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Abstract: To ensure food security, agricultural production systems should innovate in the direction of
increasing production while reducing utilized resources. Due to the higher level of automation with
respect to traditional agricultural systems, Controlled Environment Agriculture (CEA) applications
generally achieve better yields and quality crops at the expenses of higher energy consumption. In
this context, Digital Twin (DT) may constitute a fundamental tool to reach the optimization of the
productivity, intended as the ratio between production and resource consumption. For this reason,
a DT Architecture for CEA systems is introduced within this work and applied to a case study for
its validation. The proposed architecture is potentially able to optimize productivity since it utilizes
simulation software that enables the optimization of: (i) Climate control strategies related to the
control of the crop microclimate; (ii) treatments related to crop management. Due to the importance
of food security in the worldwide landscape, the authors hope that this work may impulse the
investigation of strategies for improving the productivity of CEA systems.

Keywords: controlled environment agriculture; digital twin; productivity; architecture; optimization

1. Introduction

The World Bank estimates there will be a global population of over 9.6 billion people
by 2050 [1]. To feed this population, agricultural production should increase by about 50%
with respect to today’s levels [2]. However, several aspects complicate this context. These
are next illustrated using predictions to 2050. Temperature rise due to global warming will
result in reduced yields. For instance, rice, maize and soybean are estimated to reduce their
yields by between 3.1% and 7.4% per each degree Celsius of increased temperature [3].
The growth of the world’s population will mainly occur in urban areas, while the country-
side population will remain stable, i.e., from 3.4 billion in 2018 to 3.1 billion in 2050 [1,4].
Considering that food is mainly produced in the countryside, the same amount of people
available today will be required to produce the necessary food. Furthermore, the lands
available for agriculture will decrease by between 8% and 20% due to land degradation,
urbanization, and the use of crops for biofuel production [5]. Finally, it is likely that the
current threats to freshwater will determine a sub-optimal supply of water to crops [6].
The combined effect of these factors might cause a deficit of between 5% and 25% in the
availability of agricultural products, threatening the food security of the planet [5]. As such,
agricultural production systems need to innovate in the direction of increasing production
while reducing the utilized resources.

Controlled Environment Agriculture (CEA) refers to the control of plant growth and
the surrounding environment with the objective of enhancing production efficiency, opti-
mizing plant yields, and improving product quality [7]. CEA applications—such as plant
factories and greenhouses [7,8]—may become an important tool to face the aforementioned
challenges. Due to their ability to control the microclimate, CEA systems are robust to
climate variability and temperature rise, enabling year-round production [9]. Furthermore,
they are generally associated with soilless cultures that enable the recirculation of water
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and nutrients, and the utilization of inert soils [10]. In this way, the integration of CEA
practices and soilless cultures provides intensive food production in limited areas with
more efficient utilization of resources, including non-arable areas such as deserts and
cities [11,12].

Different works have demonstrated that the increment in the level of automation
determines better yield and quality of the harvested crops. Asseng et al. [13] estimated that
the wheat grain cultivated through CEA vertical farmings may generate yields between
700± 40 and 1940± 230 ton/ha/yr with respect to the 3.2 ton/ha/yr obtained with open-
field agriculture. Furthermore, Nicole et al. [14] detected an improvement in the lettuce
food quality cultivated in plant factories with respect to open-field agriculture—in terms of
color, nutrients and shelf life, amongst other things. However, the increment in the level
of automation comes at the expense of higher energy consumption. Graamans et al. [15]
compared greenhouses and plant factories showing that the production of 1 kg dry weight
of lettuce requires an input of 247 kWhe in a plant factory, compared to 70, 111, 182 and
211 kWhe in greenhouses in, respectively, the Netherlands, the United Arab Emirates and
Sweden (×2).Two Sweden greenhouses were utilized in the study: One with additional
artificial illumination and the other without.

From the data reported above, it can be noticed that production (both in terms of yield
and quality) and energy consumption are two conflicting goals for CEA systems. To ensure
food security, there is the need to reach an optimization in between these two goals by
maximizing productivity: The ratio between production and resource consumption.

Digital Twin may constitute a fundamental tool to reach the optimization of productiv-
ity. Digital Twin (DT) represents the next wave in modelling, simulation, and optimization
technology [16]. According to Kritzinger et al. [17] and Negri et al. [18], DT “exploits
sensed data, mathematical models and real-time data elaboration to forecast and optimise
the behaviour of the physical asset at each life cycle phase, in real-time”. DTs have been
adopted in different domains such as manufacturing, aviation, hospital management and
precision medicine and safety amongst others; see [19–21].

DTs are digital models enhanced with bilateral communication between the physical
and the cyber space [17]. In traditional simulation, the digital representation of an existing
physical asset does not use any form of automated data exchange between the physical asset
and the digital one. In a DT, the data flow between an existing physical asset and a digital
one is fully integrated in both directions. In this way, the digital model is synchronized with
the status of the physical asset and the results of the simulation can be directly implemented
to optimize the physical asset. In the context of CEA, the DT ability to integrate the real-time
status of the physical asset into simulation may be adopted to guide the decision-making
in crop management and microclimate control for the optimization of productivity.

To reach the aforementioned capabilities, the physical asset must be enhanced with a
DT architecture consisting of (Figure 1):

• Physical Asset: Target system to optimize through the DT architecture.
• Digital Twin: Virtual test bed synchronized with the status of the physical asset that is

responsible to evaluate the different ‘what-if’ scenarios that may optimize the system.
• Intelligence Layer: Hosts the rules and the knowledge to choose among the alterna-

tives tested in the DT.
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Figure 1. Actors involved in a DT architecture. The representation has been adopted from [22].

In the actual agricultural innovation systems, information-based management char-
acterizes a technological phase called Farming 4.0 [23]. Few recent literature reviews can
be found concerning the application of DT in agriculture. Pylianidis et al. [24] investi-
gate the added-value of DTs for agriculture through the identification of 28 use cases,
and their comparison with use cases from other disciplines. Based on their analysis, they
examine the extent of the DT adoption in agriculture, shed light on the concept and the
benefits it brings, and provide an application-based roadmap for a more extended adop-
tion. Verdouw et al. [25] first review the concept of DT in agriculture by showing how
DTs can advance farming practices and by developing a typology of different types of
DTs. Then, they propose a conceptual framework for designing and implementing DTs.
Sreedevi and Santosh [26] analyze ways in which DTs can contribute to most of the life
cycle phases of hydroponic systems such as designing, operation, monitoring, optimization,
and maintenance, amongst others.

In the aforementioned literature reviews, one of the potentialities of the DT for CEA
applications is defined as the optimization of the productivity through the simulation
and prediction of crop microclimate and growth. In their work, Rezvani et al. [27] review
the basics of microclimate models for greenhouses and the results obtained from their
application. Furthermore, a review of crop growth models and functional–structural
plant models is also provided. Howard et al. [28] present the first advancements in the
development of a DT that is intended to optimize the energy efficiency of greenhouses.
Monteiro et al. [29] develop an IoT-enabled structure for vertical farming that has the
objective of enabling sustainable CEA systems. Burchi et al. [30] introduce a multifunctional
environment, equipped with sensors and monitoring systems that allows the acquisition of
data and their processing using mathematical yield models to optimize crop management.
To the best of the authors’ knowledge, the presented works constitute the most relevant
ones in the productivity optimization through DTs. However, it can be noticed that a DT
architecture for CEA systems potentially able to optimize productivity due to the utilized
simulation software is not available yet. This architecture—referred to as DT Architecture
for CEA systems—constitutes the novelty presented in this work.
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Given the above, the article is structured as follows: Section 2 resumes a previously
introduced methodology for the design and verification of DT applications. Section 3
applies the methodology for the development of the DT architecture for CEA systems.
Obtained results are discussed in Section 4, and the conclusion and future work are
presented in Section 5.

2. Research Methodology

Barbieri et al. [31] proposed a methodology based on virtual commissioning—VC-
based methodology—to retrofit manufacturing systems with DTs. The methodology con-
sists of a stepwise approach in which the DT architecture is designed, integrated (to the
retrofitted manufacturing system), and verified using a virtual environment before its
implementation. In this work, part of the methodology is applied to develop the proposed
DT architecture for CEA systems. Next, the research methodology utilized within this
work is illustrated (Figure 2):

• Framework: The layered structure and functionalities of the DT architecture are
identified without considering their implementation technologies.

• Technology: The technologies for instantiating the framework into an architecture are
selected, and the actors that are interfaced within the architecture are specified.

• Digital Twin: The DT models are developed using the software and types of simulation
identified in the previous phase.

• Intelligence Layer: The intelligence layer is designed starting from the defined func-
tionalities and the selected implementation technologies. Within this phase, the inter-
action between the DTs and the intelligence layer is exploited with the aim to compare
different optimization algorithms and to tune their parameters.

• Physical--Cyber Interface: The signals to be exchanged among the different actors
within the DT architecture are identified. As depicted in Figure 1, signals are ex-
changed between: (i) Physical asset–intelligence layer; (ii) physical asset–digital twin;
(iii) intelligence layer–digital twin. This phase also establishes the order in which
signals are exchanged and which sequence of operations are implemented.

• Implementation: The architecture is implemented in the physical asset and verified.

Figure 2. Methodology utilized for the development of the DT architecture for CEA systems. The rep-
resentation has been adopted from [31].

3. Digital Twin Architecture

Next, the methodology illustrated in Section 2 is applied for the development of a DT
architecture aimed to optimize the productivity of CEA systems. A prototype greenhouse
(Figure 3) is utilized as case study for the design and verification of the DT architecture.
The objective of this work is to build an architecture able to perform the bilateral com-
munication typical of DTs using simulation models that can optimize the productivity.
The utilization of the models for the identification of optimal crop treatments and climate
control strategies is left as future work.

Finally, the following use case is defined for the architecture: ‘The data necessary
for the optimization must be available in the cloud and the user must download them
in his/her local device. The optimization occurs in the local device and the optimal



Appl. Sci. 2021, 11, 8875 5 of 11

crop treatment and climate control strategy are communicated to the controller for its
implementation through a gateway’.

Figure 3. Prototype automated greenhouse utilized as case study. In the figure, the different compo-
nents are indicated with numbers.

3.1. Framework

In this phase, the layered structure and functionalities of the DT architecture are
identified. The layered structure is depicted in Figure 4 and is illustrated next:

• Greenhouse: Physical asset to optimize; see Figure 3.
• Controller: Respectively, monitors and controls the greenhouse sensors and actua-

tors. It also transmits the acquired sensor data to the gateway and receives the crop
treatments and climate control strategies to implement.

• Gateway: Interface between the cyber and the physical domain; see Figure 1. It
is responsible for transmitting sensor data to the storage layer and communicating
the optimized crop treatments and climate control strategies to the controller for its
implementation.

• Storage: Stores current and historical data that are utilized from the DTs for produc-
tivity optimization.

• Intelligence layer: Hosts the rules and the knowledge to choose among the different
crop treatments and climate control strategies that may optimize the productivity of
the greenhouse. It uses the DTs as virtual test beds to assess the evaluated alternatives.

• Digital twins: Utilizes current and historical data to assess the different crop treatments
and climate control strategies received from the intelligence layer.

3.2. Technologies

The technologies for instantiating the framework into an architecture are selected.
These are depicted in Figure 4 and illustrated next:

• Greenhouse −→ two DHT11 sensors to, respectively, measure indoor and outdoor
temperature and relative humidity, 12 V fan and exhaust fan, and a 12 V mini
submersible pump.

• Controller −→ Arduino Uno.
• Gateway −→ Raspberry Pi 4: Communicates with the storage layer through wireless

communication and with Arduino through serial communication.
• Storage −→ phpMyAdmin: Administrator tool that manages a MySQL server for the

data stored in the cloud.
• Intelligence Layer −→ Visual Studio: Programmed in Python, it enables the commu-

nication with the cloud through MySQL and with the gateway through the MQTT
communication protocol.
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• Digital Twin 1−→ EnergyPlus (energyplus.net): Builds energy software able to predict
the microclimate within the greenhouse due to the ability to simulate the behaviour of heat-
ing, cooling, ventilation, and lighting systems, amongst others. It can communicate with
Python-based IDEs through the EnergyPlus API (nrel.github.io/EnergyPlus/api/python).

• Digital Twin 2−→ DSSAT (dssat.net): Agricultural decision support system that
allows the simulation of growth, development, and yield as a function of ”soil–plant–
atmosphere dynamics” [32]. It can communicate with Python-based IDEs through
TraDSSAT (github.com/julienmalard/traDSSAT).

EnergyPlus and DSSAT were selected as simulation software for the DTs since their
integration has the premises to achieve the optimization of the productivity. EnergyPlus
enables the optimization of control strategies related to the control of the crop micro-
climate [33], whereas DSSAT enables the optimization of treatments related to the crop
management [34].

Figure 4. Framework and technologies utilized within the DT architecture for CEA systems.

3.3. Digital Twin and Intelligence Layer

After the definition of the framework and its implementation technologies, the DT
models and the intelligence layer are developed. The tuning of these elements is outside
the scope of the article since the objective of this work is to build a DT architecture and
not to optimize the productivity of the prototype greenhouse. The demonstration of the
effectiveness of the built DT architecture in optimizing the productivity is left as future work.
Therefore, this section illustrates the communication between the intelligent layer and the
DTs—referred to as optimization workflow—for the optimization of the productivity.

The optimization workflow is depicted in Figure 5 and consists in the following phases:

1. Generation of climate control strategies: The intelligence layer receives from the cloud:
(i) Microclimate historical data (internal temperature and relative humidity); (ii) envi-
ronmental historical data (external temperature and relative humidity); (iii) previous
climate control strategies and crop treatments. Starting from these data, different
alternatives of climate control strategies (CCSs) are generated. In this work, a CCS is
defined as a control sequence of the greenhouse actuators to achieve a desired crop
microclimate. Then, a prediction of the future environmental conditions is performed
since EnergyPlus needs this information to assess the different CCSs.

2. Assessment of climate control strategies: The historical microclimate data, and the
historical and predicted environmental data are transmitted to EnergyPlus. Then, all
the generated CCSs are input to the software, and the predicted energy consumption
and microclimate are computed for each CCS using the historical and predicted
climate data.
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3. Generation of crop treatments: The intelligence layer receives the predicted energy
consumption and microclimate relative to each CCS. Then, different alternatives of
crop treatments (TRTs) are generated, e.g., event to trigger the irrigation, volume
delivered for irrigation, etc.

4. Assessment of crop treatments: The historical and predicted microclimate data are
transmitted to DSSAT. Then, all the generated TRTs are input to the software, and the
predicted production and resource consumption (e.g., water, nutrients, etc.) are
computed for each TRT using the historical and predicted microclimate data.

5. Overall optimization: The intelligence layer receives the predicted production and
resource consumption relative to each TRT. The productivity is computed for each
pair of CCS and TRT—where the productivity is defined as the ratio between the
production, and the sum of the energy and resource consumption. The best pair of cli-
mate control strategy (CCS∗) and crop treatment (TRT∗) is computed and transmitted
to the gateway.

Given the interdependence between EnergyPlus and DSSAT, an overall optimization
must be implemented. Starting from the domain knowledge, optimization algorithms
and/or heuristics should be studied as future work to identify optimal solutions in accept-
able computation time.

Figure 5. Optimization workflow: Communication between the intelligent layer and the DTs for the
optimization of the productivity. Production and energy and resource consumption are indicated in
bold since they are utilized for the calculation of the productivity. In the figure, climate data indicate
the set of microclimate and environmental data.

3.4. Physical–Cyber Interface

After the design of the optimization workflow, the signals to be exchanged among
the different actors within the DT architecture are identified. In this phase, the order in
which signals are exchanged is also established. This information is depicted in Figure 6
through a sequence diagram. Sensor data are assessed from the controller and continuously
uploaded to the cloud through the gateway. When an optimization is performed, historical
data are sent to the local device and the optimization workflow illustrated in Section 3.3 is
implemented. Once the optimal CCS∗ and TRT∗ have been identified, these are transmitted
to the gateway. Finally, the gateway sends them to: (i) Cloud: To trace the implemented
climate control strategies and crop treatments; (ii) Controller: To implement the optimal
climate control strategy and crop treatment.
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Figure 6. Sequence diagram showing the communications between the actors of the DT architecture. The name of each
communication is indicated in parentheses.

3.5. Implementation

The presented DT architecture is applied to the prototype greenhouse illustrated in
Figure 3. Then, latency tests are performed to verify the implementation of the communica-
tions depicted in Figure 6.

4. Results and Discussion

Latency tests were performed to verify the implementation of the DT architecture.
In this article, a latency test refers to the assessment of the time taken for a message to
travel in between two actors. It is worth noting that the minimization of the latency was
not within the scope of this work and does not constitute a priority for CEA production
systems since these are not hard real-time ones. Latency was assessed as a mean to certify
the achievement of the communications indicated in Figure 6.

Figure 7 illustrates the latency taken within each communication. To emulate a feasible
optimization scenario, a single data point was transmitted within each communication.
The only exception was constituted by the ’download’ communication in which one million
data points were downloaded from the cloud. The communication sequence illustrated in
Figure 6 was repeated 300 times to evaluate the latency variability through the random
error formulation [35].
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Figure 7. Timing diagram of the latency taken within each communication. Error bars quantify the uncertainty of each
measurement. The nomenclature shown in Figure 6 is utilized for defining the different communications.

The latency data demonstrate that it was possible to achieve the bidirectional commu-
nication typical of DT architectures [17], i.e., from the physical domain to the cyber one and
vice versa (Figure 1). Considering the selected simulators, a DT architecture potentially
able to optimize the productivity was built.

From an industrial perspective, the proposed DT architecture constitutes a scalable
architecture that may be applied to industrial systems by replacing the Arduino controller
with the utilized PLCs (Programmable Logic Controllers). From an educational perspective,
the illustrated low-cost prototype may be replicated from educational institutions for the
generation of automation and agricultural hands-on laboratories, and for the investigation
of approaches for the optimization of the productivity in CEA production systems.

Even if a functional DT architecture was built, several works are still missing before
certifying its ability to optimize the productivity. In particular, a case study should be
implemented and productivity should be optimized through the developed architecture.
Different challenges will occur as the aforementioned definition of heuristics for the iden-
tification of close-to-optimal climate control strategies and crop treatments in acceptable
computation time.

5. Conclusions and Future Work

To ensure food security, agricultural production systems should innovate in the
direction of increasing production while reducing the utilized resources. Controlled en-
vironment agriculture and digital twins may represent fundamental tools to reach the
optimization of productivity, thus contributing to the planet’s food security.

With this in mind, the objective of this research work was the development of a DT
architecture potentially able to optimize productivity in the context of CEA applications.
The objective was reached by designing an architecture that utilizes (as DTs) simulation
software that enables the optimization of: (i) Climate control strategies related to the control
of the crop microclimate; (ii) treatments related to the crop management. The architecture
was applied to a prototype greenhouse for its validation. Finally, communication latency
was assessed as a means to test the achievement of the communications defined within the
DT architecture.

This work contributes to the research on DT in CEA systems by proposing an archi-
tecture potentially able to optimize productivity. The methodological approach and the
identified tools can be utilized by companies for retrofitting their CEA systems with the
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DT functionality, and from universities for the generation of automation and agricultural
hands-on laboratories, and for the investigation of approaches for the optimization of the
productivity in CEA systems.

However, several works are still missing before the ability of the proposed architecture
to optimize the productivity can be certified. In line with this goal, some future works
are identified:

• Optimization workflow: The optimization workflow identified within this work
involves a sequence of two simulation software. Starting from the domain knowl-
edge, optimization algorithms and/or heuristics must be studied to identify optimal
solutions in acceptable computation time.

• Case study: After the definition of heuristics, a case study must be implemented and
productivity must be optimized to certify the ability of the proposed DT architecture
to optimize productivity.

• Architecture improvement: Some improvements should be investigated as the move-
ment of the intelligence layer and the DTs to the cloud, and the simplification of the
physical domain with the implementation of smart sensors and actuators that would
make the controller and gateway unnecessary.
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