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Abstract: Terahertz wave (T-ray) scanning applications are one of the most promising tools for
nondestructive evaluation. T-ray scanning applications use a T-ray technique to measure the thickness
of both thin Shim stock films and GFRP (glass fiber-reinforced plastics) composites, of which the
samples were selected because the T-ray method could penetrate the non-conducting samples.
Notably, this method is nondestructive, making it useful for analyzing the characteristics of the
materials. Thus, the T-ray thickness measurement can be found for both non-conducting Shim stock
films and GFRP composites. In this work, a characterization procedure was conducted to analyze
electromagnetic properties, such as the refractive index. The obtained estimates of the properties are
in good agreement with the known data for poly methyl methacrylate (PMMA) for acquiring the
refractive index. The T-ray technique was developed to measure the thickness of the thin Shim stock
films and the GFRP composites. Our tests obtained good results on the thickness of the standard
film samples, with the different thicknesses ranging from around 120 µm to 500 µm. In this study,
the T-ray method was based on the reflection mode measurement, and the time-of-flight (TOF)
and resonance frequencies were utilized to acquire the thickness measurements of the films and
GFRP composites. The results showed that the thickness of the samples of frequency matched those
obtained directly by time-of-flight (TOF) methods.

Keywords: terahertz waves; refractive index; thickness measurement; Shim stock films; composite
materials; reflection mode

1. Introduction

Terahertz waves (T-ray) have recently been utilized for technical applications [1].
Along with the recent progress of T-ray technology and monitoring instruments, defect
inspection methods have emerged based on the electronic spectrum. Moreover, the T-ray
has a relatively higher resolution. In addition, the T-ray has led to advanced progress for
spectroscopic monitoring in security areas, food inspection, water, the mechanical field,
and materials. Terahertz time domain spectroscopy (THz-TDS) has been utilized to inspect
various delamination or foreign materials in advanced non-contact composites. THz-TDS is
based on photoconductivity, and this depends on low-cycle formations with the utilization
of a photoconductive antenna (Femtosecond (10–15 s) laser) [2].

It is possible to create THz waves in less than a pico-second. Therefore, detection
techniques using a high signal-to-noise (S/N) ratio are available, which affects the broad
bandwidth. A temporary change in the T-ray emitter occurs due to the resistance of
the photoconductive switch on the T-ray timescale [3,4]. In addition, another method,
known as optical anisotropic conversion or optical mixing, can be utilized along with
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two continuous wave (CW) lasers [5]. When these two lasers are mixed, a beating is
generated, and this beating can modulate the conductance of the photoconductive switch
using the terahertz differential frequency [6]. Continuous-wave terahertz (CW-THz) can
be obtained using this method. In some cases, a T-ray image can also show the chemical
components of a target material [7]. Owing to these characteristics, the T-ray image has
attracted significant attention. The T-ray image has commercial applications in various
fields, including humidity analysis, quality management of plastic products, and packing
inspection (monitoring) [8–10].

Owing to its broad utilization and far-ranging applications, the THz-TDS techniques
could have the possibility to become a portable THz image. This approach is composed
of two sections, which both involve the use of the T-ray. First, the importance of fiber-
reinforced plastics (FRP) in the space and civil aviation fields is generally well known, and
the FRP-laminated plate is widely used. In addition, the waveforms of terahertz pulses in
the TDS mode have a strong resemblance to those of ultrasonic tastings. Regarding wave
propagation concepts such as time of flight (TOF), transmission and reflection coefficients,
refraction and diffraction are common to both waves. However, there are also fundamental
differences when materials are probed with terahertz radiation, an electromagnetic wave,
and with ultrasound, a mechanical wave [11]. In order to measure the thickness of a
specimen using conventional ultrasonic waves, a couplant medium is always required,
which makes the ultrasonic waves easily propagated. In the case of using air as a couplant
medium, selecting ultrasonic frequency is narrowly ranged; thus, there is a limitation to
measuring thinner samples. Therefore, due to the couplant medium, the factors affecting
the accuracy of the measurements should be considered such as attenuation, diffraction,
and dispersion of the samples [12]. By the way, the terahertz wave used in this study
requires no couplant medium and is utilized under the mode of noncontact. Thus, the
terahertz wave could make better reproducibility of data produced and also a higher
frequency could be selected, which could bring the stronger measurement of thickness in
case of thin samples.

The other is composed of the refractive index (n), the electrical conductivity of fiber-
embedded epoxy matrix composite material, and the measurement of T-ray thickness for
both glass fiber-reinforced plastics (GFRP) and thin Shim stock films, which are produced
as a standard sample with an arbitrary thickness (ranging from tens of µm to hundreds
of µm) [13]. Thus, the thicknesses for both GFRP and thin Shim stock films are measured
using T-ray technology. Carbon fiber-reinforced plastics (CFRP) are conductive, but epoxy
matrix is non-conductive [14,15]. However, the carbon fiber of the CFRP-laminated plate
has conductivity, enabling the T-ray characteristics evaluation of glass fiber and carbon
fibers [16].

In this study, the results of the experiment on the T-ray were obtained based on the non-
destructive evaluation methods using FRP composite materials. In addition, the correlation
was performed between the fiber direction and the E-field of the GFRP composites and the
CFRP composite-laminated plate according to the refractive index measurement technique,
which shows the properties of various materials and the existence of conductivity. A new
numerical method of measurement of refractive indexes in reflection and transmission
modes was proposed. In addition, we performed a fundamental experimentation and
brought a simple testing procedure for acquiring the thickness of samples as an existing
NDE method. Here, the measured thickness and the reference thickness of the Shim
stock films, which had a standard reference thickness, were compared. In addition, the
thicknesses of the GFRP composites with non-conductivity were measured.

Therefore, a difference in the time-of-flight (TOF) was utilized to measure the thickness
of the GFRP composites using the T-ray. The effectiveness of a T-ray examination was
successfully evaluated by comparing and reviewing the specimens using the resonance
frequency.
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2. Fundamental Theory
2.1. Measurement of Refractive Index

Using the refractive index measurement technique, the reflection mode was applied
in the time domain of the T-ray, and the refractive index was induced by picking up a
signal reflected through the specimen. The progress direction of the T-ray signal is shown
in Figure 1. Here, T is the transmitter of T-ray and R is the receiver of T-ray.
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The refractive index can be obtained by calculating the time of the T-ray, which is
reflected from the terahertz pulsed emitter’s arrival at the pulsed receiver and the time-of-
flight (TOF) when the T-ray passes through a specimen of a certain thickness [1].

This reflection mode obtains the refractive index by calculating each length of optical
fiber reflected on the top and bottom of the specimen in the T-ray time-of-flight (TOF).
Figure 1 shows the shape and path of T-ray. At first, if it is assumed that T-ray is projected
on the specimen vertically, a time difference (∆t) can be obtained as follows:

∆t =
2d
v

(1)

In consideration of the path of the oblique T-ray and the shape delay time in the
reflection mode, as shown in Figure 1, a time difference (∆t) between the surface-reflected
wave and back-reflected wave on the specimen can be obtained as follows:

∆t =
2l
v
− δ

Ca
(2)

Here, l = d
cosθr

, δ = 2lsin2θa = 2 d
cosθr

sin2θa, Ca is the velocity in air, d is the sample
thickness, v is the sample velocity, θa is the angle of inclination in the reflection mode, θr
is the refractive angle in the sample, and n is the refractive index. When the shape delay
time and the path of oblique T-ray are traced, both the time difference (∆t) and resonance
frequency (∆f ) can be expressed as follows [13]:

∆t =
(

2d
v cosθr

− δ

Ca

)
=

2d
cosθr

(
1
v
− sin2θa

Ca

)
(3)

∆ f =
1(

2d
v cosθr

− δ
Ca

) =
1

2d
cosθr

(
1
v −

sin2θa
Ca

) (4)

Here, l is the refracted length in the sample, d is the thickness of specimen, v is the
velocity in the specimen, Ca is the velocity in the air, l is the refracted length in the sample,
δ is the skip length of refractive waves in the sample, θr is the refraction angle in the
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specimen, and θa is the refraction angle in the air. The refractive index, which is one of the
electromagnetic properties, can be calculated by following the steps above.

The refractive index can be obtained with the approximate solution as follows:

n4 − An4 − Asin2θp1 = 0 (5)

where d is the sample thickness, Vair is the light speed in air, and Vs is the light speed in
the sample. ∆t (T) is the difference time between with sample and without sample, and

A =
T2V2

air
4d2

2
. Here, assuming that the normal reflection mode is vertical on the sample,

the refractive index (n) should be v∆t/2d. However, this reflection mode was composed
with some angles. Therefore, a correction factor needs to be considered to obtain a better
solution, as shown in Equation (5).

2.2. Measurement of Refractive Index

In through-transmission mode, the index of refraction (n) can be calculated using the
following equation, according to [2]:

∴ n = 1 +
∆t vair

d
(6)

where ∆t is the time cap between with sample and without sample, d is the sample thickness,
Vair is the light speed in air, and L is the distance between the pulsed emitter and pulsed
receiver.

3. Experiment System and Measurement
3.1. Measurement System

Figure 2 shows a photo of the THz-TDS system, which is a non-destructive testing
device. This system is used to collect the material characteristics and scan the image of the
specimen. The T-ray system used in this study was produced by TeraView Ltd. Cambridge
in the United Kingdom. This system was composed of the time domain spectroscopy (TDS)
pulse device and the frequency domain continuous wave (CW) device. It was composed
of TDS technologies for generating, controlling, and searching terahertz pulses. The THz-
TDS system can obtain an image and improve data acquisition, and its unique structural
characteristics for manipulating the T-ray have a direct influence on the image production
experiment. This TDS system had a frequency range from 50 GHz to 4 THz, and the delay
time reached up to 300 ps. The T-ray beam was concentrated on the focal distances of
50 mm and 150 mm, and the full width at half-maximum (FWHM) values were 0.8 mm
and 2.5 mm, respectively. This TDS device can be set for measuring the penetration or
reflection (small-angle pitch-catch). The frequency range of the CW device was between
50 GHz and 1.5 THz. The focal distances of the CW device were also 50 mm and 150 mm.
The TDS and CW devices were connected to each other through the optical fiber. Figure 3
shows the schematic diagram of the T-ray system.
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Figure 3. Overview of the THz measurement method [2].

3.2. Measurement Method

Figure 3 exhibits the T-ray measurement system, which demonstrates the reflection
mode. When the test was carried out in this system, the T-ray was created from the emitter
and sent to the receiver. At this time, the test was carried out by matching the focal point
of the emitter and the receiver with the desired specimen. Then, the angle of inclination
of the T-ray lens was determined as 16.6◦. Figure 4 shows the Shim stock films and GFRP
composites. The thicknesses of the Shim stock films were 0.127 mm, 0.254 mm, 0.381 mm,
0.508 mm, and 0.762 mm, and the thicknesses of GFRP composites were 2.02 mm, 3.08 mm,
5.74 mm, and 5.92 mm, respectively. Figure 5 shows typical A-scan data, which is the
reflection mode of the GFRP composites of the T-ray. The thickness of the specimen was
3.0 mm.
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4. Results and Discussion
4.1. Measurement of Terahertz Refractive Index

To measure the T-ray parameter which indicated the material properties, the THz
pulse was obtained from the Shim stock films and GFRP composites in the reflection mode.
Figure 5 clearly shows the time difference (∆t) between the surface and the back of the GFRP
composites in the reflection mode. GFRP was used for the specimen, and the thickness
of specimen was approximately 3.0 mm. The time difference (∆t), which was obtained
according to the thickness of the specimen, was 42 ps. Therefore, the optical time difference
was calculated using the reflection mode, which is a measurement technique used to obtain
the refractive index. The optimal time difference was calculated using Equation (4). In
addition, the Shim stock films, GFRP composites, PMMA, and fused quartz specimens
were measured under the reflection mode method, as shown in Table 1. When the results
were compared with those from the previous references, only a difference within ±1% was
found [1,6].

Table 1. Averaged THz refractive indices of the individually studied materials.

Materials Refractive Index (n) *
Refractive Index (n)

Reflection Mode

PMMA 1.60 ± 0.08 1.59 ± 0.07
Shim Stock films - 1.52 ± 0.03

Fused quartz 1.95 ± 0.05 1.94 ± 0.09
GFRP - 2.17 ± 0.05

* Data in References [6,11].

Here, the reflection mode measurement techniques of the terahertz were performed in
one direction, and experiments were carried out considering various aspects. In addition,
since the measurement methods and the characteristics of the GFRP composites and Shim
stock films were different, it was difficult to compare them with the previous data.

4.2. Electric Field Evaluation of Carbon Fiber

Unlike non-conductive materials, the T-ray has limited penetrating power against
conductive materials [17]. At first, the test was carried out by applying the T-ray GFRP
composites composed of non-conductive materials and the CFRP composites composed
of conductive materials partially. The CFRP composites are composed of carbon fiber
with conductive and non-conductive resin. When the CFRP-laminated composite plate
is observed with a microscope, it is composed of various fibers and resins that could
affect conductivity significantly, so the quantitative characteristic evaluation of carbon fiber
composite material of T-ray is necessary. According to the previous reference, the radial
conductivity of carbon fiber is approximately three times larger in the case of the electrical
conductivity on the carbon fiber axis. The CFRP composites are composed of unidirec-
tional composites, and the conductivity of the CFRP laminated plate composed of various
lamination layers is affected. A transverse (vertical to the fiber axis) conductive generator
depends on the fiber contact that occurs between adjacent fibers. Studies regarding the
electrical conductivity of carbon fiber composite material are scarce. In some references,
researchers have reported that the value of longitudinal conductivity (σl) ranges between
1 × 104 s/m and 6× 104 s/m, and the value of transverse conductivity (σt) ranges between
approximately 2 s/m and 600 s/m, which is much wider [18].

The transverse conductivity value of the laminated plate using the unidirectional
Prepreg sheet varies significantly according to the production process and the quality of
the laminated plate. The plane conductivity on the flowing current, while forming the θ

angle with the fiber axis in the unidirectional CFRP composites, is given as follows [19]:

σ = σlcos2cosθ+ σtsin2θ (7)
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Since it is significantly higher than the longitudinal conductivity of the fiber (σl >> σt),
the T-ray which penetrates the unidirectional CFRP composites significantly varies accord-
ing to the angle between the electric field vector and the axis of the carbon fiber. When the
electric field of the T-ray is parallel to the axial direction of carbon fiber, the conductivity
becomes the largest and the penetrating power becomes the smallest. On the contrary,
when the electric field vector is perpendicular to the axis of fiber, the conductivity becomes
the smallest and the penetrating power becomes the largest. The surface depth of the
unidirectional oriented CFRP composites on the T-ray using the value of 10 s/m is 0.2 mm
in 1 THz and 0.5 mm in 0.1 THz when the direction of electric field is vertical to the fiber
axis. The effect of the penetrating power on the angle in the 24-ply unidirectional CFRP
composite-laminated plate was experimentally evaluated using the CW terahertz device.

Figure 6 exhibits the amplitude profile of the penetrating power of both the GFRP and
CFRP composites by the function of angle under the frequency of 0.1 THz. The amplitude
profile of power was obtained, with values ranging from 0◦ to 90◦ for both the GFRP
composites and CFRP composites. Notably, in the case of the GFRP composites, there
was no change in the amplitude profile. However, the CFRP composites showed a higher
amplitude of penetrating power at 90◦, although they showed almost no amplitude of
penetrating power at 0◦. When the measurement was made, the GFRP composites were
not dependent on any angle, but the CFRP composites were dependent on the angle of the
carbon fibers.
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4.3. Measurement of Thickness Using the Reflection Mode

The THz-TDS reflection mode was applied to measure the thickness for both the Shim
stock films and GFRP composites with the one-side direction. Figure 7 exhibits the T-ray
scan images of the thin Shim stock films. The thicknesses of the thin Shim stock films were
0.127 mm, 0.254 mm, 0.381 mm, 0.508 mm, and 0.762 mm. The values of the thicknesses
were utilized as the standard samples of the films. Figure 7a exhibits the difference (∆t) in
the time-of-flight (TOF), which indicates the difference between the surface and the back of
the Shim stock films. Figure 7b represents Figure 7a as the FFT domain, and ∆f refers to
the resonance frequency, which is correlated with the thickness of the thin Shim stock films.
Here, ∆t is the difference time in the time-of-flight (TOF). Namely, 1/∆t should be ∆f. Here,
the example thickness in the thin Shim stock film was 0.381 mm.
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Figure 7. A TOF and FFT image of the thin Shim stock films under the reflection mode (0.381 mm
in thickness).

Table 2 shows the comparison of the TOF difference (∆t) of the thin Shim stock films,
resonance frequency (∆f ), and T-ray measurement and reference thickness. Figure 8 shows
the data after the T-ray scanning GFRP composites. The thicknesses of the GFRP composites
were 2.02 mm, 3.08 mm, 5.74 mm, and 5.92 mm. The values of the thicknesses were used as
the standard thickness of the samples.

Figure 8a shows the difference (∆t) in the time-of-flight (TOF), which indicates the
difference between the surface and the back of the GFRP composites. Figure 8b represents
Figure 8a as the FFT domain, and ∆f exhibits the resonance frequency, which is related to
the thickness of the GFRP composites. Here, ∆t is the TOF difference. Namely, 1/∆t should
be ∆f. The thickness of the GFRP composites was 2.02 mm.

Table 3 shows the comparison of the TOF difference (∆t) of the GFRP composites,
resonance frequency (∆f ), T-ray measurement, and reference thickness.
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Table 2. Measurements of the Shim stock films with various thicknesses using the THz techniques.

Sample No. Delay Time
(∆t, ps)

Resonance
Frequency (∆f )

T-ray Measure
ment (mm)

Reference
Thickness (mm) Others

1 1.322 0.750 0.137 0.127 Shim stock Co., Ltd.
(Edenvale, South Africa)

2 2.551 0.392 0.250 0.254
3 3.846 0.260 0.396 0.381
4 5.881 0.170 0.539 0.508
5 8.600 0.115 0.789 0.762
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Figure 8. A TOF and FFT image of the GFRP composites under the reflection mode (2.02 mm
in thickness).

Table 3. Measurements of the GFRP composites with various thicknesses using the THz techniques.

Sample No. Delay Time (∆t,
ps)

Resonance
Frequency (∆f )

T-ray
Measurement

(mm)

Reference
Thickness (mm) Others

1 24.480 0.041 2.000 2.020 Shim Stock Co., Ltd.
2 50.000 0.020 3.180 3.080
3 75.130 0.013 5.600 5.740
4 83.30 0.012 5.920 5.920

4.4. Relation between Nominal Thickness and Thickness Measured from T-ray Techniques

The Shim stock films and GFRP plates with non-conductivity were not dependent on
the direction of the T-ray, so the measurement was possible. In addition, the T-ray reflec-
tion mode which could enable the measurement in one direction was adopted. Figure 9
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exhibits the comparison between the nominal thickness in the thin Shim stock films and
the thickness measured using the T-ray. As shown in Figure 9, the thicknesses of the thin
Shim stock films were 0.127 mm, 0.254 mm, 0.381 mm, 0.508 mm, and 0.762 mm. The
thickness of the thin Shim stock films was shown in a straight, solid line. This line shows
the proportional relation with the standard thickness. Here, — represents the nominal
thickness; � represents the measured data in the case of the measurement, assuming that
the T-ray was vertical to the specimen; and4 represents the measured data in the case of
the inclined T-ray. Here, to effectively obtain the Refractive index (n), a suitable sample is
the case with a thickness of several ones of mm. In case of the films, we did not prepare
such a thicker sample. In this testing, this value is the average value of all the samples.
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Thus, the difference of data could be considered to be due to the average value of the
refractive index to some degree. Even though there was a difference of ±2%, the results
tended to be in agreement in the linear aspect.

Figure 10 shows the comparison between the nominal thickness of the GFRP compos-
ites and the thickness measured using the T-ray. The thicknesses of the GFRP composites
were 2.02 mm, 3.08 mm, 5.74 mm, and 5.92 mm. In Figure 9, — represents the nominal
thickness; � represents the case of the measurement, assuming that the T-ray was vertical
to the specimen; and4 represents the case of the inclined T-ray. Unlike the thickness at
the microgram scale, the case of the inclined T-ray matched with the standard thickness at
the millimeter scale. This can be attributed to the thickness of the specimen, the relatively
small effect from the error, the strong received signal in electric field according to the fiber
orientation of the GFRP composites, and the high penetration ratio of T-ray, enabling us to
optimize a reception strong signal. Therefore, we found that it had potential reproducibility.
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5. Conclusions

In this approach, the refractive index measurement technique was established to cal-
culate the material properties regarding the utilization of the T-ray for the non-destructive
examination of Shim stock films and GFRP composites. In addition, the T-ray limitation in
the energy penetrating power was discussed with respect to the conduction characteristics
of the GFRP composites and the fiber lamination angle of CFRP plates. Possible THz-TDS
techniques are summarized for measuring the thickness of the thin Shim stock films and
GFRP composites as follows:

(1) It was possible to solve the refractive index of the thin Shim stock films and GFRP
composites utilizing T-ray techniques under the reflection mode.

(2) The T-ray showed a constant level of penetrating power in the glass fiber class
composites, which led to a very high penetration ratio and enabled the optimization of a
strong reception signal. Therefore, it was found that it had potential reproducibility.

(3) The values of the measured thicknesses for both Shim stock films and GFRP
composites were in agreement with those of the nominal thicknesses. The values were
successfully measured through the correlation between the TOF cap and the resonance
frequency under the reflection mode.

(4) We expect that the manufactured thickness measurement device using T-ray tech-
niques may be very useful for non-destructive examinations in future applications in the
advanced aerospace field.
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