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Abstract: Developing algorithms for analyzing hyperspectral images as an intraoperative tool for
margin assessment during breast-conserving surgery requires a dataset with reliable histopatho-
logic labels. The feasibility of using tissue slices hyperspectral dataset with a high correlation with
histopathology for developing an algorithm for analyzing the images from the surface of lumpec-
tomy specimens was investigated. We presented a method to acquire hyperspectral images from
the lumpectomy surface with a high correlation with histopathology. The tissue slices dataset was
compared with the dataset obtained on lumpectomy specimen and the wavelengths with a penetra-
tion depth up to the minimum sample thickness of the tissue slices were used to develop a tissue
classification algorithm. Spectral differences were observed between tissue slices and lumpectomy
datasets due to differences in the sample thickness between both datasets; wavelengths with a high
penetration depth were able to penetrate through the thinner tissue slices, affecting the captured
signal. By using only wavelengths with a penetration depth up to the minimum sample thickness of
the tissue slices, the adipose tissue could be discriminated from other tissue types, but differentiating
malignant from connective tissue was more challenging.

Keywords: hyperspectral imaging; surgical margin assessment; diffuse reflectance; penetration
depth; tissue classification; breast surgery

1. Introduction

Breast-conserving surgery in combination with adjuvant radiotherapy is the preferred
local treatment for women with breast cancer [1–3]. During these surgeries, surgeons aim to
remove the complete tumor while sparing as much healthy tissue as possible. This, however,
becomes challenging when no clear tumor border can be defined during surgery, and in up to
29% of the surgeries, residual tumor is left behind in the patient [4–9]. Currently, a pathologist
evaluates if the tumor is completely removed by analyzing the resection margin of the
lumpectomy specimen under a microscope. As this involves extensive processing of the
tissue, this requires a few days and no direct feedback can be given to the surgeon during
surgery. Therefore, these patients require a second operation or extra radiotherapy boost to
clear tumor deposits left behind during the initial procedure.
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A technique that offers great potential for margin assessment during surgery is hy-
perspectral imaging: The intrinsic optical properties of the entire resection surface can
be imaged fast, over a wide field of view, without tissue contact. Hyperspectral imaging
measures diffuse reflected light after it has undergone multiple scattering and absorption
events in the tissue [10]. Therefore, a hyperspectral image is generated that contains both
spectral and spatial information of the tissue, which can be used to discriminate different
tissue types. The spectral information represents the optical properties of the tissue, i.e.,
the composition and morphology, and the spatial information provides a reference of the
spectral information in the imaged scene.

Hyperspectral imaging has shown to be useful in the detection of cancer in ex vivo
human tissue in head and neck [11,12], colon [13] and breast [14,15], and in vivo during
brain surgery [16]. Developing and testing a reliable tissue classification algorithm for
hyperspectral images requires a labeled dataset. To acquire such a dataset with trustwor-
thy labels, the hyperspectral images need to be correlated with histopathology results.
When investigating the potential of hyperspectral imaging for intraoperative breast can-
cer detection, specifically, there is the tradeoff between obtaining a high correlation with
histopathology and the aim to image the actual resection surface to allow for intraoperative
feedback. When the actual resection surface is measured with hyperspectral imaging, a
correlation with histopathological information is difficult as the tissue highly deforms
during histopathological processing and the histopathological sections are obtained per-
pendicular to the resection surface, covering only a small fraction of the entire surface [17].
In addition, the chance of measuring tumor positive margins is low as currently, at the time
of measurements, there is no feedback on whether a margin is tumor positive or negative.
Therefore, previous research of our group investigated the potential of hyperspectral imag-
ing for cancer detection by measuring breast tissue slices that were obtained after inking
and gross-sectioning of the resection specimen. Therefore, we were able to ensure a high
correlation of the optical measurements with histopathological information and obtain
enough measurements on both healthy and tumorous tissue to develop reliable classifi-
cation algorithms. With this extensive database, we developed and tested classification
algorithms and showed that hyperspectral imaging has the potential to discriminate tumor
from healthy tissue with a sensitivity and specificity higher than 98% [15].

In this study, we image the resection surface of lumpectomy specimens and present a
method to obtain a high correlation of these measurements with histopathology. Second,
we compare the hyperspectral dataset obtained on tissue slices with the dataset obtained
on lumpectomy specimens to analyze if we can use the classification algorithm developed
on the tissue slices to classify the lumpectomy data.

The remainder of this paper is organized as follows: Section 2 describes the data
collection, data preparation and the proposed methods. Section 3 presents the experimental
results, followed by the discussion and conclusion in Section 4.

2. Materials and Methods
2.1. Hyperspectral Imaging
2.1.1. Imaging Setup

Hyperspectral data were acquired with two push-broom hyperspectral imaging sys-
tems (Specim, Spectral Imaging Ltd., Oulu, Finland) that operate in the visual (400–1000 nm)
and near-infrared (900–1700 nm) wavelength range. The edges of the spectral range of
both cameras exhibit a low sensitivity and were removed. The remaining spectral range is
450–951 nm (318 wavelength bands) for the VIS camera and 954–1650 nm (210 wavelength
bands) for the NIR camera. In addition, the sensor’s spatial resolution is 0.16 mm/pixel
and 0.5 mm/pixel for the VIS and NIR camera, respectively. The scanning speed for
both cameras was adjusted to match the cameras spatial resolution of the imaged line.
Other technical details of these systems can be found in reference [15]. Figure 1 shows the
imaging setup.
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Figure 1. Hyperspectral imaging set-up. The tissue is placed on a translation stage and illuminated
by three halogen light sources. For a reproducible location of each measurement, the specimen
was placed on a plateau, which was pinned on a frame that fits the translation stage of both the
VIS and NIR camera. With the four circular-shaped white markers at the edge of the plateau, the
hyperspectral image obtained with the VIS camera could be automatically resized to match the image
obtained with the NIR camera.

2.1.2. Data Preprocessing: Calibration to Diffuse Reflectance

Hyperspectral data analysis and tissue classification were performed using MATLAB
2018b (The MathWorks Inc., Natick, MA, USA). Prior to data analysis, raw hyperspectral
data of the tissue sample was calibrated as described in reference [15]. In short, the captured
photons counts were converted to diffuse reflectance relative to Spectralon (SRT-99-100,
Labsphere Inc., Northern Sutton, NH, USA), which is known to diffusely reflect light with
approximately 99%.

2.1.3. Data Preprocessing: Match Hyperspectral Data Obtained with Both Cameras

The sensors’ resolution and the used scanning speed of the two hyperspectral cameras
differ. To account for this, the hyperspectral images of both cameras were spatially matched
prior to data analysis. For automatic matching, the specimen was placed on a house-
made plateau, which was pinned on a frame that fits the translation stage of both cameras
(Figure 1) and ensures a reproducible location of each measurement. The plateau and the
frame were made of polyoxymethylene that highly absorbs light from 400 to 1700 nm.
At the corner edges of the plateau, four circular-shaped white markers were placed that
diffusely reflect light with a much higher intensity than the plateau and the tissue, making
them easy to segment from the rest of the image. We used these markers and an affine
transformation to automatically resize and match the higher-resolution images obtained
with the VIS camera to the lower-resolution images obtained with the NIR camera. As
a result, we obtain a spectrum with 528 wavelength bands of each pixel in the final
hyperspectral image.

2.2. Data Acquisition and Histopathology Correlation

All measurements were performed on fresh ex vivo tissue from patients receiving
primary breast-conserving surgery at the Antoni van Leeuwenhoek hospital. During
a standard procedure, the resected specimen was brought to the pathology department
where it was inked and gross-sectioned in tissue slices (Figure 2). In this study, we used two
datasets: the tissue slices dataset and the lumpectomy dataset. For the tissue slices dataset,
we measured tissue slices after inking and gross-sectioning of the resection specimen, while
for the lumpectomy dataset, measurements were performed on the specimen immediately
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after resection. From each patient, either one tissue slice or the unsliced lumpectomy
specimen was measured. The major differences in data acquisition and histopathology
correlation between the tissue slices and lumpectomy specimen are reported in Table 1. This
study was performed in compliance with the Declaration of Helsinki and approved by the
Institutional Review Board of The Netherlands Cancer Institute/Antoni van Leeuwenhoek
(Amsterdam, The Netherlands). According to Dutch law (WMO), no written informed
consent from patients was required.

Figure 2. During the standard histopathologic procedure, the specimen was inked and gross-sectioned into tissue slices.
Several tissue slices were processed to H & E stained sections for tissue analysis by a pathologist. For the hyperspectral
measurements of the lumpectomy specimens, the specimen was imaged immediately after resection and, as described in
Section 2.2.2, up to four locations were marked on the surface of the specimen. After these measurements, the lumpectomy
specimen was further processed into tissue slices according to standard procedure. For the hyperspectral measurement on
the tissue slices, one slice was selected that contains both tumor and healthy tissue. Afterward, several tissue slices were
further processed to H & E sections according to standard procedure and analyzed by a pathologist. For the H & E analysis
of the lumpectomy measurements, the tissue up to 1 mm underneath the black marked resection margin was analyzed
to obtain the percentage of IC, DCIS, connective tissue, or adipose tissue underneath the marked locations. For the H &
E analysis of the tissue slices, the whole measured surface of the tissue slices was annotated as IC, DCIS, connective or
adipose tissue.

2.2.1. Tissue Slices Dataset

In total, 42 tissue slices from different patients were measured using hyperspectral
imaging setup. The procedure for data acquisition and histopathology correlation of
the tissue slices was described in detail in references [15–18]. In short, we selected one
tissue slice in consultation with the pathologist, containing both healthy and tumor tissue,
which we placed on a black rubber surface and imaged with both hyperspectral cameras.
After the optical measurements, the measured surface of the tissue slice was processed in
hematoxylin and eosin (H & E) stained sections and analyzed by a pathologist. Therefore,
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the whole measured surface of the tissue slice was annotated with four tissue classes:
invasive carcinoma (IC), its potential precursor ductal carcinoma in situ (DCIS), connective
tissue (including healthy glandular ducts), and adipose tissue. A distinction was made
between all spectra with a tissue class annotation (‘mixed’ dataset) and spectra that only
represent the optical properties of a single tissue type (‘pure’ dataset). The ‘pure’ spectra
were obtained after removing spectra from the edges (1 mm distance) of each tissue class
area in the annotated image. In the remainder of this paper, we will only use the ‘pure’
spectra of the tissue slices dataset.

Table 1. Differences in data acquisition and histopathology correlation between tissue slices and lumpectomy specimens.

Tissue Slices Dataset Lumpectomy Dataset

Data acquisition
Inclusion Mastectomy and lumpectomy specimen Lumpectomy specimen

Time in clinical workflow After inking and slicing the specimen Directly after resection

Measured surface

cut with Metal knife (at the
pathology department) Ablation knife (during surgery)

flatness As flat as possible Spherical shaped

Histopathology H & E section parallel H & E section perpendicular
to measured side to measured surface

Spatial correlation High Low
Depth information Low High

2.2.2. Lumpectomy Dataset

The hyperspectral images of 52 lumpectomy specimens from different patients were
included in the lumpectomy dataset. A flowchart of the data acquisition of the lumpectomy
dataset is shown in Figure 3. The lumpectomy specimen was considered to be a cube and
the entire resection surface was divided into six resection sides. Our aim was to obtain a
high correlation of the optical measurements with histopathology. Because this is difficult
to achieve when imaging the entire resection surface, only one side was selected for the
final analysis instead of the entire resection surface. Of the six resection sides, the nipple
and peripheral sides were excluded as H & E sections will be taken parallel to the resection
surface and will not provide histopathological information on the margin width [17]. To
restrict the time required for all optical measurements, the remaining four sides were first
imaged with the VIS camera alone and analyzed with the linear discriminant analysis
(LDA) classification algorithm developed on tissue slices in our previous study [15]. With
this analysis, the resection side was selected that was most likely to contain a tumor-positive
margin. Second, this side was imaged with both cameras. Third, on this selected side,
up to four locations were marked with black histopathology ink, which remains visible
on the H & E sections under the microscope. To increase the chance of marking tumor
positive locations, hyperspectral data were classified with an LDA classification algorithm
developed on tissue slices (described in reference [15] and Section 2.2.2 and locations were
marked on the specimen that were suspected to (1) be tumor positive (IC and/or DCIS),
(2) contain connective tissue, or (3) be adipose tissue. Finally, the lump was scanned again
with the VIS camera to retrieve the marked locations and the corresponding spectra on the
hyperspectral image of the unmarked lump. All optical measurements, as well as selecting
the resection side and marking locations, were performed within 25 min after resection.
Afterward, the specimen was transferred to the histopathology department and inked
according to standard procedure using blue, yellow, red and green ink. Care was taken
not to paint over the black ink. The specimen was sliced, and the marked location(s) were
indicated on an overview photo of the tissue slices.
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Figure 3. Flowchart of the data acquisition of the lumpectomy dataset. False color images are obtained from three sequence
HSI while the white light images are acquired using an RGB camera.

In 3–7 days after surgery, the tissue slices were further processed to H & E sections and
digitized using Aperio® ScanScope AT2 (Leica Biosystems, Wetzlar, Germany). The tissue
up to 1 mm underneath the black marked locations on the resection margin was analyzed
to obtain the percentage of IC, DCIS, connective tissue and adipose tissue underneath the
marked locations. To annotate IC and DCIS on the H & E sections, we used delineations
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drawn by the pathologist. The remaining tissue was annotated as connective or adipose
tissue by thresholding all RGB channels of the H & E section at 90%: Connective tissue
colors pink, and adipose tissue is washed away and therefore shows up white on the H &
E image.

In addition to obtaining the percentage of tissue in the H & E section, a location was
labeled tumor-positive or tumor-negative. Since all measurements were performed in the
Antoni van Leeuwenhoek hospital, the Dutch guidelines for resection margin assessment
were used in this study. According to this guideline [19], a resection margin is tumor
positive if malignant cells are found on the inked resection margin. In the case of DCIS, this
would lead to a re-operation. In the case of IC, a re-operation is required only if more than
4 mm of the resection surface is affected. We aim to use hyperspectral imaging to reduce
the number of patients that require a re-operation. Therefore, in this study, we focus on
detecting the tumor positive margins that lead to a re-operation.

2.3. Hyperspectral Data Analysis

As shown in Table 2, there are differences between the tissue slices dataset and the
lumpectomy dataset. In Section 2.3.1, we discuss the difference in the measured surface
between the two datasets. In Section 2.3.2, we discuss the difference in sample thickness
and the possible effect on the measured diffuse reflectance spectra. In Section 2.3.3, the
machine learning approach is described that is used to classify hyperspectral data.

2.3.1. Characteristics of the Measured Surface

Due to the oblique illumination in our measurement setup, the flatness of the tissue
has an influence on the measured spectrum that is not related to the optical properties
within the tissue. For the tissue slices, we showed that Standard Normal Variate (SNV)
normalization can correct for these differences [15]. With SNV each individual spectrum
is normalized to a mean of zero and a standard deviation of one [20]. However, because
the slices are as flat as possible and the lumpectomy surface is spherically shaped, we
need to determine if SNV can also correct for these differences in the spherically shaped
lumpectomy samples. To do so, a lumpectomy specimen was measured twice and rotated
180◦ so that the tissue was illuminated from a different point of view. By matching these two
images, the spectra of individual pixels could be compared. The SNV normalized diffuse
reflectance spectra were compared using the spectral correlation measure (SCM) [21], which
considers both brightness differences and shape differences between spectra. The SCM is
given as

SCM
(
sisj
)
=

n ∑n
1 sisj −∑n

1 si ∑n
1 sj√(

n ∑n
1 s2

i − (∑n
1 si)

2
)(

n ∑n
1 s2

j −
(
∑n

1 sj
)2
) , (1)

where SCM(sisj) is the SCM of the SNV normalized spectra obtained before (si) and after
(sj) the specimen was rotated 180◦. n is the number of wavelengths. An SCM of 0 and 1
represent no correlation and the highest correlation between spectra, respectively.

2.3.2. Influence of Tissue Thickness Underneath the Measured Surface on
Measured Spectrum

The penetration depth of light varies with tissue composition and wavelength [10,14,22,23].
In tissue with a thickness less than the penetration depth, some of the wavelengths can
penetrate through the tissue and be absorbed by the rubber or polymethylene underneath
the tissue. Therefore, less light will be diffusely reflected and collected by the camera.
Since the thickness of the slices is less than the lumpectomy specimens, we expect spectral
differences at wavelengths that penetrate the tissue deeper than the minimum tissue slice
thickness. To accurately compare spectra from the tissue slices dataset and the lumpectomy
dataset, these wavelengths should be excluded from the analysis.
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To estimate the penetration depth, we used the optical properties from the lumpectomy
measurements, which we estimated using an analytical fit model based on diffusion theory,
given as [24]:

Rd =
α′

1 + 2k(1− α′) + (1 + 2k
3 )
√

3(1− α′)
, (2)

where α′ = µ′s
µ′s+µa

and k = 1+rd
1−rd

. rd is the internal reflection coefficient for diffuse light and
depends on the refractive index of the sample, which was set to be 1.33. µ′s and µa are,
respectively, the scattering and absorption coefficients and here represented as [25]:

µ′s = µ′s,800

(
fmie

(
λ

800 nm

)−b
+ (1− fmie)

(
λ

800 nm

)−4
)

, (3)

µa = C.vblood.µa,blood + vWL

((
1−

(
[lipid]

[lipid] + [water]

))
.µa,water(λ) +

(
[lipid]

[lipid] + [water]

)
.µa,lipid(λ)

)
, (4)

with
µa,blood = (1− StO2)µa,Hb(λ) + StO2µa,HbO2(λ), (5)

C(λ) =
1− exp(−R.µa,blood)

R.µa,blod
, (6)

where µ′s,800 is the reduced scattering at 800 nm, b the scatter power and fmie the fraction
Mie scattering with respect to Rayleigh scattering. µa,water and µa,lipid are the absorption
coefficients of water and lipid, respectively, and [lipid] and [water] correspond to the
concentration of lipid and water, respectively. vWL is the fraction of water and lipid in
the tissue and assumed to be 100% in the near-infrared wavelength region and nearly 0%
in the visual wavelength range. vblood and StO2 correspond to the blood volume fraction
and the level of hemoglobin saturation by oxygen, respectively. µa,Hb and µa,HbO2) are the
absorption coefficients of hemoglobin and oxyhemoglobin, respectively, and R corresponds
to the effective vessel diameter. The measured spectra were fitted using a nonlinear least-
squares inversion algorithm, and for each estimated value, a 95% confidence interval was
computed that was used to assess the reliability for each fit parameter.

By applying the analytical fit model to the measured spectra on the lumpectomy
specimens, we obtained the absorption and scattering coefficients that can be used to
estimate the penetration depth, which is given by:

de f f =
1√

3µa(µa + µ′s)
, (7)

The minimum thickness of the tissue slices is 2.5 mm [15]. Therefore, by excluding
wavelengths with a penetration depth above 2.5 mm, the spectra obtained on the tissue
slices should be comparable with the spectra obtained on the lumpectomy specimens.

2.3.3. Tissue Classification Using a Machine Learning Approach

Using LDA and the full wavelength range of both hyperspectral cameras, previous
research of our group showed that IC, DCIS, connective and adipose tissue in tissue slices
can be classified as tumor or healthy tissue in 99%, 95%, 95%, and 100%, respectively, [15].
However, we expect that some wavelengths in the range of 450–1650 nm will have a
penetration depth above 2.5 mm. As such, a new LDA algorithm will be developed
using only the wavelengths with a penetration depth up to 2.5 mm. To allow for an
accurate comparison between these two algorithms, the same training and test sets from
the tissue slices dataset were used. Subsequently, the new algorithm will be applied to the
lumpectomy dataset.
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3. Results
3.1. Data Description

Table 2 shows the patient and specimen characteristics in the slices and lumpectomy
dataset. Both patient groups have a similar age. The American College of Radiology (ACR)
score, which reflects the breast density (1 = lowest density, 4 = highest density), is higher
in the slices dataset. The obtained data varies between the two datasets. First, the slices
dataset contains more measurements because spectra were obtained from the entire slice
whereas for the lumpectomy dataset up to four locations, reflecting multiple spectra, were
marked. Second, a limited number of IC and DCIS was measured in the lumpectomy
dataset because of the limited number of tumor-positive resection margins. Third, in the
tissue slices dataset, we could make a distinction between ‘pure’ and ‘mixed’ data based
on the histopathological information obtained afterward as described in Section 2.2.1. For
the lumpectomy dataset, this was not possible as locations were marked immediately after
the measurements without any information on the spatial distribution of the tissue types
on the surface.

Table 2. Data description of tissue slices and lumpectomy specimens.

Tissue Slices Dataset Lumpectomy Specimen Dataset
Patient and specimen characteristics

Number of patient 42 52
Patient age (mean ± std) 55.8 ± 10.9 57.7 ± 10.4
Patient ACR (mean ± std) 2.81 ± 0.74 2.46 ± 0.80
Specimen size (mean (range) surface: 15 cm2 (4–26) volume: 51 cm3 (6–240)

thickness: 4.6 mm (2.5–8) minimum thickness: 10 mm
Specimens surface flatness As flat as possible Spherical shaped

Obtained data
Tissue type measurements † spectra/# patients locations/# patients

Invasive carcinoma 6054/20 5/5
Ductal carcinoma in situ 320/8 3/3
Connective 1180/15 44 ‡/33
Adipose 60,622/42 58 ‡/46

Purity measurement ‘pure’ and ‘mixed’ data ‘mixed’ data
Margin assessment No Yes

† Tissue type according to histopathologic assessment of the corresponding H & E sections. For the lumpectomy specimens, the tissue type
of the H & E section is (1) the tissue type most present within 1 mm of the black-colored resection surface or (2) IC/DCIS if present. ‡ Three
of these measurements contained exact 50% connective and 50% adipose tissue. In this table, they were added to the number of tissue type
measurements of connective tissue.

From the 52 patients, we measured, 11 patients required an extra operation after
the initial procedure, and in two patients, the excised lump contained a positive margin
but some extra tissue was excised during the initial operation, which prevented the need
for an extra operation. In these 13 patients, the tumor-positive areas were marked with
black pathology ink in four patients. In eight out of the nine other patients, the location
of the positive margin was at the peripheral or nipple side, which we did not measure
with the hyperspectral camera as explained in Section 2.2.2. Therefore, with the presented
hyperspectral data acquisition method, we were able to image and mark the tumor positive
margin in 4 out of 5 patients that required an extra operation according to the Dutch guide-
lines. The H & E sections of these four locations and an overview of the histopathological
information corresponding to all 110 measured locations are shown in Figure 4. Most
locations were measured on connective and adipose tissue and none of the malignant
locations contained more than 80% malignant tissue.
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Figure 4. (a) Overview of the histopathological information corresponding to the 110 measured
locations. The bold numbers correspond to locations for which an extra operation was required due
to the malignant tissue at the resection margin. The corresponding H & E sections of these points are
shown in (b). The red and magenta lines in (b) are delineations of the pathologist that indicate the
border of IDC (invasive ductal carcinoma)/ILC (invasive lobular carcinoma) and DCIS, respectively.
For three locations, the marked location was retrieved on two H & E sections of neighboring tissue
slices. The arrows represent a length of 1 mm underneath the resection surface. In (a): ∗ Locations
that contained malignant tissue over more than 4 mm on the resection surface. The percentages
values represent the amount of the specific tissue type in the measured locations based on H & E
results.

3.2. Characteristics of the Measured Surface

The flatness of the surface has an influence on the measured spectrum, as explained
in Section 2.3.1. For the relatively flat tissue slices, SNV normalization can correct these
differences [15]. For the spherically shaped lumpectomy surface, SNV normalization
proved to be a sufficient method as well in areas of sufficient illumination (red spectra in
Figure 5f). Where large differences between Figure 5a,b are observed, these are minimized
after applying SNV normalization (Figure 5c,d). However, in areas of shadow (blue and
green spectra in Figure 5f), the low illumination resulted in a diffuse reflectance spectrum
with a low intensity that could not be corrected for by SNV normalization. We determined
the minimum intensity a diffuse reflectance spectrum should have in order to be able to
use SNV for normalization. Tissue spectra in Figure 5c were subtracted from tissue spectra
from Figure 5d and their maximum absolute difference was plotted against the SCM in
Figure 6a. We allow a maximum absolute difference of 0.3, which corresponds to an SCM
of 0.995 and 0.992 for NIR and VIS, respectively. Therefore, as shown in Figure 6b, the
maximum value of the diffuse reflectance should be at least above 15% (with Spectralon
as a reference) for the spectra to be reliable after SNV normalization. Spectra that did not
fulfill this criterion (for example the blue and green spectra in Figure 5f) were excluded
from further analysis.
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Figure 5. The effect of differences in illumination on diffuse reflectance spectra. The intensity of the
diffuse reflectance images, shown here at 1283 nm, differs when the tissue is illuminated from the
top (a) or the bottom (b). The colored diffuse reflectance spectra (e) correspond to the position in the
specimen (a,b) encircled with the same color. The intensity of the diffuse reflectance spectra is lower
in areas of shadow (green and blue circles and spectra). After SNV normalization, the intensity of the
SNV normalized images, shown here at 1283 nm, depends less on whether the tissue is illuminated
from the top (c) or the bottom (d). Except for locations that were selected in areas of shadows (green
and blue spectra), the SNV normalized spectra (f) does not depend on the exposure direction.

Figure 6. The spectral correlation measure (SCM) with respect to (a) the maximum difference
between SNV normalized spectra taken with different illumination (di f fmax), and (b) the minimum
diffuse reflectance value, of the maximum values in the whole wavelength range of spectra taken
with different illumination (spectramax). The dashed lines in (a) indicate a di f fmax of 0.3 and the
corresponding SCM of 0.995 and 0.992 for NIR and VIS, respectively. In (b), the dashed lines indicate
a SCM of 0.995 and 0.992 for NIR and VIS, respectively, and a corresponding spectramax of 15%.

3.3. Influence of Tissue Thickness Underneath the Measured Surface on Measured Spectrum

Spectra in the tissue slices dataset and lumpectomy dataset are compared per tissue
type before and after correction for differences in tissue thickness. In this section, only a
specific number of spectra from both datasets were used to make an accurate comparison.
For the tissue slices dataset, only ‘pure’ spectra were selected (as explained in Section 2.2.1).
For the lumpectomy dataset, it was not possible to select ‘pure’ spectra. Therefore, only
healthy measurements were selected of which the corresponding H & E section contained
more than 90% of the specific tissue type. For IC, including IDC and ILC, measurement
locations were selected for which the malignancy measured caused a re-operation. The
H & E section of these locations contained 29%, 71% and 79% IC. There was one location,
with 6% DCIS in the H & E section, that resulted in a re-operation due to DCIS in the
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measurement volume. However, due to the low percentage of DCIS in the section, we did
not compare this location with spectra from the slices dataset.

3.3.1. Spectral Comparison before Wavelength Reduction

Figure 7 shows the average and standard deviation of the selected spectra in both datasets.
The standard deviations around the averaged diffuse reflectance spectra (Figure 7a–c) are large.
This is caused by the oblique illumination of our measurement setup and the uneven
surface of the tissue. This causes differences in the illumination of the tissue and scatter,
nonspecific to the optical properties of the tissue (explained in Section 2.3.1). The spectra
obtained with the VIS and NIR cameras are not connected because both cameras have
their own suspension system and light sources, causing a slightly different illumination
angle. Using SNV normalization as a pre-processing step, the standard deviation around
the averaged spectra (Figure 7d–f) is reduced. Since SNV was applied to the spectrum
obtained with the VIS and NIR camera individually, the SNV normalized spectra are not
connected. In the remainder of this paper, we will only use the SNV normalized spectra for
further analysis.

For all tissue types, large differences are observed between the slices data and the
lumpectomy data. The largest differences are present in the VIS wavelength range and
in between 1000 and 1150 nm in the NIR wavelength range. These differences might be
related to the fact that the optical penetration depth in this wavelength region exceeds the
thickness of the tissue slices. In one location (Figure 7a, 79% IC), the effects of cutting by
cauterization were clearly visible in the H & E section. In comparison with the two other
malignant locations, this correlated with a decrease in the mean spectrum between 600 and
650 nm.

Based on the large spectral differences between the slices and lumpectomy data, we
expect that classification algorithms developed on the slices dataset may exhibit a lower
performance on the lumpectomy dataset.

Figure 7. Diffuse reflectance (a–c) and SNV normalized diffuse reflectance spectra (d–f) of IC
(a,d), connective (b,e) and adipose (c,f) tissue obtained on the slices and the lumpectomy specimens.

3.3.2. Estimated Penetration Depth

As explained in Section 2.3.2, the penetration depth was estimated using the fitted
optical properties of the selected diffuse reflectance spectra in the lumpectomy dataset.
An example of a spectral measurement with the corresponding fitted curve is shown in
Figure 8 for each tissue type. Table 3 shows the obtained optical fit parameters for all
fitted spectra and their confidence intervals. A combination of fit parameters is expected to
be representative for the tissue composition if the measured and fitted curves are similar
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and the confidence intervals are low. Therefore, fitted parameters of three connective
measurements and one adipose measurement were not included in the estimation of the
diffuse reflectance and penetration depth because the confidence interval of bmie was higher
than the fitted value.

Figure 8. The fitted (black dotted lines) and measured (colored lines) diffuse reflectance spectra for
IC (a), connective (b) and adipose (c) tissue. The corresponding obtained fit parameters are shown in
Table 3.

Table 3. Estimated fit parameters from lumpectomy measurements (fitted value ± confidence interval).

Tissue Type Percentage in Scattering Absorption

H & E Section µ′
s,800 fmie (%) bmie StO2 (%) Blood (%) Fat (%) H2O (%)

IC 29 2.9 ± 0.9 100 ± 14 0.80 ± 0.76 45 ± 6 8.1 ± 0.7 31 ± 12 69 ± 12
IC 71 6.1 ± 1.2 100 ± 5 0.40 ± 0.37 55 ± 3 6.4 ± 1.0 36 ± 7 64 ± 7
IC 78.5 4.6 ± 1.3 100 ± 9 0.70 ± 0.64 24 ± 6 5.6 ± 1.6 35 ± 11 65 ± 11

Connective 98 24.9 ± 6.9 100 ± 8 0.82 ± 0.78 93 ± 3 2.7 ± 1.0 34 ± 15 66 ± 15
Connective † 92 25.6 ± 14.8 100 ± 73 2.20 ± 2.33 87 ± 8 4.8 ± 3.6 37 ± 24 63 ± 24
Connective † 93 5.4 ± 1.2 100 ± 4 0.20 ± 0.55 33 ± 6 3.6 ± 1.2 17 ± 16 83 ± 16
Connective 93 10.1 ± 1.8 100 ± 4 0.50 ± 0.46 75 ± 3 1.5 ± 0.3 43 ± 8 57 ± 8

Connective † 91 11.0 ± 2.1 100 ± 4 0.35 ± 0.50 70 ± 3 4.6 ± 2.9 5 ± 1 95 ± 1
Adipose 95 15.0 ± 3.0 100 ± 6 0.59 ± 0.53 78 ± 3 4.6 ± 0.9 90 ± 3 10 ± 3
Adipose 96 6.1 ± 1.1 100 ± 6 0.54 ± 0.52 64 ± 4 3.7 ± 0.6 89 ± 2 11 ± 2
Adipose 94 10.2 ± 3.7 100 ± 19 1.34 ± 1.09 78 ± 6 4.4 ± 1.6 91 ± 5 9 ± 5
Adipose 92 10.9 ± 3.8 100 ± 23 1.49 ± 1.19 75 ± 6 6.7 ± 2.4 84 ± 8 16 ± 8
Adipose 92 11.1 ± 2.6 100 ± 10 1.00 ± 0.68 70 ± 4 3.4 ± 0.8 92 ± 2 9 ± 2
Adipose 92 5.7 ± 0.8 100 ± 8 0.45 ± 0.37 73 ± 3 3.2 ± 2.6 91 ± 1 9 ± 1

Adipose † 92 20.3 ± 13.4 100 ± 70 2.10 ± 2.28 84 ± 10 8.6 ± 5.8 87 ± 10 13 ± 10
Adipose 93 7.2 ± 1.1 100 ± 5 0.54 ± 0.47 71 ± 3 2.6 ± 0.4 92 ± 1 8 ± 1

† The fitted parameters of this measurement were not included in the estimation of the diffuse reflectance and penetration depth because
the confidence interval of StO2 was higher than the fitted value.

With the obtained optical properties and Equations (2)–(7), we estimated the diffuse
reflectance (Figure 9a) and the penetration depth (Figure 9b) in breast tissue. There is a large
difference in penetration depth between wavelengths. Especially between 684 and 872 nm,
980–1142 nm, and around 1300 nm, the penetration depth is high with values above
5 mm. At these wavelengths, indeed spectral differences between the tissue slices dataset
and lumpectomy dataset (Figure 7) are the largest. This confirms that penetration depth
differences cause spectral differences between the two datasets. For an accurate spectral
comparison between the slices and lumpectomy dataset, we set the maximum penetration
depth that we allow to reach 2.5 mm, which is the minimum thickness of the tissue slices. Thus,
the number of wavelengths for further analysis was reduced from 450 to 1650 (528 wavelength
bands) to three wavelength ranges: 450–602 nm, 1187–1224 nm, and 1379–1551 nm (total of
164 wavelength bands).
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Figure 9. The diffuse reflectance (a) and penetration depth (b) calculated using the estimated optical
properties, shown in Table 3. Because the diffuse reflectance and penetration depth of light vary both
with wavelength and tissue composition, there is a large standard deviation around the mean spectra.

3.3.3. Spectral Comparison after Wavelength Reduction

Figure 10 shows the selected SNV normalized diffuse reflectance spectra after wave-
length reduction. In comparison with Figure 7, indeed the spectra are more similar between
the tissue slices dataset and the lumpectomy data. In the NIR (>1176 nm), the spectra of
the slices and lumps are most similar with an SCM of 1.00, 1.00 and 0.99 for IC, connective
and adipose tissue, respectively. The maximum difference between the spectra was 0.31,
0.11 and 0.31. In the VIS (<602 nm), spectra from the slices dataset and the lumpectomy
dataset deviate more with an SCM of 0.92, 0.93 and 0.98 for IC, connective and adipose,
respectively, and a maximum spectral difference of 1.04, 0.70 and 0.42. In addition, for IC
around 1200 nm, the shape of the lumpectomy spectra is steeper which would indicate
that these spectra contain more fat. This corresponds with the fat percentage in the H & E
sections: 19%, 9%, and 6%.

After wavelength reduction, the spectra of slices and lumpectomy data are more
similar (Figure 7 vs. Figure 10). Therefore, in Section 3.4.1, hyperspectral analysis was only
performed using wavelengths with a penetration depth up to 2.5 mm.

Figure 10. Spectra of IC (a,d), connective (b,e) and adipose (c,f) tissue obtained on the slices and the
lumpectomy specimens after wavelength reduction. The gray areas represent the excluded wave-
lengths. The first and second rows demonstrate the spectra before and after the SNV normalization,
respectively. The SNV normalization was applied separately on the wavelengths obtained with the
visual and wavelengths obtained with the near-infrared camera.
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3.4. Classification Results after Wavelength Reduction Using LDA
3.4.1. Tissue Slices

Table 4 shows the classification results using LDA and the tissue slices dataset before
and after wavelength reduction. In a similar approach described in [15], the splitting of
the whole dataset into a training set (70% of the images) and a test set (30% of the images)
was performed randomly while keeping spectra from one patient together. The recall was
the percentage of pixels that were correctly classified as tumor or healthy tissue, using
histopathologic assessment as ground truth. The classification results decreased after
wavelength reduction: The performance of both tumor and connective tissue detection
decreased from values of 99% to 79% and 94% to 68%, respectively. Only the detection of
adipose tissue, with values higher than 94%, remained high after wavelength reduction.

Table 4. Classification results before and after wavelength reduction: Recall for each tissue type.

Before Wavelength Reduction [15] After Wavelength Reduction
Number of VIS VIS + NIR

Spectra NIR (450–1650 nm) (450–602 & 1187–1224 & 1379–1551 nm)

Tumor 3312 99% 79%
IC 3200 99% 80%

DCIS 112 95% 77%
Healthy 21,227 99% 90%

Connective 468 94% 68%
Adipose 20,759 100% 96%

3.4.2. Lumpectomy Specimen

The LDA algorithm after wavelength reduction was applied to all 110 locations in the
lumpectomy dataset. As expected from Table 4, the classification results on the lumpectomy
dataset were insufficient: Of the four locations that contained malignant tissue and required
a re-operation, only one was classified as tumor tissue. Figure 11 shows the classification
results of the healthy tissue locations. In these locations, the performance was higher if a
measurement was more ‘pure’. False positive tumor classifications occurred only when the
fat percentage in the H & E section was lower than 50%.

Figure 11. The number of locations in the lumpectomy dataset that are specified as a specific tissue
type for all the locations that do not contain malignant tissue.

4. Discussion and Conclusions

When investigating the potential of hyperspectral imaging for intraoperative breast
cancer detection, it is challenging to image the actual resection surface to allow for in-
traoperative feedback while obtaining a high correlation with histopathology. As such,
previous research of our group showed the potential of hyperspectral imaging to discrimi-
nate tumor from healthy tissue using fresh breast tissue slices [14,15]. By imaging tissue
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slices, an extensive reliable hyperspectral database was created with a high correlation with
histopathology and enough measurements on both healthy and tumorous tissue to develop
reliable classification algorithms. In the current study, we imaged the resection surface
of lumpectomy specimens and presented a method that allowed us to (1) obtain a high
correlation with histopathology and (2) increased the likelihood to measure tumor-positive
resection margins. Next, we compared the hyperspectral data obtained on the tissue slices
and lumpectomy specimens. Due to the difference in tissue thickness and the penetration
depth of light, spectra in both datasets varied. After reducing the number of wavelengths
so that only wavelengths with a penetration depth less than 2.5 mm (minimum thickness
of tissue slices) remained, the spectral similarity increased. However, with the remaining
wavelength, the classification performance on both tissue slices and lumpectomy specimens
were insufficient for clinical application. Therefore, even though the tissue slices dataset
could be used to investigate the potential of hyperspectral imaging as a margin assessment
technique for breast surgery, algorithms developed with the slices data cannot be used
directly to classify lumpectomy specimens.

The penetration depth of light varies both with wavelength and tissue composition
and was estimated with a model based on diffusion theory. This model assumes an optically
homogeneous and infinite medium and extracts optical parameters from a measured diffuse
reflectance spectrum. However, in the lumpectomy data that we measured, the breast tissue
was inhomogeneous. Therefore, different wavelengths in one diffuse reflectance spectrum
reflect different measurement volumes, that can have different optical properties. As the model
assumes that the diffuse reflectance spectrum reflects a single set of optical properties, extracting
optical properties from a spectrum reflecting multiple optical properties might be prone to
errors. This explains why the fitted and measured spectra in Figure 8 did not completely
overlap and why, for some parameters, the confidence intervals are relatively high. When
the penetration depth is known, a fitting algorithm can be applied on separate wavelength
ranges with a uniform measurement volume, reflecting a single set of optical properties [26].
However, in the present work, the penetration depth was unknown. Therefore, we used
the fitted optical parameters to obtain an estimation of the penetration depth.

By excluding wavelengths with penetration depth higher than 2.5 mm, spectra of the
slices and lumpectomy datasets are more similar (Figure 7 vs. Figure 10). The highest dif-
ference between the two datasets and the lowest SCM was observed in the VIS wavelength
range. In this wavelength range, spectra are primarily shaped by (de)oxyhemoglobin. The
difference between the two datasets can be related to the difference in time after resection
when the specimens are measured: Lumpectomy specimens are measured immediately af-
ter resection whereas the tissue slices are first inked and sliced. This time delay might have
an effect on blood volume fraction and StO2 in the tissue as reported by Bydlon et al. [27].
They stated that especially StO2 was an unreliable parameter due to excessive changes in
oxygenated and deoxygenated hemoglobin post-excision. In their study, the blood volume
fraction changed over time, but until 63 minutes after excision, these changes were less
than the differences between positive malignant sites and connective or adipose tissue.

Another explanation of the difference between the two datasets may be the difference
in cutting the tissue by cauterization, used during surgery, or by using a regular knife,
used while slicing the specimen. Bydlon et al. showed that there was a difference in the
total blood volume in lumpectomy (cut with cauterization) and mastectomy (cut with
a knife) specimens and they assumed that by cauterization of the vasculature, blood is
prevented from draining out of the vessels [27]. Spliethoff et al. reported on the effect
of thermal coagulation on blood samples and found a change in shape in between 600
and 650 nm that was related to a decrease in oxyhemoglobin related features [28]. A
similar effect was observed in this study, as shown in Figure 7a. However, since this
wavelength range was excluded after wavelength reduction, this effect of cauterization was
expected to be minimal. In a study by Adank et al., the influence of cutting by coagulation
on diffuse reflectance spectra in the NIR was small in muscle tissue and nonexistent
in adipose tissue [29]. Therefore, we expect a minimum effect in the NIR wavelength
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region. With the remaining wavelengths, it is possible to discriminate adipose tissue
from the other tissue types on the tissue slices dataset, but it was more challenging to
distinguish connective tissue from malignant tissue. With the LDA classifier and the limited
wavelengths range, the performance for detecting adipose tissue was high (>94%) while
the performance for detection of either tumor (56% using VIS), connective tissue (35%
using NIR) or both tumor and connective tissue (79% and 68%, respectively, using VIS +
NIR) was low. These classification results on the slices dataset may not be good enough for
accurate discrimination between tumor and connective tissue in clinical practice. This was
confirmed with the lumpectomy dataset: only 1 of 4 malignant locations that required a
re-operation were found with LDA.

As explained in the introduction, obtaining a high correlation of hyperspectral mea-
surements on lumpectomy specimens with histopathology is difficult. In addition, it is
challenging to find tumor-positive margins on the specimen by eye. With the presented
data acquisition method, we were able to obtain a high correlation with histopathology
and mark the tumor positive margin in 4 out of 5 patients that required an extra operation.
Nevertheless, in the lumpectomy dataset, there were only a limited number of malignant
locations in comparison with the number of healthy locations, as the number of specimens
with a tumor-positive margin was limited. In addition, none of the malignant locations con-
tained more than 80% IC or DCIS in the corresponding H & E section. Therefore, in contrast
to the slices dataset, the lumpectomy dataset contained no ‘pure’ tumor measurements.
For example, in the H & E section of location 1 in Figure 4b, there is a rim of adipose tissue
between the ILC border and the resection surface. This affects the measured spectrum and
will increase the likelihood that this malignant location is classified as adipose tissue.

Because the dataset created on the lumpectomy specimens was not enough to de-
velop reliable classification algorithms, we aimed in this study to develop classification
algorithms with the slices dataset and apply these on the lumpectomy specimens for
classification. However, this approach proved to be insufficient for obtaining good classifi-
cation results. The problem of slightly different training and testing datasets is a known
problem in the field of machine learning, which can be accounted for by using transfer
learning and domain adaptation techniques [30]. Therefore, an algorithm trained on the
tissue slices would be re-purposed to classify the lumpectomy data. However, such a
technique requires much more lumpectomy data than the data available in this study. In
general, to improve the classification results on the lumpectomy specimens, the amount of
lumpectomy data, and especially the number of malignant locations, should be increased.
This can be achieved, for example, by cutting the resection specimen by cauterization
further after performing the standard procedure for breast-conserving surgery. Therefore,
the surgeon would increase the number of tumor-positive margins that can be optically
measured, without affecting the current clinical workflow and clinical outcome. Obtaining
a larger lumpectomy dataset would allow for the use of transfer learning or the training
of classification algorithms on lumpectomy data instead of slices data. By doing so, no
wavelengths need to be removed to correct for sample thickness differences and the entire
spectral range of our cameras, i.e., all wavelengths, can be used for creating algorithms.

In summary, we presented a methodology to obtain a high correlation of hyperspectral
measurements on lumpectomy specimen with histopathology and showed that this allowed
us to mark 4 out of 5 tumor positive margins that were not visible with the human eye. In
addition, we showed that classification algorithms developed on tissue slices could not be
used directly on lumpectomy data. After wavelength reduction to limit the sampling depth,
adipose tissue could be clearly discriminated from other tissue types but differentiating
malignant from connective tissue was more challenging. For improved discrimination
between malignant and connective tissue, the amount of lumpectomy data, and especially
the number of malignant locations, should be increased so that classification algorithms
can be adapted and trained on lumpectomy data.
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