mL of 
toluene was boiled until complete water evaporation in the Dean-Stark trap. A solution of 
58.8 g (0.3 M) С6Н5Si(OH)2ОNaН2О in 50 mL of toluene and 48 g of DMSO was added to 
the resulting suspension. The yield of the target polymer product was 90.0 wt%. 

2.2.2. Synthesis of the PFPS-Based Composite 
Synthesis of the PFPS-based composite was carried out by impregnating of 10 g the 

sea urchin skeleton (fraction of 2–8 mm) with 25 mL of a 5% solution of PFPS in toluene 
in vacuum media (50–100 mm Hg); the obtained sample was dried in air at 60 °C. The 
impregnation was performed twice with the use of this technique. The resulting sample 
was then treated with a 2% HCl solution until the urchin skeleton was dissolved entirely 
(sample “c-PFPS”). Additionally, composite No.1 was calcinated at 1000 °С (“c-
PFPS/1000”) and acid-treated with 2% HCl (“c-PFPS/1000/HCl”) (see Table 1). 

  



Appl. Sci. 2021, 11, 8897 3 of 9 
 

Table 1. List of samples and conditions for the composite synthesis. 

No. Sample Impregnation with 
Polymer 

Calcination after 
Impregnation with 

Polymer 

Acid Treatment 
after Calcination 

1 c-PFPS PFPS - - 
2 c-PFPS/1000 PFPS 1000 °С - 

3 c-
PFPS/1000/HCl 

PFPS 1000 °С HCl 

2.3. Characterization of Research Methods 
The IR spectra of the polymer samples were recorded using a Spectrum-1000 Fourier 

transform spectrometer “PerkinElmer” (Waltham, MA, USA) with KBr tablets. X-ray 
diffraction analysis (XRD) was carried out on a D8 Advance “Bruker” diffractometer 
(Karlsruhe, Germany) using Cu-Ka irradiation in the angle range 2° < 2Ө° < 90°. The 
maximum deviation of the reflex position according to NIST SRM 1976 was less than 0.01° 
2Ө. The morphology of the samples was investigated using a scanning electron 
microscope (SEM) EVO 40 “Carl Zeiss” (Oberkochen, Germany) and a BX-43 “Olympus” 
optical microscope (Tokyo, Japan) with an XC-50 “Olympus” camera. Elemental analysis 
(XPS) of dried and original sea urchin samples was carried out using an X-ray fluorescence 
spectrometer EDX 800 HS “Shimadzu” (Kyoto, Japan). SEM was performed on a 
CrossBeam 1540 XB “Carl Zeiss” (Oberkochen, Germany) equipped with the add-on set 
for energy-dispersive X-ray spectral analysis (EDX) “Bruker” (Billerica, MA, USA). The 
carbon content of the samples was determined by the wet combustion method. 

3. Results 
The XPS analysis (Table 2) showed that the skeleton of the gray sea urchin (stereome) 

consists of calcite (CaCO3) in composition with magnesium in the form of magnesite 
(MgCO3). 

Table 2. Elemental composition of the skeleton of the gray sea urchin Strongylocentrotus intermedius before and after 
calcination (XPS analysis). 

Object 
Content of Elements, wt% * 

СаО MgO Na2O K2O SiO2 P2O5 SrO Fe2O3 
Test of the sea urchin 

(original) 
45.98 11.03 40.70 1.52 0.30 - 0.20 0.11 

Test of the urchin (calcined 
at 700 °С) 87.40 11.67 - - - - 0.46 0.11 

* Note: XPS method error is no more than 0.3 wt%. 

XRD and IR-spectroscopy showed that the sea urchin skeleton is formed by high-
magnesium solid calcite (Figures 1 and 2). 
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Figure 1. XRD of the original shell of the gray sea urchin Strongylocentrotus intermedius. 

The FTIR spectra of the shell of sea urchins (Figure 2) have a distinct absorption band 
at about 1430–1410 cm−1, which refers to the asymmetric stretching vibration of the C-O 
bond in the CO32− group in calcite, as well as weak in the intensity of absorption bands 
located at 2910 and 2880 cm–1, related to stretching vibrations of the C-H bond, indicating 
the presence of organic matter. 

 
Figure 2. IR spectrum of the original shell of the gray sea urchin Strongylocentrotus intermedius. 

The gray sea urchin is covered with short spines of different numerous color 
variations: purple with brown tips, white and violet-white, dark green with a purple or 
red top, brown, and light green. The test with removed spines consists of plates with holes 
for ambulacral feet and attachment points for movable spines. A spongy or cellular 
stereome represents the skeleton of the shell. The pore spaces in the points of removed 
spines are connected into a single system, which can account for up to half of the total 
skeleton volume (Figure 3a,b). 
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Figure 3. (a,b) SEM images of the skeleton of the sea urchin Strongylocentrotus intermedius without spines. 

Considering that the sea urchin skeleton is covered with an organosilicon film, 
increasing the surface wettability with organosiloxane and allowing it to penetrate the 
capillaries, we decided to obtain a structured material with the use of the sea urchin test 
as a template and PFPS as a filler. Its decomposition property determines the choice of an 
iron-containing organosilicon polymer at high temperatures with the formation of a 
composite material containing silicon dioxide SiO2, which has high sorption properties, 
and iron oxide Fe2O3, which imparts magnetic properties to materials. Thus, the treatment 
of the sea urchin shell (template) with PFPS, followed by acid etching of the inorganic 
framework, leads to the formation of a polymer with a three-dimensional structure (Figure 
4a). This structure is an inverted internal structure of the original sea urchin skeleton (Figure 
3). 

The high magnification of SEM images reveals that the resulting polymer material 
has a hollow fiber structure, as seen in Figure 4c. This type of structure formed because of 
the evaporation of toluene from the PFPS solution into the internal volume of the 
framework with the release of PFPS on the channel surface. A decrease in the volume of 
the solution leads to the formation of a tubular structure. 

 
Figure 4. Images of the structure of a material that is polyferrophenyl-siloxane after the 
dissolution of the skeleton: (a) optical range, (b) micrometer range, (c) nanometer range. 
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According to SEM data, the structure of the PFPS composite (sample “c-PFPS”) after 
its thermal treatment at 1000 °С (sample “c-PFPS/1000”) undergoes a significant change 
in comparison with the structure of the initial test (Figure 3) and partially destroyed 
(Figure 5a,a*). When zooming in, it can be seen that the ceramic frame of the composite 
has a granular densely packed structure (Figure 5b,b*). Additional acid treatment of this 
sample (sample “c-PFPS/1000/HCl”) also leads to distortion of the structure of the ceramic 
framework, where the porous channels are significantly narrowed, and the grains forming 
its base have a melted shape (Figure 5b,b*). 

 
Figure 5. SEM images and EDX analysis (wt%) of PFPS composite samples: (a,a*)—calcination at 
1000 °C in the air (sample No. 2 of Table 1); (b,b*)—calcination at 1000 °C in air, followed by 
treatment with HCl (Table 1, sample No. 3). 

Τhe results of the EDX analysis (Figure 5) show that the main qualitative composition 
of the composites does not change after heat treatment and acid etching. However, the 
quantitative content of elements in the samples is different. Treatment of the composite 
calcined at 1000 °С (sample “c-PFPS/1000”) with hydrochloric acid (sample “c-
PFPS/1000/HCl”) leads to a significant decrease in the Ca content from 31.64 to 1.42 wt% 
(Figure 5); this decrease is associated with the acidic dissolution of calcium and 
magnesium silicate. 

The mercury porosimetry data revealed that the original sea urchin shell treated with 
PFPS has a macroporous structure, with a pore size in the range of 5–50 µm, and an 
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average distribution in the region of 10 µm, as shown in the intrusion curves (Figure 
6a,a*). Calcination of this composite at 1000 °C in the air did not lead to a significant 
change in the character of the intrusion curve; thus, the pattern of structural 
macroporosity of the sample in the range of the average pore size was the same before 
and after calcination (Figure 6b,b*), which was also noted on the SEM image (Figure 5a). 
A visible difference was the pore volume, which increased threefold, and the size range 
of all available pores expanded from 500 nm to 100 µm; this was associated with the partial 
destruction of the porous framework and the formation of macro and micro defects in the 
structure, as also shown on the SEM image (Figure 5a*). Acid treatment led to a significant 
change in the structure of the sample, namely, its destruction. The pattern of the intrusion 
curve changed significantly. There was no more narrow pore size distribution (Figure 6c) 
because of the destruction of the porous framework, as shown in the SEM image (Figure 
5b, b*). The differential curve of mercury intrusion (Figure 6c*) shows that the main 
porous volume lies in the range above 100 µm, which indicates the destruction of the 
material into large fragments after acid treatment. 

 
Figure 6. General and differential dependences of mercury intrusion into samples: (a,a*)—the 
original skeleton of the sea urchin Strongylocentrotus intermedius; (b,b*)—PFPS composite calcined 
at 1000 °С (sample “c-PFPS/1000); (с,с*)—composite treated with HCl after calcination (sample “c-
PFPS/1000/HCl”). 
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4. Conclusions 
The paper investigates a method for template synthesis of porous biomimetic 

composites by a chemical interaction of PFPS with the sea urchin skeleton used as a pore-
forming template. The study has shown that treatment of the porous sea urchin skeleton 
with PFPS used as a filler followed by removal of PFPS by acid etching resulted in 
formation of an organosilicon material with the structure inverted relative to the initial 
skeleton. An optical microscopy analysis established a linearly organized regular 
structure with a structured movement of about 20 µm. According to the EDX data, it was 
found that calcination of the sea urchin skeleton soaked with PFPS at 1000 °C made it 
possible to form a ceramic composite based on calcium silicate and magnesium with a 
macroporous structure with an average pore size distribution of about 10 µm; this 
corresponds to the average pore size of the original sea urchin shell. SEM analysis and 
mercury porosimetry data determined that calcination leads to a threefold increase in the 
porous volume and an expansion of the range of all available pores from 500 nm to 100 
µm, because of partial destruction of the framework and the formation of macro and micro 
defects in the structure. At the same time, we found that additional treatment of this 
composite with hydrochloric acid leads to a significant destruction of the porous structure 
caused by the dissolution and destruction of the silicate framework. Thus, the results of 
our study show that the original presented template synthesis method is promising and 
can be applied for the subsequent development of orderly porous biomimetics for 
practical purposes with the use of various polyorganosiloxanes of the sea urchin skeleton 
as a natural framework-forming template. However, it should be considered that the 
method of acid treatment is suitable for obtaining a silicone-organic composite with the 
inverted structure and not suitable for the formation of ceramic composite because it leads 
to melting of the template (sea urchin skeleton) without preserving the inorganic skeleton. 
In the second case, oxidative calcination is more suitable for the formation of ceramics. 
Varying the composition of organosiloxanes when processing the sea urchin skeleton will 
allow control of the composition of the final ceramics, and optimal modes of heat 
treatment will preserve the defect-free porous structure of the obtained final composites. 
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