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Abstract: Automatic speech recognition in patients with aphasia is a challenging task for which
studies have been published in a few languages. Reasonably, the systems reported in the literature
within this field show significantly lower performance than those focused on transcribing non-
pathological clean speech. It is mainly due to the difficulty of recognizing a more unintelligible
voice, as well as due to the scarcity of annotated aphasic data. This work is mainly focused on
applying novel semi-supervised learning methods to the AphasiaBank dataset in order to deal with
these two major issues, reporting improvements for the English language and providing the first
benchmark for the Spanish language for which less than one hour of transcribed aphasic speech was
used for training. In addition, the influence of reinforcing the training and decoding processes with
out-of-domain acoustic and text data is described by using different strategies and configurations to
fine-tune the hyperparameters and the final recognition systems. The interesting results obtained
encourage extending this technological approach to other languages and scenarios where the scarcity
of annotated data to train recognition models is a challenging reality.

Keywords: aphasia; speech recognition; wav2vec2.0; semi-supervised learning; aphasiabank;
low-resource

1. Introduction

Aphasia is a language disorder that causes impairments in dimensions including
speech, writing, interaction or communication. People with aphasia (PWA) mainly acquire
this disorder after suffering a stroke, a traumatic brain injury, a tumoral brain or any
other affection in some specific areas of the brain that are related to language. Particularly,
aphasia is more likely to be developed when the affected areas are located in the left
hemisphere [1]. Every year, millions of people worldwide acquire aphasia through one of
these issues and its prevalence on the full population ranges between 6 and 62 people per
100.000 inhabitants depending on the region and country [2–4]. These values may increase
even up to 30–60% in people who have survived a stroke, which is the second cause of
death globally [4–6].

PWA may acquire communication impairments that affect their daily life in different
grades depending on the severity of the disorder [7]. Usually, these impediments are
classified with the scale proposed by the Western Aphasia Battery (WBA) [8] ranging
from mild to very severe depending on the performance on several tasks that include
reading, speech or writing, among others [8]. On the other hand, aphasia disorders can
also be distinguished by a combination of symptoms and the affected physical areas [7].
The most extended classification uses the Wernicke–Lichtheim model, which associates
communication capabilities with different brain regions [9,10], differentiating three main
types of aphasia depending on the area damaged: Broca, Wernick and Anomic. Neverthe-
less, language comprehension and production are not isolated at the specific brain areas
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considered by this model [11], and more modern and complete theories, e.g., dual stream
model [12] consider that language capabilities are organized in a distributed system in
different cortical regions, emphasizing the connections between them [13–15]. However,
cortical damages that causes aphasic impairment have barely been mapped using these new
theories; therefore, the Wernicke–Lichtheim model is still the most widely used method in
clinical assessment [11].

Intensive speech therapy conducted by interdisciplinary groups of clinical experts
has a fundamental role in recovering the communication abilities of PWA [16]. During
the last years, intense research carried out in speech recognition technology promises to
support the work of these clinical experts by automating processes and improving access
to therapy related to isolated areas and/or less favored socioeconomic environments and
collectives. In this sense, some applications such as Constant Therapy [17], Lingraphica [18]
and Tactus Therapy [19], for which their usefulness has been recognized by the National
Aphasia Association of United States (accessed on 15 July 2021) https://www.aphasia.org/,
provide exercises to practice speech, language and cognitive tasks by customizing the PWA
progress. These applications have been proven to reinforce the therapy, achieving marked
goals in less time [20], especially in rural areas [21]. Other technological applications
focus on the adaptation of standard cognitive tests [22] or on the automatic quantitative
analysis of aphasia severity through speech [23]. Taken together, these new techniques and
solutions promise to enhance face-to-face therapy, to extend the treatment to more patients
and, therefore, to improve the quality of life of PWA.

Nonetheless, there are still challenges related to automatic speech recognition (ASR)
that must be solved worldwide in order to extend these therapy applications, since they
basically depend on adequate engines that should properly recognize aphasic speech. ASR
systems are usually trained with the voices of people without any speech pathology, and
their performance degrades when they are applied to aphasic speech [23–27]. Furthermore,
ASR systems are usually language-dependent and have to be trained with hundreds
or thousands of hours of transcribed speech. This idiosyncrasy avoids, in many cases,
extending their use to the thousands of languages currently spoken in the world and,
particularly, to the use case of aphasic speech recognition due to the lack of so many
annotated data for training recognition models following the more traditional supervised
learning methods.

In this work, we explore the application of novel semi-supervised end-to-end (E2E)
learning methods on ASR to perform aphasic speech recognition in English and Spanish in
a very challenging scenario with few annotated data. More specifically, we make use of
the wav2vec2.0 architecture [28], building models adapted to aphasic speech for English
and Spanish and comparing the results with previous fully supervised technological
approaches presented in the literature. In particular, we achieved a relative error reduction
in Word Error Rate (WER) for the English test set by ∼25% when comparing with previous
published results. In addition, we demonstrate that this technological approach can be
extended to perform aphasic speech recognition with few annotated data. To this end, we
built the first Spanish E2E model adapted to aphasic speech recognition with less than
one hour of data from PWA and report the first results in the literature for this language
and domain.

The rest of the paper is organized as follows: Section 2 introduces previous work
in aphasic speech recognition. Section 3 details the process performed over the main
corpora used for the experiments in addition to the creation and compositions of the
train, validation and test partitions. In Section 4, the speech recognition architectures
and constructions are explained, whilst the evaluation results obtained over different
configurations of the systems are presented in Section 5 for English and Spanish. Finally,
Section 6 concludes the paper and presents future work.

https://www.aphasia.org/
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2. Related Work in Aphasic Speech Recognition

ASR is a technological field that has remarkably evolved over the last years from the
hand of new methods and architectures based on Deep Neural Networks (DNNs), which
are closer to reaching human-like performance in controlled acoustic environments [28–32].
These improvements have great potential to impact new ASR clinical applications and
to develop new e-health solutions [33–35]. Particularly, ASR technology applied to dis-
ordered voices brings the opportunity to implement new assisted and personalized ther-
apies, generate automatic cognitive tests or to develop adapted applications for people
with impairments.

The first ASR systems for aphasic speech recognition found in the literature were
focused on recognizing isolated words within small vocabularies for English [36] and
Portuguese [24]. More recently, thanks to the advancements in deep learning speech
recognition technologies, new studies achieved up to 90% accuracy on assessing correct
versus incorrect naming attempts in controlled utterance verification systems [37]. However,
the biggest challenge in the field nowadays is to improve the performance of the continuous
recognition of aphasic speech in large vocabularies. To the best of our knowledge, the
published works in the task of aphasic continuous speech recognition of large vocabularies
only consider English [23,38,39] and Cantonese [40] to date. In this sense, the performance
and results for these systems widely oscillate depending on the severity level of aphasia,
ranging WER from 33 on mildest cases to more than 60 on very severe cases. All these
studies employ the same AphasiaBank database [41] as the main corpus for training
and evaluation, but they usually differ on the train-test-validation partitions and on the
evaluation metrics employed, given that some studies used the Phoneme Error Rate (PER)
as its main metric and others employed the Character Error Rate (CER). This decision
strongly depends on the configuration and the basic modeling unit used to train their
systems (phonemes or characters). Hence, a fair and balanced comparison between systems
and technological approaches cannot always be guaranteed. Nonetheless, in some cases,
notable improvements can be appreciated between the 52.3 of PER in moderate aphasia
test group presented in [25] and the more recent 41.7 of PER reported in [39]. These results
seems to be in line with the 38.3 global Syllable Error Rate (SER) reported for the full test
set in Cantonese [40], where more than 60% of the test set was composed of mild severity
speech data.

Regarding technological approaches, previous works focused on developing ASR
technology for aphasic speech considering architectures based on hybrid Acoustic Models
(AMs) such as Deep Neural Networks and Hidden Markov Models (DNN-HMM) [25],
Bidirectional Long Short-Term Memory and Recurrent Neural Models (BLSTM-RNN) [23],
and solutions based on Mixture of Experts (MoEs) [39]. More specifically, in the work
presented in [38], the authors established the first large-vocabulary continuous speech
recognition baseline for English built on the AphasiaBank dataset using a DNN-HMM
hybrid AM trained on unseen train-validation-test partitions and by distinguishing per-
formances depending on aphasia severity. They reached PER metrics between 47.41 for
mild severity test and 75.81 for very severe test set and reported that appending utterance
fixed-length speaker identity vectors (i-vectors) to frame-level acoustic features resulted
in PER reductions specially in speakers with more severe levels of aphasia. These results
were then improved by using an acoustic modeling method based on a BLSTM-RNN
architecture enriched with a trigram language model (LM) estimated on the transcripts of
the training audios [23]. In this case, the training of the AM was reinforced with transcribed
data from healthy speakers, achieving an improved WER ranging from 33.68 on mild test
set to 53.17 on very severe test set. In the work described in [39], an AM based on a MoE of
DNN models was proposed, where each expert in the model was specialized on specific
aphasia severity. Additionally, an Speech Intelligibility Detector (SID) composed of two
hidden layers and a final softmax function was trained to detect the Aphasia Quotient (AQ)
severity level of a given speech frame by using the acoustic features and utterance-level
speaker embeddings. At inference time, the contribution of each expert was decided by the
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SID module. Once again, the train-validation-test partitions were randomly generated, and
they achieved PER values ranging from 33.37 on mild test set to 61.41 on severe test set.

Finally, the first ASR system for Cantonese continuous aphasic speech was described
in the work presented in [40]. They used a Time Delay Neural Network (TDNN) combined
with a BLSTM model as the main AM, which was trained with both in-domain and out-
of-domain speech data and a syllable-based trigram LM. The performance of the system
was evaluated at the syllable level by using the SER metric. In this work, any distinctions
between aphasia severities, yielding an overall SER of 38.77 for aphasic speech and 15.07 of
SER for the healthy speakers, were not reported.

As it can be concluded, over the last years, the speech recognition of aphasic voices
has benefited from the latest improvements in the ASR based on fully supervised learning
methods, gradually enhancing its performance and, thus, allowing its application in real
clinical and therapists tools. In this work, we show that semi-supervised learning methods
have great potential in this particular domain, reporting interesting WER improvements
for English and competitive results for Spanish considering the scarcity of annotated PWA
data (less than 1 h) for this language.

3. AphasiaBank Dataset Description and Processing
3.1. General Description

In this work, transcribed speech data from the AphasiaBank dataset [41] were used as
the main corpus. The AphasiaBank corresponded to a computerised database of interviews
between PWA and clinicians. The interviews are presented in recorded video format, and
they were transcribed and transformed into CHAT file format following a protocol designed
by a table of experts based on previous successful experiences [42]. This protocol mainly
consisted of narrative and procedural discourse in order to maximize task comparability
across participants [41].

The contents in the original AphasiaBank dataset are organized by the severity of
the aphasia impairment for the English language. This measurement was performed with
the standardized comprehensive assessment by using the WAB scale and yielding an AQ
value which ranged from 0 to 100. Lower AQ value meant a higher degree of aphasia
severity. The AQ score served as a threshold to classify patients into four aphasic levels,
including mild (AQ < 75), moderate (50 < AQ ≤ 75), severe (25 < AQ ≤ 50) and very severe
(0 < AQ ≤ 25) [41].

Regarding the amount of data, at the time the authors accessed the database, the
full English subpart of the AphasiaBank dataset included 116 h and 54.9 h of transcribed
speech from 435 PWA and healthy control speakers, respectively, collected at various sites
across the United States and Canada [41]. The PWA speakers were organized by their
severity of the aphasia impairment. By contrast, for the case of Spanish, the available
data only included chunks from 4 PWA collected at four different sites across the United
States, summarizing a total of 1.2 h of transcribed speech [41]. In this case, with the aim of
adding contents from healthy people, 1 h (700 speech utterances) from the Spanish Mozilla
Common Voice corpus [43] was selected in order to reinforce the training of the Spanish
AM. It should be noted that no information about the aphasia severity of the Spanish PWA
patients was reported in the original database.

3.2. Data Processing

The original data from the AphasiaBank dataset were processed at different acoustic
and text levels in order to generate suitable corpora to build the E2E AMs for English and
Spanish. The audio files were first extracted from the video recordings and converted to
PCM WAV 16 kHz 16-bit format using the open sourced FFmpeg tool [44]. Since the time-
codes were provided at the sentence level, the audio was split into correctly aligned audio
chunks by using the SoX [45] tookit in order to manage shorter segments for the training
of the neural models. In this respect, audio chunks shorter than 0.3 s were discarded to
avoid future problems when computing Fourier transform for the spectrograms generation
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or during the CTC layer alignment in the neural network. Furthermore, audio chunks
longer than 30 s were not included in our corpus, with the aim of avoiding memory issues
during training.

Concerning text transcriptions, they originally contained enriched information in-
cluding not only literally transcribed words and phenomena such as repetitions, sound
fragments and phonological transcription but also artifacts such as misalignments or
phoneme omissions. In the latter cases, different criteria were applied in order to maintain
or definitively discard these phenomena. In the cases where some phonemes were missing
but the full word was intelligible, we chose to maintain the entire word, although some of
its phonemes may not have been properly pronounced. Moreover, the repetitions of words
and semantic mismatches that may occur during the speech were also preserved, since
replacing them would not reflect the real speech patterns of the PWA collective. Addition-
ally, it should be remarked that transcriptions also included special symbols representing
isolated noises interjections or fillers, including um, uh, uhuh or huh, among others. These
symbols included (FLR) to represent fillers; (SPN) for spoken noises; (BRTH) as breathing
sounds; and (LAU) for laughter. These special symbols were included for training and con-
sidered as individual words and characters in the acoustic E2E model. Moreover, contents
with empty or mismatched transcriptions were discarded. We illustrated in Table 1 this
methodology showing a real example that includes the original and processed transcription
from an audio chunk performed by a female moderate non-fluent Broca English speaker.

Table 1. Example of original and processed transcription from an audio chunk performed by a female moderate non-fluent
Broca English speaker.

Original transcript &=sighs very SαrmIη@u [:charming] [*p:n] [//] &-uh Cinderella
αrmIη@u [:charming] [*p:n] &-uh

Processed transcript F B very charming F cinderella charming F

Once the cleaning up process was performed, the English corpus included 89.9 h of
PWA patients and 51.3 h of healthy controls, whilst the Spanish corpus summed up a total
of 1.2 h of PWA speakers and 1 h of healthy controls.

Since standard partitions for train, validation and test are not provided in the original
AphasiaBank dataset, we applied the following criteria to split the processed data.

For the English corpus, we randomly selected 25% of PWA speakers from each severity
level for the test partition, 19% of PWA speakers for the validation test set and the
remaining 56% for the training set to create an unseen train/test/validation set. This train
partition was called PWA acoustic set. In addition, we also created a second training set,
which we called Mixed acoustic set, by adding data from healthy controls. The configuration
of the train/test/validation partitions was mainly thought so that speakers cannot appear
simultaneously in more than one subset while the data remained balanced throughout
the aphasia severities. Moreover, both validation and test sets were composed only with
data from PWA. In this manner, we could compare two different train sets to investigate
the usefulness of adding healthy control data in order to improve the performance of
the ASR model. Detailed information of the constructed English corpus can be found in
Table 2, including the number of subjects, the amount of hours per partition and the levels
of aphasia considered.

3.3. Experimental Setup

Given that the original Spanish corpus from the AphasiaBank dataset was composed
by only 4 PWA participants without information about their aphasia severity level, a
different configuration was followed for this language but maintaining the same partition
percentages. In this case, 56%, 19% and 25% of the audio chunks were randomly selected
from each PWA speaker to form the train, validation and test set, respectively. As in the
case of the English language, two train sets were also created for Spanish; the PWA acoustic
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set including only PWA data for training and the Mixed acoustic set, which added data from
healthy controls. In the case of the PWA acoustic set, its configuration allow the authors
to explore the ability to train an ASR system with an extremely small number of data
using semi-supervised learning methods. Detailed information for each Spanish partition
including the total number of speakers and hours is summarized in Table 3.

Table 2. Train, validation and test partitions of the English corpus.

English
Train Validation Test Total

Speakers Hours Speakers Hours Speakers Hours Speakers Hours

Mild 105 26 36 9.9 48 12.8 189 48.7

Moderate 79 18.7 27 6.1 36 8 142 32.8

Severe 22 3.9 8 1.3 10 1.6 40 6.8

Very severe 8 0.5 3 0.4 4 0.7 15 1.6

Total PWA 214 49.1 74 17.7 98 23.1 386 89.9

Controls 277 51.3 - - - - 277 51.3

Total (PWA + Controls) 491 100.4 74 17.7 98 23.1 663 141.2

Table 3. Train, validation and test partitions of the Spanish corpus.

Spanish
Train Validation Test Total

Speakers Hours Speakers Hours Speakers Hours Speakers Hours

Total PWA 4 0.69 4 0.23 4 0.28 4 1.2

Controls 415 1 - - - - 415 1

Total (PWA + Controls) 419 1.69 4 0.23 4 0.28 419 2.2

4. Semi-Supervised Learning Based System

In this section, the ASR architecture based on semi-supervised learning techniques
used during this research is described, providing details on the strategies employed to find
the best hyperparameters and the fine-tuning techniques implemented. Finally, the two
decoding strategies used to generate the recognition hypothesis are described as well.

4.1. Main Architecture

The main ASR architecture used in this work is based on the unsupervised E2E
model wav2vec2.0 proposed by Facebook AI [28], which is schematically represented in
Figure 1. The wav2vec2.0 model maps speech audio through a multi-layer convolutional
feature encoder f : χ → Z to latent speech representations z1, ...zT , which are fed into a
Transformer network g : Z → C to output context representations c1, ...cT . These context
representations are then quantized to q1...qT in order to represent the targets in the self-
supervised learning objective [28,46]. The feature encoder contains seven blocks, and the
temporal convolutions in each block include 512 channels with strides (5, 2, 2, 2, 2, 2, 2) and
kernel widths (10, 3, 3, 3, 3, 2, 2). The transformer used had 24 blocks, a model dimension of
1024, an inner dimension of 4096 and a total of 16 attention heads. The model was pretrained
by solving a contrastive task over masked feature encoder outputs. Afterwards, it was
fine-tuned relative to the aphasia domain by adding a randomly initialized linear projection
on top of the context network into C classes representing the vocabulary of the task [47]
and optimized by using a Connectionist Temporal Classification (CTC) layer [28,46,48].
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Figure 1. Main architecture of the ASR model based on the wav2vec2.0 representation. Raw
waveform is mapped to speech representations that are fed into a transformer network to out-
put context representations. Context representations are then quantized to represent targets in the
self-supervised task.

The pretrained task was based on the XLSR-53 [46] model, which was originally
trained with 56,000 h of nontranscribed speech data in 53 different languages, including
English and Spanish. These data were composed of audio from the CommonVoice [43],
Babel [49] and Multilingual Librispeech (MLS) [50] datasets. The unsupervised task learns
a set of quantized latent speech representations shared across languages that are later
combined together on the supervised training to identify the phonemes or characters to
decode. The speech audio representations are learned by solving a contrastive task, which
requires identifying the true quantized latent speech representation for a masked time step
within a set of distractors [28]. This strategy has been shown to be capable of learning
non-language-dependent universal quantized representations of speech that can then be
combined to train specific phonemes and sounds of each language [46].

4.2. Supervised Fine-Tuning Phase

The fine-tuning phase of the pre-trained XLSR-53 model corresponded to the super-
vised training where quantized representations of speech are mapped into the output
vocabulary by using Connectionist Temporal Classification (CTC) loss [48]. The last layer
corresponded to the vocabulary set, and it was composed of 35 characters for the case of
English and 38 for the case of the Spanish language.

In a first step, we performed grid search hyperparameter tuning on the validation set,
training models with small subsets of the train partition by using the Weights & Biases
tools [51]. Using this information, we set the learning rate to 2× 10−5 using a warm-up
during the first 10% of updates and then using a linear decay learning rate scheduler.
Additionally, the feature and layer dropouts were set to 0.05 and 0.02, respectively, whilst
the accumulation steps was set to 3, the mask time to 0.057 and the activation and attentions
dropouts were established as 0.03 and 0.036, respectively.

In addition, we also applied a masking strategy to the feature encoder outputs similar
to the SpecAugment technique presented in [30], and mask embeddings were randomly
applied, as explained in [28]. Previous research studies reported weight update optimal
values between 16 k and 300 k during training, depending on training corpus size, training
batch-size and number of GPU (Graphics Processing Unit) cards employed [46]. Following
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these recommendations and considering our hardware resources, we used a batch size of 6
during training and performed finetuning during 10 epochs on English (∼21 k updates
on the PWA acoustic set and ∼50 k on the Mixed acoustic set). For the Spanish dataset, our
best results were achieved by finetuning the model during 100 epochs when using the
PWA acoustic set (∼2 k updates) and 200 epochs when using the Mixed acoustic set (∼ 13 k
updates).

4.3. Decoding Strategies and External LMs

Two different decoding strategies were applied during the experiments for both
languages. The first decoding strategy was based on a greedy-search approximation,
which selected the most likely character at each step in the output sequence. Although
this approach had the benefit of being very fast, its performance strongly depends on the
robustness of the E2E AM and the quality of the final output sequences may not be the
most optimal.

As the second decoding strategy, a beam-search approximation was applied by using
external LMs for rescoring the initial hypothesis of the E2E AM. Different external LMs
were built and constructed for the experiments. For the case of the English language,
three LMs were trained and tested: (i) a model trained only with the transcriptions of
the audio of the PWA acoustic set called In-domain LM; (ii) a second LM model using the
transcriptions of the audio from the Mixed acoustic set called Mixed LM, which mixed
audio of the PWA acoustic set and healthy controls; and (iii) a final large LM model, called
Large LM, which includes the transcriptions of the above two acoustic sets plus texts from
the Librispeech [52] and CommonVoice [43] public datasets. Each LM was trained with
250 k words, 600 K words and 813.2 million words, respectively. With respect to Spanish
language, given the low amount of texts from the PWA acoustic set and Mixed acoustic
set, only one external LM was trained, including the transcriptions of the audios from
the PWA acoustic set and Mixed acoustic set, in addition to texts extracted from the public
CommonVoice dataset (1.8 million words) and generic news extracted from Spanish digital
newspapers (25.2 million words). The model was identified as Large LM. In total, the
Spanish text corpus contained 27.1 million words.

The LMs were built through the KenLM toolkit [53] in which modified Kneser–Ney
smoothed 3-gram models were estimated. Beam-search decoding was performed with a
beam-width value of 10 in all experiments, whilst the LM weight parameters alpha and
the insertion weight beta were tuned with the validation dataset for each language. In this
manner, for English, an alpha value of 0.8 and a beta value of 0 were used onIn-domain LM
and Mixed LM, while alpha value of 1.4 and a beta value of 0 were used on the Large LM,
whilst the alpha and beta parameters for Spanish were set to 1.4 and 0, respectively.

5. Evaluation Results and Discussion

In this section, the evaluation results for English and Spanish are reported, together
with the results obtained by the reference ASR systems of the literature, which are shown
in Table 4. All the evaluations were performed following the experimental setup, neural
acoustic and language models and decoding strategies detailed in Sections 3 and 4. In
addition, a discussion of the results achieved is provided as well.
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Table 4. Reference ASR baselines’ performance on the AphasiaBank English dataset. The results are
organized by the AM used in the ASR system and the aphasia severity.

PER (Phoneme Error Rate)

AM Mild Moderate Severe Very Severe

DNN-HMM [38] 47.41 52.79 61.00 75.81

MoE-DNN and SID [39] 33.37 41.69 61.41 -

WER (Word Error Rate)

AM Mild Moderate Severe Very Severe

BLSTM-RNN [23] 33.68 41.11 49.21 63.17

5.1. Semi-Supervised ASR Performance for English

The performances of the different ASR systems developed in this work for aphasic
speech recognition in English are reported in Tables 5 and 6 for the CER and WER metrics,
respectively. The results are organized by the AM of the ASR system, the acoustic data
used to finetune the pre-trained XLSR-53-wav2vec2.0 model, the decoding type, the external
LM used for rescoring the initial lattices and the aphasia severity level.

Table 5. CER results on the English corpus of AphasiaBank detailed by severity level of aphasia: mild, moderate, severe
and very severe. The PWA acoustic set is only composed by PWA patients, and Mixed acoustic set combines PWA and healthy
controls. In-domain LM was trained by using transcriptions from the PWA acoustic set, Mixed LM was trained with the
transcriptions from the audio of the Mixed acoustic set and the Large LM by using the transcriptions from the above acoustic
sets and texts from Librispeech and CommonVoice datasets.

CER (Character Error Rate)

AM Acoustic Data Decoding LM Mild Moderate Severe Very Severe

XLSR-53-wav2vec2.0 PWA acoustic set Greedy - 14.1 23.0 23.5 49.0

XLSR-53-wav2vec2.0 Mixed acoustic set Greedy - 13.4 23.5 22.5 46.7

XLSR-53-wav2vec2.0 Mixed acoustic set Beam In-domain 14.1 24.3 23.0 46.0

XLSR-53-wav2vec2.0 Mixed acoustic set Beam Mixed 14.6 24.4 23.4 46.2

XLSR-53-wav2vec2.0 Mixed acoustic set Beam Large 17.4 27.4 23.3 47.2

Table 6. WER results on English corpus of AphasiaBank detailed by severity level of aphasia: mild, moderate, severe and
very severe.

WER (Word Error Rate)

AM Acoustic Data Decoding LM Mild Moderate Severe Very Severe

XLSR-53-wav2vec2.0 PWA acoustic set Greedy - 25.1 36.2 39.0 62.5

XLSR-53-wav2vec2.0 Mixed acoustic set Greedy - 23.6 36.8 36.4 59.1

XLSR-53-wav2vec2.0 Mixed acoustic set Beam In-domain 23.2 35.2 35.2 55.8

XLSR-53-wav2vec2.0 Mixed acoustic set Beam Mixed 22.3 35.1 34.1 55.5

XLSR-53-wav2vec2.0 Mixed acoustic set Beam Large 26.9 39.4 34.1 62.0

As it was expected, audio contents from more severe levels of PWA are more challeng-
ing to transcribe, whilst the speech segments from mild severity cases are recognized with
lower error rates on CER and WER values. The differences between the performance in
the different groups that establish the degree of the aphasia severity are quite significant,
obtaining up to 2x error on the most severe groups when comparing with mild cases. These
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big differences between AQ level groups are in line with previous publications [23,38,39],
which PER and WER results are summarized in Table 4.

At acoustic levels, the best performance was obtained when finetuning the XLSR-53
pre-trained model with data from the Mixed acoustic set, which included audio content from
PWA and healthy controls. In this sense, we report CER and WER reductions of almost
a ∼5% when adding the healthy controls in comparison with using only audios of PWA
for training. It implies that the impact of the scarcity of annotated aphasic speech can
be partially reduced by incorporating speech from healthy speakers and domains. This
finding was explored and applied later on the Spanish dataset.

Regarding the beam-search decoding using external LMs for rescoring the initial
lattices, it was demonstrated that this strategy clearly improves the performance of the
speech recognition systems, showing different results depending on the level of severity
of aphasia and the type of LM employed. At this point, it is worth remarking that the
Large LM does not enhance overall results when comparing with the other LMs, even if
it includes more than 803 million extra words, and the special symbols were ignored in
order to compute metrics. It suggests that, in this case, the texts from the Librispeech and
CommonVoice datasets used for training the LM are too far from the domain sentences
of the AphasiaBank dataset. In this manner, the best results are achieved using the Mixed
LM model, reaching a 22.3 WER on the mild severity level group, a 35.1 WER over the
moderate subset, a 34.1 WER for severe PWA and 55.5 WER on very severe cases. Overall,
this LM reported improvements of ∼2% in comparison with using the In-domain LM and
∼7% when comparing to greedy decoding.

The results obtained show that, despite the great differences in the quality of pro-
nunciation in speakers from mild to very severe groups, the semi-supervised learning
method applied in this work is able to generalize the learning of contextualized speech
representations of a very diverse type of speech, improving the ASR performance for all
cases. This strategy is again demonstrated in Section 5.2 for the Spanish language. Finally,
although a fair and well-balanced comparison of these results cannot be fully established
with the ones published in previous studies (see Table 4) considering the differences in the
modeling units (character versus phoneme) and the possible mismatch in data partitions,
the results provided in this work for the English language (Tables 5 and 6) constitute a
significant improvement in the quality of aphasic speech recognition systems tested to date
on the AphasiaBank dataset.

5.2. Semi-Supervised ASR Performance for Spanish

The evaluation results achieved for the Spanish language are summarized in Table 7
at CER and WER levels. Firstly, it is worth noting that, even when we used less than one
hour of PWA transcribed speech, we were able to achieve performances of 25.8 of CER
and 49.8 of WER on the test set using the most simple greedy search decoding. These
results were further improved by integrating audio from healthy control speakers and
the Large LM trained with million of words to rescore and enhance the initial recognition
hypothesis. If we consider the challenge of the task and the previous benchmarks of English
and Cantonese ASR systems, which were trained with up to 50x more hours of transcribed
speech, these results can be considered very competitive and promising. Moreover, these
results are, to the best of our knowledge, the first benchmark of aphasic speech recognition
published for Spanish.
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Table 7. CER and WER metrics on Spanish test set of AphasiaBank where there was no clinical
information on the severity of aphasia of participants. The Mixed acoustic set combines data from
PWA and one hour of clean speech from the CommonVoice dataset. The Large LM was trained with
texts from the Common Voice dataset and digital news from the generic domain. They do not include
special symbols.

AM Acoustic Data Decoding LM CER WER

XLSR-53-wav2vec2.0 PWA acoustic set Greedy - 25.8 49.8

XLSR-53-wav2vec2.0 Mixed acoustic set Greedy - 24.1 45.3

XLSR-53-wav2vec2.0 Mixed acoustic set Beam Large 24.8 42.8

The best initial results with the Spanish AM models trained with the PWA acoustic set
were reached by fine-tuning the pre-trained model for 100 epochs, achieving a CER 25.8
and a WER of 49.8. However, previous results in English demonstrated that augmenting
the training dataset with data from healthy controls improved the overall ASR performance.
In this manner, the Spanish model trained with the Mixed acoustic set improved the WER
performance at around 10% when finetuning the pre-trained model for 200 epochs. Once
again, this approach showed that using semi-supervised methods on clinical data scarcity
domains together with non-pathological data augmentation results in a very promising
and interesting strategy.

Finally, the best performance for this language was achieved through a beam search
decoding with the external Large LM model. Once again, the special symbols FLR, SPN,
BRTH and LAU were discarded during the evaluation since these symbols were not covered
in the generic texts. Following this strategy, we achieved a 24.8 of CER and a 42.8 of WER
on the test set. These results differs with the English subset where the external Large LM did
not improve the results at all. This may be due to the fact that the Spanish AM, fine-tuned
with much fewer data, did not learn special symbols properly. As a result, they could be
removed during evaluation without a negative impact on the performance.

6. Conclusions and Future Work

In this work, we show that semi-supervised learning methods applied to the ASR
are promising solutions for improving the performance on aphasic speech recognition.
Moreover, we set new benchmarks for the English AphasiaBank dataset, and we performed
the first study for the Spanish language. The acoustic data for training were augmented
using a mix of data from PWA and healthy controls, demonstrating that this strategy
considerably improves the performance. This benefit was boosted for the case of Spanish,
which included less than one hour of available aphasic speech data. These results open the
door to improve ASR systems for people with aphasia and other clinical speech pathologies,
or even simply to make speech recognition engines available for those languages with few
annotated and available data.

As future work, it would be interesting to check if the performance of the systems could
be improve by considering some other learning rate schedulers, by tuning the SpecAugment
parameters or by considering other hyperparameters configurations. Moreover,whether
the results could be enhanced by fine-tuning specific models for each level of aphasia
severity should be evaluated, as speakers in each group probably perform similar speech
and acoustic patterns. Another strategy worth studying would be to train AMs by directly
removing the special symbols and then rescoring with an external Large LM. In any case, this
point should be considered depending on the application, since special symbol information
can be important for clinical practice but irrelevant for voice assistants. Furthermore,
AMs may even be finetuned relative to individual patient speech by using Federated
Learning approaches [54]. Finally, future studies should be also focused on extending this
semisupervised learning method to other languages where no benchmarks on aphasic
speech recognition voices has been reported, probably due to the scarcity of annotated data.
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In addition, this technology should be tested in clinical practice, as well as in real medical
environments and applications.
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Abbreviation
The following abbreviations are used in this manuscript:

PWA Person with aphasia;
WBA Western Aphasia Battery;
ASR Automatic Speech Recognition;
E2E End-to-end;
WER Word Error Rate;
DNN Deep Neural Network;
PER Phoneme Error Rate;
CER Character Error Rate;
SER Syllable Error Rate;
AM Acoustic Model;
HMM Hidden Markov Model;
BLSTM-RNN Bidirectional Long Short-Term Memory Recurrent Neural Network;
MoE Mixture of experts;
LM Language Model;
SID Speech Intelligibility Detector;
AQ Aphasia Quotient;
TDNN Time-delay neural network;
MLS Multilingual Librispeech;
CTC Connectionist Temporal Classification;
GPU Graphics Processing Unit.
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