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Featured Application: This research concerns the improvement of heat transfer inside the dryer
due to the use of ultrasound. The results can be used in all processes where convective heat
exchange occurs in the gas.

Abstract: The use of ultrasound is a new method to enhance convection drying. However, there
is little information in the literature on the improvement of convective heat transfer caused by
ultrasound. Therefore, the heat transport during ultrasound-assisted convective heating of small
samples in a hybrid dryer was experimentally examined. A small Biot number regime of heat transfer
was considered. The results confirmed a great enhancement of heat transfer due to the application of
ultrasound. Due to the use of ultrasound, the convective heat exchange coefficient increased from
45% to almost 250%. The enhancement is a linear function of applied ultrasound power. It was
shown that the energy absorption of ultrasound existed, but the thermal effect of this absorption was
very small.

Keywords: heat transfer coefficient; high-intensity ultrasound; energy absorption; heat transfer
enhancement; small Biot number; experiments

1. Introduction

Almost every food product is dried during its processing. Drying extends storage
life and facilitates handling as well as transportation. Drying also influences the quality
of a final product. It changes the colour, flavour, and nutritional value of food. Due
to the quality of the product, low-temperature drying is recommended. Unfortunately,
low-temperature convective drying is energetically inefficient. Therefore, new methods to
improve the process without raising the temperature are sought. One of these methods is
the use of high-intensity ultrasound (US) [1]. Reviews of the use of ultrasound to enhance
drying could be found in [2–4].

According to the literature [5–10], ultrasound enhances the capacity for moisture trans-
port inside the material to be dried in addition to enhancing heat and moisture transfer
between the material surface and the surrounding drying medium. Muralidhara et al. [5]
considered sonic and ultrasonic dewatering. They presented the possible effects of acous-
tic waves during the process. The use of ultrasounds improved the kinetics of persim-
mon [6], apples [7,8,10], carrots [8], eggplant [8], and grape stalk [9] drying. An increase
in the mass transfer coefficient due to the application of ultrasonic in drying is widely
reported [6,11–17]. Cárcel et al. reported an increase of between 12% and 34% dur-
ing persimmon drying [6], 10% and 47% during carrot drying [11], 47% during straw-
berries drying [16], 79% during green pepper drying [17], 96% during raspberries dry-
ing [15], 107% during orange peel drying [12], and even 229% during eggplant drying [13].
Rodríguez et al. [14] studied the influence of drying temperature on the ultrasound en-
hancement of thyme drying. They did not obtain an increase in the moisture transfer
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coefficient in high temperature drying (80 ◦C); they did obtain a 65% increase in low tem-
perature (40 ◦C), however. Only a few authors determined the heat transfer coefficient
based on drying kinetics. Rodríguez et al. [14] obtained an increase of between 12% and
47% of the heat transfer coefficient during thyme drying. Aversa et al. [18] reported an
increase of between 12% and 44% during carrot drying. Musielak et al. [19] received a
31% increase in the case of apple drying and 83–94% in the case of carrot drying. Taking
into account the literature devoted to drying, only Bantle and Hanssler [20] carried out
the experiments in which they directly studied the influence of ultrasound on the heat
transfer coefficient. They performed heating and cooling of an aluminum plate under the
same conditions as used in drying experiments. They found out that ultrasound caused
an increase in this coefficient (27.9%) in the case of heating, and a small decrease during
cooling. It is also obvious that ultrasound energy could be absorbed by the dried material.
Kowalski [21] described the phenomenon on the basis of irreversible thermodynamics;
however, he did not present any numerical results in his work. The increase in material tem-
perature due to ultrasound absorption in the range of 5 K is reported in [22] for the drying
of apples. Similar values of the temperature increase were obtained by Musielak et al. [19].
The authors modelled the drying kinetics and they obtained ultrasound energy absorption
in the range of 1–4.5 per mille. This thermal effect is minor or even not observed, and is
usually neglected [11,23–26].

On the other hand, the phenomenon of heat transfer augmentation through the
use of ultrasound is widely reported [27–41]. In most cases, the heat transfer in wa-
ter [27,28,32,33,36–39] and other liquids (methanol [27,28], liquid FC-72 [30], ethylene
glycol-water mixture [34], and LiBr solution [40]) was studied. In most cases, free convec-
tion in liquids and boiling was considered [28,30,35,39]. Only a few works were dedicated
to forced convection [32,33,40], which is typical of the drying processes. Mannot et al. [32]
reported an increase in the heat transfer coefficient between the coil and water in the
range of 22–104%. Dhanalakshmi et al. [33] obtained an improvement in the heat transfer
coefficient between water flowing through tubes in the range of 10–40%. Zheng et al. [40]
examined the forced flow of LiBR solution outside tubes. They received an increase in
the heat transfer coefficient in the range of 10–45%. In these publications [32,33,40], the
phenomena that cause the improvement of heat transfer have not been investigated. In
other publications, an enhancement of heat transfer due to cavitation [30,32,33,38] and
acoustic streaming [33,36–39] was observed. Generally, an enhancement of heat transfer
in liquids from 22% to 390% has been reported [32,37,39]. There are a lack of studies on
the influence of ultrasound on the convective heat transfer coefficient in the gas phase—
achieved through utlising an airborne ultrasound. This is because the generation of power
ultrasound in liquids is easier and much more efficient than in gases [42]. In the case of
heat transfer in air, the enhancement of free convection (cooling) was studied [29,31,41].
The authors of these works did not provide numerical values of the obtained enhancement
of heat exchange. However, attention was paid to the importance of the relative location
of the source of ultrasound to the source of heat [29]. The same problem of the effect of
ultrasound transducer placement on heat transfer in liquids was analysed in [28,36]. It
was stated that the placement of the ultrasound source plays an important role in the
enhancement of heat transfer.

The aim of this work is to study the influence of ultrasound on both the convective
heat transfer as well as the ultrasound absorption (US thermal effect) during convective
heating of material in a dryer.

2. Materials and Methods

The aim of the presented work is to examine only the thermal effects. Mass trans-
fer is not studied. That is why all tested samples are made of carbon steel (density
ρ = 7820 kg/m3, specific heat c = 473.3 J/kg·K, and thermal conductivity λ = 42.9 W/m·K).
Four samples were used: a small cylinder, a cylinder, a cube, and a cuboid (Figure 1).
Sample dimensions are given in Table 1. In order to measure the temperature, holes with
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a diameter of 2.5 mm to a depth of 10 mm were drilled into the geometric centre of the
samples. During the test, the measuring probe of the temperature recorder was placed in
these holes.
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Figure 1. Used samples.

Table 1. Sample dimensions.

Sample Diameter
(mm)

Height
(mm) Sample Length

(mm)
Width
(mm)

Height
(mm)

Small cylinder 20 20 Cube 30 30 30

Cylinder 30 30 Cuboid 120 20 30

The samples were heated convectively inside a hybrid dryer (Figure 2) equipped
with the Airborne Ultrasound System—AUS (Pusonics, Madrid, Spain), which allows
generation of a low-frequency (26 kHz), high-power ultrasound (maximal power 200 W).
The AUS works with a focalized acoustic field, which means that the intensity of the waves
converges with increasing distance from the transducer, and at about 420 mm from the
radiator it attains its maximum at 160–170 dB. The distance between the emitter and the
sample was fixed at 415 mm to ensure that the sample stayed within the focusing area
during the drying process.
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transducer, (4) microwave generator, (5) balance, (6) control system (PC), and (7) ultrasound generator.

For each sample, eight measurement series were made. The measurements were
performed for two different air temperatures and four ultrasound powers. The process
parameters are shown in Table 2. The temperature and flow velocity of the air were mea-
sured continuously during the experiment with the HD26371TC1.5 transmitter (DeltaOHM,
Caselle di Selvazzano, Italy). According to the device spec sheet, the accuracy for velocity
is ±0.1 + 3% and for temperature 0.3 ◦C. Experimental conditions ensured a small Biot
number regime of heat transfer (the conduction resistance is negligible).

During the experiments, the temperature inside the test samples was measured every
30 s, with the use of a type-K thermocouple and recorded with a CENTER 309 datalogger
(New Taipei City, Taiwan) with an accuracy of ±1 ◦C + 0.3%. Each experiment was
conducted until three equal temperature readings were obtained.
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Table 2. Processes parameters.

Parameter Series I Series II

Air velocity (m/s) 0.40 ± 0.11

Air temperature (◦C) 40 ± 0.3 60 ± 0.3

Ultrasound power P (W)

0 0

50 50

100 100

200 200

Obtained experimental data were processed with the use of OriginPro 2021b (Origin-
Lab Corporation, Northampton, MA, USA). Data presented are mean ± standard deviation.
Additionally, a one-way ANOVA and Tukey posthoc mean comparison were performed.
Statistically significant differences at the level of p ≤ 0.05 are marked with different letters.
All calculations were performed using Statistica ver. 12 software produced by StatSoft
(StatSoft, Tulsa, OK, USA).

3. Mathematical Model

A simple energy balance shows that energy accumulation in sample dU is equal to
delivered heat dQ:

dU = dQ (1)

If the sample mass m and its heat capacity c are constant and the Biot number is small,
then inner energy U is the linear function of internal temperature T:

dU = mcdT = ρcVdT (2)

where ρ is the sample’s density and V is its volume. Heat transfer to the sample consists of
two parts:

dQ =
[

hA(Ta − T) +
.

Qabs

]
dt (3)

convective heat flux proportional to the difference of surrounding air temperature Ta and
the sample temperature T, and ultrasound absorption

.
Qabs. Based on irreversible thermo-

dynamics, Kowalski [21] introduced the volumetric heat absorption term in the form:

.
Qabs = auηuPu (4)

where au is the absorption coefficient of ultrasonic energy, ηu is the working efficiency of
the ultrasonic transducer, and Pu is the ultrasound power per unit volume, dependent
on bed height. If the absorption coefficient is constant and the bed height is not optimal,
then the thermal effect is also constant [15–17,19]. In Equation (4), h is the heat transfer
coefficient and A is the sample surface. Rearranging of Equations (1)–(3) gives:

dT
dt

=
hA
ρcV

(
Ta − T +

.
Qabs
hA

)
=

hA
ρcV

(
Tf − T

)
(5)

where

Tf = Ta +

.
Qabs
hA

(6)

is the final temperature of the heated sample. The solution of Equation (5) has a form:

ln ϑ = ln
T − Tf

T0 − Tf
= − hA

ρcV
t = at (7)
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where T0 is initial temperature, ϑ is dimensionless temperature, and a is the slope of the
line. The knowledge of the slope allows the heat transfer coefficient h to be calculated:

h = −ρcVa
A

(8)

and then, based on Equation (5), the ultrasound absorption
.

Qabs can be calculated:

.
Qabs = hA

(
Tf − Ta

)
(9)

Equation (9) is the energy balance at the end of the process. It means that all the energy
absorbed by the sample is transferred by convection to the surrounding air (thermody-
namic equilibrium).

4. Results and Discussion

Exemplary results of the temperature evolution of the cubic sample are presented in
Figure 3 (applied US power: 0, 50, 100, 200 W). The results confirmed both the acceleration
of heat transfer and US energy absorption. The enhancement of heat transfer results in
an increase of the curve’s slope and the energy absorption causes an increase in final
sample temperature.
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Figure 3. Temperature evolution of cubic sample. Applied US power: 0, 50, 100, 200 W. Air
temperature: (a) 40 ◦C; (b) 60 ◦C.

On the base of temperature evolution curves, the final temperature Tf was established
and then the time evolution of the logarithm of dimensionless temperature ϑ was calculated
(exemplary results are shown in Figure 4).
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Next, the slopes a of all lines were established and both the heat transfer coefficient
h (Equation (8)) and the ultrasound absorption

.
Qabs (Equation (9)) were calculated. The

results are presented in Tables 3 and 4.

Table 3. Results of heating in temperature 40 ◦C.

Applied US Power
0 W 50 W

h (W/K·m2)
.

Qabs (W) h (W/K·m2)
.

Qabs (W)

Small cylinder 19.68 ± 0.10 - 21.93 ± 0.08 0.14 ± 0.09

Cylinder 18.81 ± 0.17 - 22.43 ± 0.10 0.07 ± 0.04

Cube 17.72 ± 0.09 - 24.97 ± 0.68 0.17 ± 0.03

Cuboid 14.35 ± 0.08 - 15.43 ± 0.08 0.06 ± 0.02

Applied US Power
100 W 200 W

h (W/K·m2)
.

Qabs (W) h (W/K·m2)
.

Qabs (W)

Small cylinder 24.60 ± 0.15 0.26 ± 0.12 28.65 ± 0.14 0.46 ± 0.02

Cylinder 30.40 ± 0.16 0.46 ± 0.06 44.55 ± 0.34 0.96 ± 0.10

Cube 39.21 ± 0.25 0.75 ± 0.16 57.12 ± 0.46 1.85 ± 0.09

Cuboid 19.26 ± 0.04 0.75 ± 0.02 20.92 ± 0.42 1.67 ± 0.05

Table 4. Results of heating in temperature 60 ◦C.

Applied US Power
0 W 50 W

h (W/K·m2)
.

Qabs (W) h (W/K·m2)
.

Qabs (W)

Small cylinder 20.78 ± 0.24 - 31.58 ± 0.63 0.061 ± 0.04

Cylinder 17.73 ± 0.05 - 22.87 ± 0.72 0.039 ± 0.011

Cube 16.17 ± 0.20 - 26.39 ± 0.65 0.037 ± 0.009

Cuboid 10.68 ± 0.27 - 11.27 ± 0.58 0.16 ± 0.03

Applied US Power
100 W 200 W

h (W/K·m2)
.

Qabs (W) h (W/K·m2)
.

Qabs (W)

Small cylinder 34.34 ± 0.53 0.11 ± 0.05 54.44 ± 0.93 0.33 ± 0.09

Cylinder 34.60 ± 0.55 0.05 ± 0.01 54.28 ± 0.12 0.78 ± 0.17

Cube 34.96 ± 0.75 0.08 ± 0.01 56.32 ± 0.63 1.12 ± 0.25

Cuboid 14.71 ± 0.51 0.23 ± 0.03 17.61 ± 0.55 0.92 ± 0.04

Dependencies of the heat transfer coefficient h on the applied ultrasound power are
shown in Figure 5.

The results show that, for all the samples, an enhancement of heat transfer due to
ultrasound was obtained. This enhancement is a linear function of the applied ultrasound
power. The heat transfer enhancement ratio η is defined as [30,39]:

η =
hUS − h0

h0
·100% (10)

where hUS represents the heat transfer coefficient with ultrasound, while h0 represents the
heat transfer coefficient without ultrasound. The obtained heat transfer enhancement ratios
η are presented in Figure 6.
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The results confirmed that the greater the power of the ultrasound, the greater the
improvement in heat transfer. In the investigated range of applied ultrasound power, the
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heat transfer coefficient is a linear function of the applied power (see Figure 5). It can be
observed that the heat exchange enhancement strongly depends on the size of the samples.
Due to the use of ultrasound, the convective heat exchange coefficient increased from 45%
to almost 250%. There are few results in the literature describing the increase in the heat
transfer coefficient due to the use of ultrasound. Aversa et al. [18] found a 12–44% increase
in this coefficient and Kroehnke et al. [43] obtained a 34% increase, both in the case of
carrot drying, while García-Pérez et al. [9] obtained a 65% increase in grape stalk drying.
Heat transfer enhancement for both small (small cylinder) and large (cuboid) samples was
smaller than the improvement in heat transfer for medium samples (cylinder and cube). In
the latter case, an increase in growth of almost 250% of the heat transfer coefficients was
achieved. The obtained results show that, in the studied temperature range, a higher air
temperature is associated with a greater heat exchange improvement. This is contrary to
the results presented by Garcia-Peres et al. [9] and Rodrigues et al. [14], who ascertained
that an increase in temperature causes a decrease in the enhancement of heat transfer. This
inconsistency may result from the difference in the construction of the dryers, particularly
in the way the ultrasound is brought.

The enhancement of heat transfer can be caused by various mechanisms. For instance,
pressure pulsations could increase the turbulence inside the boundary layer and reduce
the layer thickness. It is worth noticing that the heat transfer through a boundary layer is
done by the slowest mechanism, i.e., conduction. If the thickness of the boundary layer is
reduced, the heat transfer proceeds more effectively. Moreover, alternating compression
and rarefaction could improve heat transfer through the boundary layer. Fluctuations
of pressure close to the material surface could also promote circulation flows of air and
enhance the heat transfer. A number of additional mechanisms may be considered, e.g.,
acoustic streaming.

The thermal effect was also observed in our experiments. The maximum temperature
increase due to absorption of the ultrasound energy by the samples was in the range of 5–8
degrees. These results confirmed a slight absorption of the ultrasound energy. The value of
absorbed energy did not exceed one percent of the energy supplied (see Tables 3 and 4).

Finally, the Biot number values were calculated according to the equation:

Bi =
hV
λA

(11)

These values ranged from 0.0015 to 0.0066. This means that assuming a small Biot
number is correct.

5. Conclusions

The results showed a great enhancement of heat transfer due to the application of
ultrasound. The use of ultrasound resulted in the increase of the heat transfer coefficient h
from 45% to over 200%. The heat transfer coefficient highly depends on the shape of the
examined samples. The increase in air temperature causes a small increase in heat transfer
enhancement. The obtained heat transfer enhancement is a linear function of the applied
US power. The US energy absorption existed, but it was slight and the thermal effect of this
absorption was small. All the obtained results suggest that the application of ultrasound
plays an important role during drying, and both heat and mass transfer in a particular
dryer should be studied with special attention.

Due to the lack of detailed studies on the mechanisms leading to the improvement of
convective heat exchange during forced convection between flowing gas and a solid, it is
necessary to pay attention to these issues in future research.
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