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Abstract: N2 huff-n-puff has proven to be a promising technique to further improve oil recovery in
naturally fractured-cavity carbonate reservoirs. The effect of enhanced oil recovery (EOR) by N2

huff-n-puff is significantly affected by various dynamic and static factors such as type of reservoir
space, reservoir connectivity, water influx, operational parameters, and so on, typically leading to a
significant increase in oil production. To reduce the prediction uncertainty of EOR performance by N2

huff-n-puff, an adaptive hybrid model was proposed based on the fundamental principles of fuzzy
neural network (FNN) and fractional differential simulation (FDS); a detailed prediction process of
the hybrid model was also illustrated. The accuracy of the proposed FNN-FDS hybrid model was
validated using production history of N2 huff-n-puff in a typical fractured-cavity carbonate reservoir.
The proposed model was also employed to predict the EOR performance by N2 huff-n-puff in a
naturally fractured-cavity carbonate reservoir. The methodology can serve as an effective tool to
optimize developmental design schemes when using N2 huff-n-puff to tap more remaining oil in
similar types of carbonate reservoirs.

Keywords: N2 huff-n-puff; fractured-cavity reservoir; adaptive performance prediction; fuzzy neural
network; fractional differential simulation

1. Introduction

The main reservoir spaces of typical fractured-cavity reservoirs consist of karst caves,
high-angle fracture networks, and many dissolved pores [1,2]. The reservoir heterogeneity
is extremely important, mainly because the distribution is random, the internal structure
is very uneven, the spatial configuration pattern of caverns and cracks is complex, and
oil–water relationship and flow dynamics are complicated [3,4]. In the early development
stage of a fractured-cavity carbonate reservoir, oil production typically depends on natural
or bottom water energy. Water injection is one of the more widely used strategies to
increase oil production and slow down its decline. However, as the oil–water interface
gradually rises, the increase of oil production usually diminishes after water huff-n-puff; a
large portion of crude oil remains underground and cannot be produced [5]. Many pilot
tests demonstrate that after N2 gas is injected into a cavity it will move up due to gravity
segregation, and gradually occupy the upper space of the cavity, thus displacing crude oil
down into the producing wells. N2 can also be used to replenish reservoir energy, slow
down the decline of oil production, and improve oil recovery [6,7]. It is of great importance
to make an accurate prediction about N2 huff-n-puff in order to explore its potential in
fractured-cavity carbonate reservoirs.
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The artificial neural network-improved fuzzy inference system (ANFIS), firstly devel-
oped by Jang (1993) [8], was proven to be an effective tool for exploring inherent behaviors
in different areas of study (e.g., water drought, sediment transport, PCP-based NMDA
receptor antagonists, elastic constants of rocks, hepatitis C Virus, hydrologic modelling,
and hydropower stream flow [9–15]). In recent decades, the ANFIS model has appealed
great attentions to improve its predictive ability. By integrating advantages of grey wolf
optimization and adaptive neuro-fuzzy inference system, an improved ANFIS is proposed
by Dehghani et al. [16], showing better prediction capability. Goodarzi and Freitas [17]
studied the feasibility of principal component analysis to design an adaptive neuro-fuzzy
inference. By selecting the grid partition (GP), fuzzy c-means (FCM), and subtractive
clustering (SC) as three fuzzy inference system structures, Mostafaei [18] developed novel
ANFIS models to predict the cetane number of biodiesels. Dastorani et al. [19] applied the
artificial neural network (ANN) and ANFIS models to reconstruct missing flow data. Some
other self-adaptive methods were also developed in previous oil and gas studies [20,21].
Vardian et al. [22–24] concluded that the ANFIS system can serve as an excellent model
with relatively few errors. The ANFIS model has a strong training capability, which is akin
to the ANN. Using the back-propagation algorithm, the parameters involved in the ANFIS
model were adjusted until an expected error was reached.

The goal of grey prediction is to construct differential equations for prediction, so
it can be regarded as one form of differential simulation prediction. There may be mul-
tiple controlling factors of the forecasting indicator. Mao et al. [25] presented a novel
fractional grey prediction model by substituting the fractional differential equations with
their first-order forms. The model is highly accurate and can overcome the class ratio
test restrictions of the conventional grey model (GM) (1,1). It demonstrated that the frac-
tional differential simulation (FDS) can greatly improve the prediction ability of differential
simulation [26]. Zeng and Li [27] developed a novel GM model originating from a dy-
namic background-value coefficient. Ma et al. [28] attempted to build a nonlinear grey
Bernoulli multivariate prediction model. The GM (1, n) model was widely applied in
various fields [29–34]. Yang and Xue [35] proposed a generalized fractional-order form
of grey prediction model, which provides more freedom by using fractional derivatives.
Meng et al. [36] introduced the residual sequence to improve the prediction accuracy of the
fractional order grey model. The fractional order grey models were widely used with the
improved GM (1,1) model [37,38]. These previous studies show that the prediction ability
is strong when the fuzzy neural network (FNN) and fractional differential simulation (FDS)
model are integrated. However, the adaptive hybrid model by combining FNN with FDS
is still underexplored. In this study, an adaptive hybrid model is developed based on the
fundamental theories of FNN and FDS that is then used to predict the EOR performance of
N2 huff-n-puff in a naturally fractured-cavity carbonate reservoir.

2. Research Background

The geological heterogeneity of naturally fractured-cavity reservoirs is extremely
strong. It was proven that several types of reservoir spaces coexist, mainly including karst
cavities, tectonic fractures, and dissolved pores. For typical fractured-cavity carbonate
reservoirs that are widely distributed, there is a lack of efficient methods to obtain a high oil
recovery during exploitation of these difficult-to-produce reserves due to great lateral and
vertical heterogeneity. Figure 1a shows the lateral amplitude distribution retrieved from
seismic data of a typical fractured-vuggy carbonate reservoir. The deeper the red color,
the greater the amplitude, indicating a larger possibility to represent a cavity. Figure 1b
displays the vertical amplitude distribution of a typical fractured-cavity body selected from
Figure 1a. Figure 1c reflects the 3-D porosity field of the typical fractured-cavity body as
shown in Figure 1b, where the deeper the red color, the higher value the porosity of cell
grid in the 3-D geological model of the typical fractured-cavity body.
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Figure 1. Geological characteristics of typical fractured-cavity reservoir. (a) lateral distribution of amplitude; (b) vertical
distribution of amplitude; (c) 3-D geological model.

The production performance in the early stage depends heavily on formation energy.
To keep oil production stable, water injection is usually selected to supply energy into
reservoir space. However, the decline rate of oil production remains stubbornly high
due to a poor understanding of reservoir heterogeneity and configuration patterns of
multiple fractured-cavity units, leading to a great amount of oil remaining unexploited
in the fractured-cavity reservoir. N2 huff-n-puff is proven to be an efficient technique to
further tap the potential of remaining oil. Figure 2 displays the underlying mechanisms
of N2 huff-n-puff in a fractured-cavity carbonate reservoir. It is found that three steps are
necessary to carry out one cycle of N2 huff-n-puff: gas injection, soaking, and production.
When N2 gas is injected into a typical fractured-cavity carbonate reservoir, driven by
gravity segregation, it will gradually move to an upper position of the targeted cavity. The
secondary gas cap will gradually move down the oil–water interface, and a large amount
of crude oil will flow into the bottom hole of producing wells. The supply of formation
energy by N2 huff-n-puff can effectively inhibit the decline of oil production and rise of
water cut.

Figure 3 displays the production performance of N2 huff-n-puff for a producer in
a typical fractured-cavity reservoir. It indicates that N2 huff-n-puff achieves a better oil
production rate even if the producer is shut down because of abrupt water-rising. However,
the actual effect of increasing oil production by N2 huff-n-puff differs greatly. It is difficult to
achieve an adaptive prediction of EOR performance by N2 huff-n-puff in a fractured-cavity
carbonate reservoir. Many factors can affect the performance of enhanced oil recovery
by N2 huff-n-puff in karst reservoirs (e.g., remaining oil saturation, reservoir thickness,
formation pressure, cumulative gas storage rate, daily oil production, natural fracture
permeability, injection–production strategy, etc.). By taking all influential factors into
account, the actual effect of N2 huff-n-puff enhanced oil recovery in karst reservoirs can be
accurately evaluated, but it is difficult to implement. Selecting certain controlling factors
provides an alternative to solve this issue.
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Figure 2. Mechanisms of N2 huff-n-puff in karst reservoir (red: oil; blue: water; yellow: gas).

Figure 3. Actual production performance of N2 huff-n-puff for a typical producer.
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3. Adaptive FNN-FDS Hybrid Model

Here, the structure flowchart and calculation procedures of the proposed fuzzy neural
network (FNN)-fractional differential simulation (FDS) hybrid model will be displayed
after the relevant principles are described as follows.

3.1. Adaptive Neuro-Fuzzy Inference System

An artificial neural network is a promising tool due to its self-learning ability, but it
lacks a good way to describe the reasoning function. Conversely, the fuzzy system shows
good reasoning function with no self-adaptive ability. To resolve this issue, Jang et al (1993)
initially developed an adaptive neuro-fuzzy inference system (ANFIS) [8] by integrating
the self-learning mechanism of a neural network with the good reasoning ability of the
fuzzy system. Moreover, the proposed fuzzy system is converted into an adaptive artificial
neural network to carry out the self-learning process. The generalized schematic flowchart
of ANFIS that includes five layers is shown in Figure 4. Both the first and the fourth
nodes are self-adaptive, but the others are fixed. To make adaptive predictions of EOR
performance by N2 huff-n-puff in a fractured-cavity carbonate reservoir, the ANFIS with
only two inputs is utilized.

Figure 4. Schematic architecture of the ANFIS model.

The adaptive network is a multilayer feedforward network in which nodes correspond
to learning parameters. The significance of each layer will be introduced for an ANFIS
model with n inputs [16,26].

Layer 1 is composed of the input variable membership function, which is selected to
fuzzify the input signal. Layer 2 is used to release the regular strength, in which the input
signals will be multiplied at the node. Layer 3 is established for normalization, and the
fuzzy rule is described as follows:

O3
i = ωi =

ωi
ω1 + ω2 + · · ·+ ωn

, i = 1, 2, . . . n (1)

Each node in layer 4 is self-adaptive, and the output is expressed as

O4
i = ωi fi = ωi(pix + qix + ri), i = 1, 2, . . . n (2)

where ωi is the output of node, and {pi, qi, ri} acts as post-piece parameter set.
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Layer 5 denotes a fixed node, indicating the output of signals, which can be defined
as a linear combination of the post-piece parameters:

O5 =
n

∑
i=1

ωi f =
n

∑
i=1

((ωix)p1 + (ωiy)q1 + ωir1) (3)

where O5 denotes the prediction data of production by N2 injection in a fractured-cavity
carbonate reservoir.

3.2. Fractional Order Differential Simulation Model

Define the sequence X1
(0) as the decision sequence and the sequence Xi

(0) as the
control sequence of the grey system. The r-order accumulating generation operator of X(0)

is called r-AGO, (r ∈ R+).

x(r)(k) =
k

∑
i=1

Γ(r + k− i)
Γ(k− i + 1)Γ(r)

x(0)(i), k = 1, 2, . . . m (4)

Within the continuous form of r-AGO sequences, the whiten equation of the grey
system can be established as:

dx(r)1 (t)
dt

+ ax(r)1 (t) =
n

∑
i=2

bix
(r)
i (t) + u (5)

The widely used least squares GM (1, n) model is expressed as

α̂ =
(

KTK
)−1

KTΦ (6)

The response function is in the following:

x̂(r)1 (k + 1) = αk
1x(0)1 (1) +

k−1

∑
i=0

αi
1

(
n

∑
j=2

αjx
(r)
j (k + 1− i)

)
+

1− αk
1

1− α1
β (7)

After the series x̂(r)1 (k) is obtained, the predicted series x̂(0)(k + 1) will be computed
using the r-order inverse accumulating generation operator (r-IAGO), which takes the form of

x̂(0)1 (k + 1) =
(

x̂(r)1 (k + 1)
)(−r)

(8)

where x̂(0)1 (k + 1) represents the prediction result of increasing oil production by N2 injec-
tion in a fractured-cavity carbonate reservoir.

3.3. Calculation of Enhanced Oil Recovery Ratio

The ratio of EOR (η̂) by N2 huff-n-puff can be calculated by integral of the deviation
between the predicted oil production with and without N2 huff-n-puff when the effect of
production decline is considered. This takes the form of

η̂ =

m
∑

i=1

∫ t2
t1

(
Q̂i −Qi

)
dt

R0
(9)
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where R0 is original oil in place; m is the well number; Q̂i and Qi are predicted values of oil
production rate with and without N2 huff-n-puff, respectively; and t1 and t2 are the time
for start and end of N2 injection, respectively.

Qi = Qie
−at (10)

where a is the decline rate of oil production, and Qi is the initial oil production rate.

3.4. Calculation Procedures of FNN-FDS Hybrid Model

According to principles of the adaptive FNN-FDS hybrid model, the structure flowchart
is given in Figure 5. The calculation steps are summarized as follows:

Step 1: Convert raw training data into matrix form.
Step 2: Apply training data matrix to FNN model and FDS model, and evaluate the

prediction accuracy.
Step 3: Evaluate the prediction accuracy of FNN model and FDS model, which is

defined as P1 and P2, respectively. If the maximum value of P1 and P2 is lower than P0
where P0 is predefined as the converge criterion, detect the singular value of the raw data;
otherwise, repeat the calculation of the FNN-FDS hybrid prediction.

Step 4: If P1 is higher than P2, apply prediction data matrix to FNN model, otherwise
apply prediction data matrix to FDS model, and calculate the predicted increasing oil
production rate of targeted producers by N2 huff-n-puff;

Step 5: Determine the EOR ratio by N2 huff-n-puff in fractured-cavity carbonate
reservoir and evaluate the oil incremental effect.

Figure 5. The structure flowchart of the FNN-FDS hybrid model.
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4. Results and Discussion

In this section, adaptive prediction of enhanced oil recovery by N2 huff-n-puff in a
fractured-cavity carbonate reservoir will be performed using the proposed FNN-FDS hybrid
model. The performance appraisal of the predicted results and analysis will also be given.

4.1. Raw Data

The factors greatly affecting the degree of increased oil production by N2 huff-n-puff in
a fractured-cavity carbonate reservoir mainly include geological characteristics of reservoir
body and various operation parameters of N2 huff-n-puff. The most important geological
characteristics consist of porosity, permeability, and well depth. The main operation
parameters include cumulative gas injection, gas storage rate, and cycle of gas injection.
There is good evidence that permeability strongly correlates with porosity in a typical
fractured-cavity reservoir [39,40], thus permeability is enough to describe the effect of
reservoir properties on increasing oil production by N2 huff-n-puff. Cumulative gas storage
can serve as an indicator to the amount of injected gas and gas storage rate. N2 huff-n-puff is
typically used to improve oil recovery of fractured-cavity carbonate reservoirs when water
injection becomes invalid, thus cumulative water storage can greatly influence increasing
oil production by this method. In this study, the principal component analysis [39,41]
is applied to reduce the dimensionality of controlling parameters and to alleviate the
dependency of different influential factors. Cumulative gas storage, cumulative water
storage, permeability, and total well depth are selected as the main controlling factors of N2
huff-n-puff in karst reservoirs, which easily originate from production history. Production
data for all 22 producing wells were collected in a typical fractured-cavity carbonate
reservoir. Table 1 displays the original data of the four controlling factors, in which 17 sets
of data were utilized to train the FNN and FDS models and the other five sets of data were
selected to validate the accuracy of the proposed FNN-FDS hybrid model for adaptive
prediction of EOR performance by N2 huff-n-puff.

Table 1. Raw data of the four controlling factors to N2 huff-n-puff.

Well No. Annual
Output (m3)

Cumulative Gas
Storage (104 m3)

Cumulative Water
Storage (m3)

Permeability
(mD)

Well Depth
(m)

LG01 6231 186 7361 11000 6800
LG02 2281 150 526 5000 6200
LG03 4062 100 2995 8000 6500
LG04 5033 120 2763 9500 6600
LG05 2556 200 1474 5500 6200
LG06 2437 80 740 5300 6200
LG07 6450 600 800 11000 6800
LG08 2086 1000 658 4800 6100
LG09 3929 200 800 7700 6400
LG10 2817 168 46 6000 6200
LG11 6530 600 800 12000 6800
LG12 3427 400 720 7000 6400
LG13 7340 100 4067 13000 7000
LG14 2218 100 636 5000 6200
LG15 2215 600 918 5000 6200
LG16 4725 150 3905 8500 6500
LG17 1986 260 3578 4500 6100
LG18 1045 200 2403 3100 6000
LG19 2935 180 942 6100 6300
LG20 1447 180 1907 3700 6000
LG21 3138 200 605 6500 6300
LG22 4825 100 3968 9000 6600

4.2. Model Appraisal

The root-mean-square error [42] (RMSE) and mean absolute percentage error [43]
(MAPE) are utilized in this study for performance appraisal of the FNN-FDS hybrid model.
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RMSE is one of the most commonly used indicators to validate the accuracy of the predicted
data, which takes the form of

RMSE =

√
1
m

m

∑
i=1

(
xi,p − xi,e

)2 (11)

MAPE is used to evaluate the overall accuracy of the predicted values, described as

MAPE =
1
m

m

∑
i=1

∣∣∣∣ xi,e − xi,p

xi,e

∣∣∣∣× 100(%) (12)

where xi,e is the actual value and xi,p is the predicted value.

4.3. Adaptive Prediction and Discussion

Adaptive prediction of EOR performance by N2 huff-n-puff in a typical fractured-
cavity carbonate reservoir using the FNN-FDS hybrid model is given as follows:

Step 1: Standardize raw data and determine the initial matrix. Xx is the main con-
trolling factor matrix for enhanced oil recovery by N2 huff-n-puff in a fractured-cavity
reservoir; Xy is the increased oil production by N2 huff-n-puff; X is the initial matrix of
raw data; Xxp and Xyp are the initial matrices for training; and Xxv and Xyv are the initial
matrices for performance appraisal, respectively.

Xx =

[
X1

x
X2

x

]
, Xy =

[
X1

y
X2

y

]
, X =

[
X1

X2

]
where

X1
x =



186 7361 11000 6800
150 526 5000 6200
100 2995 8000 6500
120 2763 9500 6600
200 1474 5500 6200
80 740 5300 6200
600 800 11000 6800

1000 658 4800 6100
200 800 7700 6400
168 46 6000 6200
600 800 12000 6800



, X2
x =



400 720 7000 6400
100 4067 13000 7000
100 636 5000 6200
600 918 5000 6200
150 3968 8500 6500
260 3578 4500 6100
200 240 3100 6000
180 942 6100 6300
180 1907 3700 6000
200 605 6500 6300
100 3968 9000 6600


X1

y = [ 6231 2281 4062 5033 2556 2437 6450 2086 3929 2817 6530 ]
T

X2
y = [ 3427 7340 2218 2215 4725 1986 1045 2935 1447 3138 4825 ]

T

X1 =



6231 186 7361 11000 6800
2281 150 526 5000 6200
4062 100 2995 8000 6500
5033 120 2763 9500 6600
2556 200 1474 5500 6200
2437 80 740 5300 6200
6450 600 800 11000 6800
2086 1000 658 4800 6100
3929 200 800 7700 6400
2817 168 46 6000 6200
6530 600 800 12000 6800



, X2 =



3427 400 720 7000 6400
7340 100 4067 13000 7000
2218 100 636 5000 6200
2215 600 918 5000 6200
4825 100 3968 9000 6600
1986 260 3578 4500 6100
1045 200 2403 3100 6000
2935 180 942 6100 6300
1447 180 1907 3700 6000
3138 200 605 6500 6300
4825 100 3968 9000 6600
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Xxp =

[
X1

xp
X2

xp

]
, Xyp =

[
X1

yp
X2

yp

]
where

X1
xp =



186 7361 11000 6800
150 526 5000 6200
100 2995 8000 6500
120 2763 9500 6600
200 1474 5500 6200
80 740 5300 6200

600 800 11000 6800
1000 658 4800 6100
200 800 7700 6400


, X2

xp =



168 46 6000 6200
600 800 12000 6800
400 720 7000 6400
100 4067 13000 7000
100 636 5000 6200
600 918 5000 6200
150 3905 8500 6500
260 3578 4500 6100



X1
y = [ 6231 2281 4062 5033 2556 2437 6450 2086 3929 ]

T

X1
y = [ 2817 6530 3427 7340 2218 2215 4725 1986 ]

T

Xxv =


260 3578 4500 6100
200 2403 3100 6000
180 942 6100 6300
180 1907 3700 6000
200 605 6500 6300

, Xyv =


1986
1045
2935
1447
3138


Step 2: Adaptive production prediction by N2 huff-n-puff using the structure flowchart

(shown in Figure 3) based on the initial matrix X, Xxp, Xyp, Xxv, Xyv.
Step 3: Obtain the predicted results of increasing oil production by N2 huff-n-puff

with the proposed FNN-FDS hybrid model. Figure 6 compares the predicted and raw
data of increasing annual oil production by N2 huff-n-puff. Figure 7 displays the absolute
percentage error of predicted annual oil production.

Figure 6. Comparison of predicted and actual annual oil production by N2 huff-n-puff.
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Figure 7. Absolute percentage error of annual oil production prediction.

Step 4: Calculate the predicted value of enhanced oil recovery by N2 huff-n-puff
in a typical fractured-cavity carbonate reservoir. According to the raw data of oilfield
production, the annual output decline rate equals 15%. The geological reserve of the
oilfield is 2 × 107 m3. The duration time of N2 huff-n-puff is one year. Table 2 displays
the annual oil production of the 22 producers predicted by taking the production decline
rate of 15% into consideration. The ratio of enhanced oil recovery (η̂) by N2 huff-n-puff is
ultimately computed. The predicted value of η̂ is 0.1173%.

Table 2. Predicted annual oil production for the 22 producers with decline rate of 15%.

Well No. Annual Production (m3) Well No. Annual Production (m3)

LG01 5121 LG12 2637
LG02 2031 LG13 6824
LG03 3526 LG14 1865
LG04 4542 LG15 1754
LG05 2019 LG16 3951
LG06 2028 LG17 1468
LG07 5965 LG18 896
LG08 1506 LG19 2087
LG09 3017 LG20 1065
LG10 2027 LG21 2614
LG11 5684 LG22 3687

When raw data are used for training, the RMSE and MAPE for the FNN-FDS hybrid
model were found to be 144.33 and 2.67, respectively. When raw data are used for predic-
tion, the RMSE and MAPE for the FNN-FDS hybrid model were found to be 107.40 and
4.78, respectively. It can be seen from the results of RMSE and MAPE that the prediction
ability of the proposed FNN-FDS hybrid model is satisfactory, showing that the predicted
EOR ratio by N2 huff-n-puff in a fractured-cavity reservoir is credible.

5. Conclusions

Fuzzy neural network (FNN)–fractional differential simulation (FDS) hybrid model is
proposed to make an adaptive prediction of enhanced oil recovery (EOR) performance by
N2 huff-n-puff in naturally fractured-cavity carbonate reservoirs.
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The performance appraisal of N2 huff-n-puff in a typical carbonate reservoir shows
that the prediction ability of the FNN-FDS hybrid model is satisfactory, indicating that the
proposed model is efficient for EOR prediction by N2 huff-n-puff.

The proposed model can guide optimal design of development scheme when using
N2 huff-n-puff to tap more remaining oil in similar carbonate reservoirs.
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