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Abstract: The finite element discretization of a tower system based on the two-node Euler-Bernoulli
beam is carried out by taking the cubic Hermite polynomial as the form function of the beam unit,
calculating the structural characteristic matrix of the tower system, and establishing the wind turbine-
nacelle-tower multi-degree-of-freedom finite element numerical model. The equation for calculating
the aerodynamic load for any nacelle attitude angle is derived. The effect of the flexible tower
vibration feedback on the aerodynamic load of the wind turbine is studied. The results show that,
when the stiffness of the tower is large, the effect of having tower vibration feedback or not on the
aeroelastic load of the wind turbine is small. For the more flexible tower system, wind-induced
vibration time-varying feedback will cause larger aeroelastic load variations, especially the top of
the tower overturning moment, thus causing a larger impact on the dynamic behavior of the tower
downwind and crosswind. As the flexibility of the tower system increases, the interaction between
tower vibration and pneumatic load is also gradually increasing. Taking into account the influence of
flexible towers on the aeroelastic load of a wind turbine can help predict the pneumatic load of a
wind turbine more accurately and improve the efficiency of wind energy utilization on the one hand
and analyze the dynamic behavior of the flexible structure of a wind turbine more accurately on the
other hand, which is extremely beneficial to the structural optimization of wind turbine.

Keywords: flexible tower; nacelle attitude feedback (NAF); dynamic response; aerodynamic load

1. Introduction

As the supporting structure of the wind turbine, the safety and reliability of the tower
are directly related to the operation state of the wind turbine [1]. During the operation of
the wind turbine, the dynamic behavior of the blades and the tower influence each other.
To obtain more accurate dynamic response results, the blade-tower coupling effect must be
considered in the dynamic analysis of wind turbines [2,3]. For wind turbines with complex
structures [4,5], to effectively analyze their dynamic behavior, it is necessary to establish
a simplified model of their dynamics [6,7]. The accurate calculation of tower wind load
has an important influence on the accurate assessment of tower dynamic response. The
nacelle is one of the main components of a wind turbine, and different nacelle attitude
angles correspond to different aerodynamic loads of the wind turbine.

In this research, a simplified multi-degree-of-freedom numerical model of the hori-
zontal axis wind turbine tower system, including the wind turbine-nacelle-tower founda-
tion [8], was established and used to study the dynamic behavior of offshore HAWT tower
system [9]. At the same time, based on the blade element momentum theory, a calculation
method for the aerodynamic load of rotating blades including time-varying nacelle attitude
feedback is proposed. This method uses a set of Euler angles to describe the time-varying
attitude of the horizontal-axis wind turbine nacelle. This paper takes four basic cases as
the research object and calculates the load on the top of the tower under the action of the
flexibility of the foundation. These loads are used to analyze the dynamic response of the
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tower system and discuss the influence of the flexibility characteristics of the foundation
on the dynamic characteristics of the tower.

2. Analytical Study
2.1. Equations of Motion for Vibrating Systems

To effectively analyze the inherent characteristics of the wind turbine tower system, a
simplified model of the tower system was developed, as shown in Figure 1. The model
simplifies the wind turbine nacelle and the wind wheel as concentrated masses M;, which
are attached to the top of the tower. Additionally, the flexibility of the HAWT foundation is
simulated using rotating springs and horizontal tension springs.

K.

K=z

Figure 1. Simplified model of the tower system.

Based on the geometric properties of the structure, material properties, and exter-
nal excitation properties, the multi-degree-of-freedom equation of motion is generally
obtained as:

Mx(t) + Cx(t) + Kx(t) = P(t) 1)

where M is the mass matrix; C is the structural damping matrix, and K is the stiffness
matrix, which is the external load acting on the tower.

2.2. Tower Finite Element Modeling

In this paper, the top mass of the tower is simplified to a concentrated mass block
and attached to the top of the tower. As for the thin-walled tower with a variable cross-
section, a two-node Euler-Bernoulli beam is used to discretize the finite element of the
wind turbine tower, and a cubic Hermite polynomial is chosen as the form function of each
beam unit. Figure 2 shows a beam unit of the wind turbine tower with length [, mass per
unit length m(x), and bending stiffness EI(x). The two nodes of this unit are located at the
two endpoints of the beam; through these two nodes, the finite unit can be assembled into
a single structure.

If only plane displacement is considered, each node of the beam unit has only two
degrees of freedom, which are lateral displacement and rotation. The relationship between
the displacement of the beam unit and the four degrees of freedom can be expressed as:

4

u(x,t) =Y ui(t)pi(x) ()

i=1

where 1;(x) is defined as the unit displacement due to the occurrence of unit displacement
u;(x) while keeping the other degrees of freedom at zero. ;(x) satisfies the following
boundary conditions:
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Figure 2. Beam cell model, (a) beam cell degrees of freedom, (b) interpolation function.

The equilibrium equation for a beam of equal cross-section considering only the load
acting at both ends without taking into account the shear deformation is:
d*u

EI@ =0 4)

Its general solution is: u(x) = a; + a»(¥) + a3 (%)2 +ay (%)3 The constant a; can be
determined by substituting the boundary conditions, which gives:

Ppr(x) =1-3(3)* +2(3)°
ga(x) = 1(F) —21(5)" +1(5)° )
a(x) =3(5)2 = 2(3)°
pa(x) = —1(3)* +1(3)°

where 71 (x), P2(x), P3(x), and P4(x) are the cubic Hermite interpolation functions, which
ensure the continuity of deflection and cornering between beam units at the boundary.

Using the principle of imaginary displacement for a beam unit with bending stiffness
El(x) and length ], the general expressions for the stiffness influence coefficient k;; and the
mass influence coefficient 11;; of the beam unit can be derived as follows:

1
ki = [ EIG! ()y)ax (6)

l
my = [ mp (o) @)
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For cells with EI(x) = EI and uniformly distributed masses (m(x) = m), when
i,j=1,2,3,and 4, the analytical solutions of the cell stiffness matrix and the consistent
mass matrix can be calculated as:

12 6 -12 6l

— EI| 6 47 —6l 207

ke_T3 -12 -6l 12 -6l 8)
6l 2012 —6l 42

156 221 54 —13]
—_oml| 220 4% 13 -3 9
©T 40| 54 131 156 —22I

—131 =312 —221 412

The wind turbine tower is always subjected to the gravitational force of the top mass
of the tower, and this axial pressure also has a certain degree of influence on the stiffness of
the tower. Using Hermite cubic polynomials as an interpolation function yields the general
form of the unit geometric stiffness influence coefficient:

I
keij = [ N9, ()] (10)

where N(x) denotes the axial force acting on the unit. When N(x) = N is constant, the
consistent geometric stiffness matrix of the unit is obtained as:

36 31 —-36 3l
—_Ne| 3 42 -3 -P
Ge =301 | =36 —31 36 -3l
31 —12 31 41?2

(11)

The axial force along the full length of the unit is assumed to be constant. By su-
perimposing the above two effects, elastic and geometric, the total stiffness matrix of the
structural unit is obtained, expressed as:

k= ke —kce (12)

where the negative sign indicates that the presence of axial load N(x) increases the deflec-
tion of the tower.

If units m, n, and p are connected to node i of the structure, the stiffness coefficient of
this node can be calculated using the direct stiffness method as:

A

a(m a(n S
ki = kEi ) + kfi ) + kfz‘p) (13)
where the notation “” indicates the coefficient in the overall coordinate system. The stiffness
matrix of the whole structure can be obtained by Equation (13). Similarly, the consistent
mass matrix of the whole structure can be calculated.

The damping characteristics of structures generally need to be determined by exper-
imental methods, but it would be quite difficult and impractical to obtain the damping
of each structure by experimental tests. Therefore, the dynamic properties of a struc-
ture are often analyzed by using a classical damping model. In this paper, the Rayleigh
damping model is used, which integrates the effects of mass-proportional damping and
stiffness-proportional damping, and its calculation equation is as follows:

C=nM+mK (14)

where 179 and #; are scaling factors.
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1o _ 2w wp Wy —Wm Cm (15)
m wi —wih \ —1/wy 1/wm Gn
where w;; and w;, are the m-order and n-order frequencies of the vibrating system, and ¢,

and ¢, are the damping ratios of the corresponding modal frequencies [8].
When ¢, = ¢, = ¢, it can be simplified as follows:

1o _ 27 W Wy
(’71>_Wm+wn< 1 ) {16)

In practical engineering applications, w;, is usually taken as the fundamental fre-
quency of the vibrating system, and wy, is taken as the higher order frequency that has a
significant effect on the dynamic behavior of the system. When the modal damping and
modal frequency of the tower system are known, its damping matrix can be determined by
Equations (15) and (16). After calculating the mass matrix, stiffness matrix and damping
matrix of the whole tower, the multi-degree-of-freedom finite element numerical model of
the tower system can be established by treating the top mass of the tower as a boundary
condition [10].

2.3. Eigenvalue Analysis

The eigenvalue problem of the structure is to analyze its free vibration. To calculate the
natural frequency and modal vibration pattern of the tower system, the effect of damping is
generally neglected. Removing the damping matrix and external excitation of Equation (1),
the free vibration equation of the tower can be obtained as follows:

Mx(t) +Kx(t) =0 (17)
The characteristic equation of the tower can be solved as:
(K - wZM)cp =0 (18)

where w denotes the frequency of free vibration, and ¢ denotes the time-independent
nth-order vector. ¢ = [ ¢1 ¢» -+ ¢n ], ¢n denote the nth-order vibration column
vector of the structure.

Wind turbines operating in different seas have different foundation characteristics.
Adhikari et al. [11] studied and obtained classical values of foundation stiffness for three
actual operating wind turbines. Based on this study, 12 foundation cases are selected in
this paper to study the effect of flexible foundations on the towers’ inherent frequency. The
wind turbine numerical model parameters used for simulation in this paper were selected
from the NREL 5 MW offshore horizontal axis wind turbine [12]. The first three orders of
tower inherent frequencies are calculated as shown in Table 1.

From Table 1, it can be concluded that the rotational stiffness has a greater effect
on the first two orders of the towers’ natural frequency and a smaller effect on the third
order of the towers’ natural frequency. The horizontal stiffness of a tower on the natural
frequency of the tower is opposite to the effect of rotational stiffness. For a tower with a
rigid foundation, the first three orders of inherent frequency are also calculated, as shown
in Table 2.

From Tables 1 and 2, it can be concluded that the flexible foundation of a tower has an
important effect on the free vibration of the tower. Therefore, the flexibility of the tower
needs to be taken into account in the dynamic analysis of offshore wind turbines.
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Table 1. The first three orders of the towers” inherent frequency (unit: Hz).

Kg (GNm/rad) K; (GN/m) 1st 2nd 3rd
10 0.5 0.20862 2.0824 6.8703
10 1 0.20874 2.0991 7.1053
10 5 0.20882 2.1124 7.2858
20 0.5 0.25229 2.2495 6.9903
20 1 0.25245 2.2725 7.2701
20 5 0.25249 2.2909 7.4874
50 0.5 0.29507 2.5064 7.2177
50 1 0.29533 2.5409 7.5925
50 5 0.29554 2.5683 7.8877

100 0.5 0.31463 2.6753 7.4038
100 1 0.31494 2.7180 7.8656
100 5 0.31519 2.7519 8.2307

Table 2. First three orders of inherent frequency of towers under a rigid foundation (unit: Hz).

Modal st 2nd 3rd
Natural frequency 0.3391 3.0634 9.0983

2.4. Solving the Nacelle Attitude Angle Using Euler Angles

Attitude solutions are relatively common in computer graphics and aerospace, and
Euler angles [13] have been widely used in the field of attitude description due to their
simplicity and ease of use. A set of Euler angles, which are the yaw, pitch, and roll angles
obtained from the rotation of the nacelle about the X, Y, and Z coordinate axes, are used to
describe the attitude of the HAWT nacelle, as shown in Figure 3.

(b)

Figure 3. Nacelle attitude angle, (a) yaw, (b) pitch, (c) roll.

Assume that the nacelle transitions from one attitude to another in the sequence of
transverse roll-pitch-yaw, wherein the transition matrix around the axis is:

1 0 0
Ri(px) = | 0 cos¢gy —singy (19)
| 0 singy cosg@y
cosg, 0 singy |
Ry(gy) = 0 1 0 (20)
| —singy, 0 cos¢y |

[ cosg, —sing, 0
R3(¢,) = | sing, cos¢, O (21)
0 0 1
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The attitude matrix of the nacelle can be obtained as follows:

R4 = Ri(px)Ra2(9y) R3(92) (22)

3. Calculation Method
3.1. Calculation of Aerodynamic Loads under Consideration of NAF
For any nacelle attitude angle, the horizontal axis wind turbine coordinate system

shown in Figure 4 is established to facilitate the calculation of the spatial position and wind
speed components of each wing section of the blade [14].

Blade element-position r

Rotation plane

Zs
X ;
Ys

Figure 4. Horizontal axis wind turbine coordinate system.

ZBot

Ysor

1.  The inertial coordinate system S coincides with the tower bottom coordinate system
Spor, and the nacelle coordinate system Sy coincides with the tower top coordinate
system Stop.

2. When the azimuth angle 6 = 0, the wind turbine rotation plane coordinate system
Sg coincides with the hub coordinate system Ly, and Sy rotates with the azimuth
angle 6.

3. The tower height is L, and the horizontal distance from the top of the tower to the
hubis Ly.

4. The spindle inclination angle and blade taper angle are 1 and Bc.

The transformation relationship between the blade coordinate system and the inertial
coordinate system exists both in terms of rotation and translation. The transformation
between the coordinate systems is described using the chi-square coordinates [15] as

S= [X Y Z 1]7. The transformation relationship between the coordinate systems is
as follows:

Sy =KiS (23)

S = KLuKgrKpNRNSN (24)

Sr = KoSh (25)

Sp = KgcSr (26)

where: K| is the transformation matrix from the inertial coordinate system to the nacelle
coordinate system; Ky;, and sub Kgr are the translation and rotation transformation ma-
trices from the nacelle to the hub coordinate system, respectively; Ry and Kpy are the
attitude matrix and deflection matrix of the nacelle, respectively; Kj is the transformation
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matrix from the hub to the rotating coordinate system of the wind wheel, and K¢ is the
transformation matrix from the wind wheel to the rotating blade.

1 00 O
01 0 O
Ke=19 01 -1 27)
0 00 1
1 0 0 Lg/cosPBr
01 0 0
0 0O 1
cospr 0 sinfr 0
0 1 0 0
Ker —sinfr 0 cosfBr O @9
0 0 0 1
1 0 0 XN
_ 1010 yn
0 00 1
1 0 0 0
0 cos® —sinf O
Ko = 0 —sinf® «cos® O (31)
0 0 0 1
cosfB, 0 —sinf. O
0 1 0 0
Kec = | gin Bc 0 cosB. O (32)
0 0 0 1

From Equations (23) to (32), the transformation relation between the blade coordinate
system and the inertial coordinate system can be obtained as:

S = K 'Ry Ko Kt K 5Ky K2 Sg (33)

BT BC
Therefore, the coordinate component [X Y Z] '

the leaf element coordinates [ Xp  Yp ZB]T =[0 0 7] T is calculated by Equation (34).

in the inertial coordinate system for

X 0
Y| kR kK k| © 4
7z | = 5L BN BoNBprhiate fpc| 4 (34)
1 1

The coordinate component of the wind speed Us = [U 0 0] " in the inertial

coordinate system in the blade coordinate system can be calculated by the following
equation.
Upx
Upy
Upz
1

= RnKprKeKpc (35)

— oo

The load on the wind turbine tower is mainly from the inertial load on the top mass
of the tower and the aerodynamic load on the rotating blades. The blade load and tower
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top load can be decomposed into component forces and bending moments along the three
coordinate axes, as shown in Figure 5.

Figure 5. Wind turbine load coordinate system [16]. (a) Blade coordinate system. (b) Tower coordinate system.

When the wind component of turbulent wind in the lobe element coordinate system
is obtained, the angle of entry and relative wind speed of the incoming wind on the lobe
element can be calculated by the following equation.

¢ = tg{Upx (1 —a)/ (Upy + wr(1+4a’) cos Bc) } (36)

W=/ (Unx(1 =) + Uny +ar(1 - ) cos )’ @7)

In this paper, the dynamic response of the tower in the forward-backward direction
and the left-right direction is investigated. The aerodynamic forces and aerodynamic
moments on the blades were calculated using BEM theory [16] with the following equations.

dFxp = %pWZC(CL sing — Cp cos ¢)dr (38)
dFyg = %szc(CL cos ¢ + Cp sin¢)dr (39)
dMxg = %szc(CL sin¢ — Cp cos ¢)rdr (40)
dMyp = %pWZC(CL sin¢ — Cp cos ¢)rdr (41)

where C; and Cp denote the lift and drag coefficients of the cross-sectional airfoil; p is the
air density, and c is the chord length of the blade cross-sectional airfoil.

3.2. Tower Load Calculation

The aerodynamic forces F and aerodynamic moments M on the wind turbine are
transformed by coordinates to obtain the aerodynamic loads acting on the tower.
T T
|" =Cpr|[Fs 1]

| Fgxt Fgyr Fpzr 1 (42)

[Mpxr Mpyr Mpzr 1 ]TZCBT[MB 1]T (43)

where Cgr = R;,l Klng Ky 1Kgé is the transformation matrix.
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The eccentricity of the top mass center of the wind turbine tower with the tower center
will produce the overturning moment and pitching moment acting on the tower. In the
tower top coordinate system, assuming the coordinates of the tower top mass center as
( Xre Yre Zre ), the tower top bending moment caused by the eccentricity of the tower
top mass can be calculated by the following equation.

Myg = MsgXTE (44)

MXE = MngTE (45)

where M; is the tower top mass, and g is the acceleration of gravity.
The final total load of the tower can be obtained by combining the wind turbine
pneumatic load and the eccentric moment of the top mass of the tower on the tower.

3.3. Solving Structural Equations of Motion

For a general external excitation P(t), the Newmark method is used in this paper to
solve the multi-degree-of-freedom equations of motion.

The Newmark method approximates the velocity and displacement of the system at
the moment (t + At) by two assumptions.

Xepar = X+ [(1— B)Xt + BXpyar| At (46)

. 1 . .
Xprar = Xt + XAt 4 [(2 - oc) Xt + ocxHAt} AP (47)

where « and B are the parameters adjusted according to the accuracy and stability require-

ments of the integration. When o =1/6, B =1/2, it is the linear acceleration method; when

x=1/4, B =1/2, it is the average acceleration method; when a =1/2, § =1/2, it is the

central difference method; when « =1/8, 8 = 1/2, it is the variable acceleration method.
From Equations (44) and (45), we can solve that:

. 1 1 . 1 .
Xipat = W(xt—&-m —Xt) — AR <2a - 1)xt (48)

Xprar = Xt + (1 — B)Atxs + BAEX; (49)

When 8 > 0.5 and « > 0.25(0.5 + ,3)2, the Newmark method is the unconditionally
stable format. The equations of motion can be solved by the following steps.

1. Initial Calculation

1. Firstly, the overall characteristic matrices K, M and C of the vibrating system are
calculated.
2. From the initial conditions xg and xg, X is calculated.
xXp = M1 (Fy — Cxp — Kxo) (50)
3. Step At is selected with parameters «, § and calculate the integration constants.
Av= oty = s =y Au= (£ -1), 45 = 4 (B -2), 40 = (£ 1)
4.  The equivalent stiffness matrix K is calculated.
K=K+ AM+ AC (51)

2. For each time step
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1. The equivalent load vector F at moment ¢ + At is determined.
F=Fyar+ [A1x + Asie + Ayt | M+ [Agxy + Agi + Az | C (52)

2. The displacement at moment t 4 At is calculated.

_71_
Xepar = K “Fipar (53)

3. The velocity at time ¢ + At and the acceleration are solved.
. 1 1 . 1 .
Xtpat = W(xt—FAt —Xt) — AP T (ﬂ - 1>xt (54)

Xppar = X+ (1 — B)Atx; + BAEX af (55)

3.4. Dynamic Response Analysis Process

The dynamic response of the tower system is calculate as shown in Figure 6, taking into
account the effects of nacelle attitude feedback and foundation flexibility of the foundation.

Calculate the overall characteristic matrices MK and C
of the tower system

L]

Enter the initial displacement and velocity of the tower,
select the iteration step and simulation time

Y

Input nacelle initial attitude angle and blade initial azimuth angle

L]

Calculate the spatial coordinates of each section airfoil shape center -

Y

Obtain the wind speed coordinate components of the No
incoming wind on each leaf element

L]

Calculate the inlet angle and relative velocity of the
incoming wind over each lobe element

Y

Calculate the tower top load at the time of t+4t
Select fixed
nacelle attitude '
angle to
compensate for The displacement, velocity and acceleration of the tower in the
tower vibration downwind and crosswind directions at the moment t+2t are T=t+2t
effects calculated using the Newmark method. i

Considering cabin attitude feedback?

Extract the downwind displacement and crosswind
displacement of the tower top, as well as the pitch and
roll angle of the nacelle, and input the yaw angle at the

moment of t+2¢

Save the lobe center coordinates, lobe entry angle, tower top
— P load, nacelle attitude angle, and tower displacement, velocity D E——

and acceleration for each time step

Figure 6. Dynamic response solving process of flexible tower.
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4. Flexible Tower Vibration Feedback Analysis
4.1. Tower Load Error Analysis

Under the action of wind load, the tower will vibrate, which will cause the pitch and
roll angle of the nacelle to change, and the change of attitude angle will in turn affect
the load calculation of the rotating blade, which is a cyclic process. In this paper, we
design a method to analyze the dynamics under the action of dynamic structural parameter
feedback, and use MATLAB to prepare the corresponding program to explore the laws
through numerical examples [9]. In analyzing the effect of flexible pylons on aeroelastic
loads, the following assumptions are made first.

1.  The nacelle and the tower have only yaw motion.
2. The center of mass of the nacelle coincides with the center of the tower top.

The deflection of the tower top in downwind direction and crosswind direction
will be equal to the fore-and-aft displacement and left-right displacement of the nacelle
respectively, and the angle of rotation of the tower top in fore-and-aft direction and left—
right direction will be equal to the pitch angle and cross-roll angle of the nacelle, respectively.
The relationship between the tower top turning angle and the nacelle attitude angle is
shown in Figure 7.

(a) (b)

Figure 7. Relationship between tower turning angle and cabin attitude. (a) Forward and backward.
(b) Left and right.

Yty and ¢, denote the angle of rotation of the top of the tower in the front-to-back
direction and the left-to-right direction, respectively. Based on the assumptions of this
paper, there are ¢, = 11, x = P1x holds at the same time. The load calculation formula
for any nacelle attitude angle derived in this paper is applied to the study of the effect
of the flexible tower on the aeroelastic load of the wind turbine. In the steady-state yaw
condition, when considering the effect of the flexible tower vibration feedback on the
wind turbine aeroelastic load, it is necessary to calculate the large feedback effect of the
tower top front-to-back and left-right directional turning angle and displacement at the
same time, and it is also necessary to consider the two-way feedback effect of the nacelle’s
cross-roll angle, pitch angle, downwind tower top displacement, and cross-wind tower top
displacement at the same time, and its calculation process is shown in Figure 6. At the same
time, the calculation flow without considering the feedback effect is also incorporated into
this procedure, only when the feedback is not considered, the influence of tower vibration
on the structural parameters needs to be compensated.
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To simulate the roll of tower vibration feedback in the dynamic response of flexible
towers, simulation analysis is performed for towers with different flexibility. First, the other
parameters of the towers are maintained consistent with the NREL 5 MW wind turbine; the
geometric parameters of the wind turbine tower and the basic operating parameters of the
wind turbine are shown in Table 3. The increase of its flexibility is simulated by increasing
the height of the tower, and the parameters of the tower used for numerical simulation are
shown in Table 4.

Table 3. 5 MW wind turbine parameters.

Name Value Name Value
Rated power 5000 KW Cone angle 2.5°
Rated wind speed 114 m/s Rated rotor speed 12.1 rpm
Cut-in wind speed 3m/s Rotor diameter 126 m
Cut-out wind speed 25m/s Tower mass density 8500 kg /m?
Blade length 61.5m Tower’s modulus of elasticity 2.1 x 104 N/m?
Blade mass 17,740 kg Structural-damping ratio 1%
Blade number 3 Tower height 86.7 m
Hub height 90 m Tower-base diameter 6m
Hub mass 56,780 kg Tower-base thickness 0.0351 m
Nacelle mass 240,000 kg Tower-top diameter 3.87m
Shaft tilt 5° Tower-top thickness 0.0247

Table 4. Ultra-high flexible tower parameters.

Diameter and Wall Diameter and Wall

H(el;g)ht El:;lt(i)f:littllu(i\](;LZ) Thickness of Tower Thickness of Tower Dai:rtil:\tuliia;tio
y Top (m) Bottom (m) ping
86.7 2.1 x 101 3.87,0.247 6,0.351 1%
200 2.1 x 1011 3.87,0.247 6,0.351 1%
300 2.1 x 101 3.87,0.247 6,0.351 1%

The relative errors of the tower top load are calculated separately for the two cases of
considering feedback and not considering feedback; the comparative analysis results of
longitudinal thrust and transverse thrust are shown in Figure 8.

As can be seen from Figure 8, when the tower stiffness is relatively large, the effect on
the wind turbine pneumatic load is small when considering the tower bending-bending
coupling vibration feedback. When the tower flexibility increases, its load relative error
increases rapidly, especially the transverse thrust; for each flexible tower, its relative error
amplitude is almost maintained at about two times the relative error of the longitudinal
thrust, which will have a significant increase in impact for the more flexible tower, and
cause a large impact on the power of the wind turbine.

To investigate the law of mutual influence between tower vibration and pneumatic
load, we compared the relative errors of tower top angle and displacement under three
tower heights, and the simulation results are shown in Figures 9 and 10.

From Figures 9 and 10, it can be seen that, when the flexibility of the support structure
is large, the maximum errors of displacement and the turning angle of the tower top
downwind are both around 8%, while the maximum deviations of the crosswind direction
are both over 12%. It can be seen that, when the flexibility of the support structure is large,
ignoring the effect of the time-varying nacelle attitude feedback will make the analysis of
the dynamic less accurate. It can also be seen that the relative errors of displacement and
the turning angle at the top of the tower remain the same in terms of trend and magnitude.
It can be seen that when the other structural parameters (blade, nacelle mass, etc.) are
constant, the degree of influence of the tower bending-bending coupling bidirectional
feedback on the dynamical behavior of the tower is positively correlated with the flexibility
of the support structure.
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Figure 8. Relative error analysis of tower top load. (a) Longitudinal thrust. (b) Lateral thrust.
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Figure 9. Relative error of tower top angle. (a) Pitch angle. (b) Lateral camber angle.
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Figure 10. Relative error of tower top displacement. (a) Longitudinal direction. (b) Crosswind
direction.



Appl. Sci. 2021, 11, 8876

16 of 19

4.2. Dynamic Response Analysis of Tower System

Four foundation cases were selected to study the effect of flexible foundations on
tower loads. The wind condition used is a steady state wind with 11.4 m/s and a turbulence
intensity of 16.4946%.

For each of the four foundation cases in Table 5, the wind load response of the tower
system is solved, and the effect of the foundation rotational stiffness on the tower vibration
is explored. When considering the flexibility, the wind turbine tower top response time
equations are shown in Figures 11 and 12.

Table 5. Simulation analysis foundation case.

K; (GN/m) Kg (GNm/rad)
Case 1 1 10
Case 2 1 20
Case 3 1 50
Case 4 Rigid foundation
s Cage ] = == Cose 2 Case 3 =-=-=-Case d

Along-wind displacement(m)

0 . . ' . . . . . .
4] 10 20 30 40 50 60 70 80 a0 100
time(s)
(a)
0 T T T T T T T T T
-0.02 s Casg 1 = = = Case 2 Case 3 =-=-=-Case 4 T

Cross-wind displacemant{m)

time(s)

(b)

Figure 11. Time course of tower top displacement. (a) Downwind. (b) Sidewind direction.
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Figure 12. Time course of tower top speed (a) Downwind (b) Sidewind direction.

As shown in Figure 11, the maximum displacements of the tower top in the downwind
direction are 1.2 m, 0.82 m, 0.61 m, and 0.46 m. The maximum lateral displacements of
the tower top are 0.14 m, 0.1 m, 0.08 m, and 0.07 m. It can be seen that the deflection
of the tower top increases greatly when considering flexibility. Compared with the rigid
foundation, the maximum tower top displacement of Case 1, Case 2, and Case 3 increases
nearly 161%, 78%, and 32% in the downwind direction and nearly 100%, 42%, and 14% in
the sidewind direction, respectively.

As shown in Figure 12, the tower top velocity response is greatly increased when
considering flexibility. Compared with the rigid foundation, the tower top velocities of
Case 1, Case 2, and Case 3 increase by nearly 88%, 41%, and 14% in the downwind direction,
and by nearly 55%, 23%, and 4% in the sidewind direction, respectively.

From Figures 11 and 12, it can be seen that the tower top displacement and veloc-
ity response amplitude increase with decreasing base stiffness when considering base
stiffness. Moreover, when the rotational stiffness gradually increases, the closer to the
rigid foundation, the smaller the decrease of the top displacement and velocity response
amplitude.
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5. Conclusions

(1) The finite element discretization of the pylon system is carried out with a two-node
Euler-Bernoulli beam; the cubic Hermite polynomial is taken as the form function of the
beam unit; the structural characteristic matrix of the pylon system is calculated, and its
multi-degree-of-freedom finite element model is established. (2) The calculation formula of
the effect of the nacelle attitude angle on the aerodynamic load of the blade is obtained.
(3) When the tower stiffness is large, the effect of having or not having tower vibration
feedback on the calculation of the wind turbine aeroelastic load is small. (4) For a more
flexible tower system, wind-induced vibration time-varying feedback will cause a larger
aeroelastic load variation, especially the lateral tilting moment at the top of the tower, thus
causing a larger impact on the dynamical behavior of the tower downwind and crosswind.
It can be seen that, as the flexibility of the tower system increases, the interaction between
the tower vibration and the pneumatic load also increases gradually. Taking the influence
of the flexible tower on the aeroelastic load of the wind turbine into account can help
predict the wind turbine pneumatic load more accurately and improve the efficiency of
wind energy utilization; on the other hand, it can analyze the dynamic behavior of the
flexible structure of the wind turbine more accurately, which is extremely beneficial to
the structural optimization design of the wind turbine. On the other hand, it can analyze
the dynamic behavior of the flexible structure of wind turbines more accurately, which is
extremely beneficial to the structural optimization design of wind turbines.
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