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Abstract: In this paper, we address a system that can accurately locate and monitor work tools in
a complex assembly process, such as automotive production. Our positioning monitoring system
is positioned by a combined sensor of the UWB module and the MEMS IMU (inertial measuring
unit) sensor based on the extended Kalman filter. The MEMS IMU sensor provides the positioning
calibration information. The proposed method incorporates IMU and UWB positioning to compensate
for errors that can only occur in UWB positioning through the extended Kalman filter (EKT). This
EKT is improved by the error dynamic equation derived from the sparse state-space matrix. Also,
the proposed method computes the transmission time and distance between the tag and anchor of
the UWB module by the TWR (two-way range) system. The tag of a mobile node, which is attached
to a moving tool, measures the position of the work tool and transmits the position coordinate
data to the anchor. Here, the proposed method uses the trilateration localization method by the
confidence distance compensation to prevent the distance error by obstacles and changes in the
indoor environment. Experimental results verified that the proposed method confirms whether a
specific tool is accurately used according to the prescribed regulations and has more positioning
accuracy than the conventional methods.

Keywords: real-time positioning; UWB positioning; MEMS IMU positioning; extended Kalman filter

1. Introduction

The automobile industry is the largest manufacturing industry in the world with
revenues of over 1 trillion US dollars and more than 10 million employees handling roughly
20,000 components in complex assembly processes. The automobile assembly process is
labor intensive, in which approximately 3000 units of interior material, dashboard, seat,
windshield, engine, transmission, and axle are assembled in a painted automobile body,
thus having the lowest automation rate compared to other processes [1].

The current automobile assembly process is not monitored in real time, which causes
difficulty in identifying a missing operation in each process. Therefore, if the location of
the tool currently being worked on can be determined, it can improve the productivity and
quality in the manufacturing process by identifying missing or redundant tasks to prevent
manufacturing detects [2,3].

Herein, we propose a position tracking system of a tool using a UWB (ultra-wide
band) and a MEMS (microelectro-mechanical system) IMU (inertial measurement unit)
sensor for realtime monitoring of the position of tools. Recently, extensive research has
been conducted on real-time position recognition systems using the UWB technology in
which Wi-Fi uses a bandwidth of approximately 20 MHz, whereas UWB uses a wide
bandwidth of several gigahertz; hence, UWB requires ten times less power than Wi-Fi
but has a short transmission distance of 10 m [4,5]. Furthermore, an IMU is a device
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for measuring the speed, direction, gravitational force, and acceleration of a moving
object by using an accelerometer, an angular velocity meter, a geomagnetic meter, and an
altimeter, respectively [6].

We have previously studied the Kalman filter-based positioning system using MEMS
IMU and UWB sensors [7]. However, any work tools are positioned out of 200 mm because
of the linear system of the Kalman filter. This system should be improved by an advanced
Kalman filter, such as the extended Kalman filter, complementary Kalman filter and the
accurate TWR system, to prevent the distance by obstacles in the indoor environment. In
this study, a UWB communication module was used to measure the position of a work tool,
and the MEMS IMU sensor was used to provide positioning calibration data for reducing
the measurement error of the UWB. The output data of the IMU sensor or UWB contain
noises in addition to positioning data because of electrical or mechanical reasons.

Our study has the following features about UWB and MEMS IMU integrated position-
ing algorithm for accurate work-tool tracking. Firstly, the accurate position, velocity, and
attitude are measured through the MEMS IMU sensor derived from the inertial navigation
formula in 3 coordinate frames of indoor positioning frame, local navigation frame, EGI
frame. Secondly, the distance between an anchor node and a tag node by the TWR method
is computed by the confidence-distance-compensated trilateration localization method to
prevent the distance error by obstacles or changes in the indoor environment. Thirdly, the
improved EKR (extended Kalman filter) by the error dynamic equation is derived from
8 × 8 sparse state-space matrix used for the integrated positioning algorithms of MEMS
IMU and UWB sensors.

Any work tools that have deviated from the set operation path can be identified in
real time using the position tracking system of a tool proposed in this study, thus enabling
any omitted operations to be identified; the positioning accuracy was found to be 200 mm
or less through multiple experiments, which indicates that the location of the tools can be
accurately identified when the operation points are spaced more than 200 mm apart.

In Section 2, the proposed position tracking system based on a composite sensor is
introduced. In Section 3, the validity of the proposed position tracking system was verified
through the basic unit testing results. In Section 4, the experiment results for evaluating
the performance of the proposed position tracking system are presented.

2. Proposed Position Tracking System Based on Composite Sensors

The UWB wireless technology is applied in telecommunication using a significantly
wide frequency band over several gigahertz in baseband without using a carrier wave. This
system does not entail mutual interference with existing mobile communication systems
by using a very narrow pulse of several nanoseconds based on a very low spectrum power,
such as the noise of an existing wireless system. The proposed position tracking system
based on a composite sensor consists of a positioning tag attached on a moving object for
measuring the object position and an anchor installed on the predetermined position for
UWB communication with the tag, as shown in Figure 1a.

2.1. Positioning Tag and Anchor Based on UWB and MEMS IMU Sensor

Herein, a position tracking system is proposed in which the UWB communication
module and the MEMS IMU sensor are integrated, as shown Figure 1b; the positioning
tag consists of the UWB module [8], MEMS IMU sensor, MCU, and battery module. The
MEMS IMU sensor is removed while either Wi-Fi or Ethernet module is included for
the anchor, because it is installed on a fixed position and does not need to measure the
position data [9,10]. In particular, the UWB modules [8] of the tag and anchor transmit
signals between each other to measure the transmission time for estimating the distance
between the tag and anchor. The MEMS IMU sensor provides the positioning calibration
information on the basis of the accelerometer, angular velocity meter, geomagnetic meter,
and altimeter. The tag, which is a moving node, is attached to a moving tool to measure
the three-dimensional position of the tool and to deliver the coordinate information to
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the anchor, while notifying the operator as to whether the tool is performing the correct
operation through alarming via an LED lamp. The anchor is installed in a fixed position and
determines the distance between the tags and collects position data and alarm information
from multiple tags. Figure 1c shows the UWB sensor board of the PCB assembly that we
implemented and the design of the tag and anchor.
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and (c) UWB sensor board of PCB assembly and anchor/tag design.

2.2. MEMS IMU Positioning Algorithm

The MEMS IMU sensor is an inertial sensor with Gyroscope, Accelerometer, and
Magnetometer for measurements on three axes (Roll φ, Pitch θ, and Yaw ψ). We apply
the MEMS IMU positioning algorithm by Yao [11]. The errors of speed and acceleration
data measured by an IMU sensor are complemented by a UWB communication system,
which makes the position measurement accurate. A tag sensor of UWB, accelerometers
and gyros are mounted on the platform body of B frame and 3 anchors of UWB are located
on any positions.

Given that pp(t0) and vp(t0) are the initial platform position and velocity to E frame,
the position pp(t) and the velocity vp(t) for the platform motion to an indoor positioning
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coordinate frame (E frame) can be obtained by the computable accelerations aN
m for a local

navigation coordinate frame (N frame).

pp(t) = pp(t0) +
∫ t

t0

vp(τ)dτ and vp(t) = vp(t0) +
∫ t

t0

aN
m (τ)dτ (1)

Here, aN
m is computed by the following inertial navigation formula;

aN
m = ĈN

B aB
m −ωN

I→NvN
m + gN (2)

where aB
m is the measured body accelerations and gN is the gravity vector. vN

m is the
computed translational velocity of the platform and ωN

I→N is the angular velocity vector
representing the transport rate vector from the EGI (Earth-Center-Inertial) frame (I frame)
to the navigation coordinate frame (N frame).

ωN
I→N =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (3)

(
ωx, ωy, ωz

)
is the measured gyro output. ĈN

B is a 3 × 3 direction cosine matrix computed
from CN

I and ĈI
B,

ĈN
B =

[
CN

I

][
ĈI

B

]
(4)

which CN
I represents the attitude of I frame for N frame and CI

B represents the transported B
frame for I frame.

CN
I =

[
Cz(π)Cy

(
−lat +

π

2

)
Cz(lon)

]
[Cz(θe)]. (5)

ĈI
B = CI

BωN
I→N = CI

B

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

. (6)

where

Cy(φ) =

 cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)

 and Cz(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

. (7)

Here, θe = θe(t0) + ωe(t− t0) by the earth’s rotation rate ωe. (lat, lon) are the latitude
and longitude of motion platform. By using these equations, we compute Euler angles

of roll φ, pitch θ, and yaw ψ and the position
^
p

N
and velocity v̂N on N frame, as shown

in Figure 2.
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2.3. UWB Positioning Algorithm

The two-way ranging (TWR) method [12–14] was developed to calculate the distance
between two nodes by measuring the turnaround time of a pulse transmitted between the
two nodes in which an Anchor node (Node 1) sends the pulse to a Tag node (Node 2) that
transmits the pulse back to Node 1, and then by subtracting the processing time at Node 2,
as shown in Figure 2.

In general, the moving distance of light is calculated by multiplying the speed of light
c = 3× 108 m/s and the measured time; thus, the distance between an anchor and a tag is
expressed as d and

d = c× TOF (8)

where TOF (Time of Flight) is

TOF =
ttotal − tr

2
=

(t2 − t1)− tr

2
. (9)

as shown in Figure 3. Here, TOF represents the time required for a signal to be transmitted
between an anchor. It is calculated by TOF and is calculated by time stamps t1 of Tx and t2
of Rx and the response time tr. In addition, tr refers to the time required for a tag (Node 2)
that has received the pulse signal to transmit the signal back. The TWR method has the
advantage of simplifying the system through accurate positioning without synchronizing
the nodes.
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Such wireless communication-based distance measurement is difficult to accurately
recognize positions when the distance errors occur due to obstacles or changes in the
indoor environment. Typical trilateration localization methods to reduce the distance
measurement error can be used by topology [15], probability [16], confidence [17], and geo-
graphical similarity [18]. We used the confidence-based distance compensation trilateration
localization method [17] to calculate the distance between 3 anchors and a target tag.

Firstly, we selected the fixed positions of 3 anchors: {(xi, yi)|i ∈ [1, 3]}. The distances
{di|i ∈ [1, 3]} between 3 anchors and a tag can be computed by TOFs in Equation (1)
and they satisfy the condition; (xi − xt)

2 + (yi − yt)
2 = d2

i for all i ∈ [1, 3]. Here, the

intersection points
(

x+ij , y+ij
)

,
(

x−ij , y−ij
)

for the ith anchor and jth anchor can be derived
from the simultaneous equation. (xi − xt)

2 + (yi − yt)
2 = d2

i(
xj − xt

)2
+
(
yj − yt

)2
= d2

j

(10)
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and  x+ij = ab+εi
1+a2 , x−ij = ab−εi

1+a2

y+ij = b+aεi
1+a2 , y−ij = b−aεi

1+a2

(11)

where εi =
√

a2b2 − (1 + a2)
(
b2 − d2

i
)
. a and b are defined by

a =
xj − xi

yj − yi
(12)

b =

(
xj − xi

)2
+
(
yj − yi

)2 −
(

d2
j + d2

i

)
2
(
yj − yi

) . (13)

The distance d of an anchor and a tag is updated to the new distance d∗ by the
Cramér-Rao lower bound (CRLB) J of TOF estimate and the confidence interval4d.

d∗ = d +4d (14)

where
4d = 1.96J/

√
N, (N = 3) (15)

Given the positions of 3 anchors
{
(xi, yi),

(
xj, yj

)
, (xk, yk)

}
, radii

{
ri, rj, rk

}
of circles of

them, and intersection points (x+ij , y+ij ), (x−ij , y−ij ) of i, j anchors in Equation (4), the optimal
intersection point (x∗ij, y∗ij) can be selected by the following inequality equation. (x+ij , y+ij ) = (x∗ij, y∗ij), if(dk −

√
(x+ij − xk)

2
+ (y+ij − yk)

2
)

2
< (dk −

√
(x−ij − xk)

2
+ (y−ij − yk)

2
)

2

(x−ij , y−ij ) = (x∗ij, y∗ij), otherwise
(16)

The optimal intersection points {(x∗ij, y∗ij), (x∗ik, y∗ik), (x∗jk, y∗jk)} for 3 anchors are ob-
tained by the above method, then the position of target tag node is calculated by the
centroid-based trilateration. 

x̂t =
1
3

(
x∗ij + x∗ik + x∗jk

)
ŷt =

1
3

(
y∗ij + y∗ik + y∗jk

) (17)

By changing the position of 3 anchors, the position of the target tag node can be
computed by the above method.

2.4. EKT-Based MEMS IMU and UWB Integrated Positioning Algorithm

Integrated positioning algorithms of MEMS IMU and UWB sensors have been studied
by using various Kalman filters, such as the extended Kalman filter [11,19] and comple-
mentary Kalman filter [20,21]. We applied Yao’s integrated positioning algorithm with
the extended Kalman filter (EKT) [11]. The Kalman filter of a recursive filter estimates
the state of a linear dynamic system containing noises that can recursively process the
measurement data containing measurement noises, thus being widely used across various
fields, including computer vision, robotics, and radar. As shown in Figure 3, the extended
Kalman filter consists of five steps, largely comprising a step for predicting the current
state and a step for estimating a more accurate value, including the measurement value [6].

We consider a 2D positioning frame for a platform that moves on an x-y plane with a
body-mounted IMU and an UWB tag sensor. This means that two orthogonal accelerom-
eters measure platform body acceleration on the x and y axes on the fixed E frame, and
measure body angular velocity on the I frame with one gyro along the z axis. The state
variables consist of position errors, velocity errors, and attitude angle errors and addi-
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tional state variables for IMU sensors consists biases (b) of accelerations and gyros and
misalignment errors. Among them, 8 state error variables εz can be defined [11], as follows;

εz = [e1, e2, e3, e4, e5, e6, e7, e8]
T (18)

where
e1 = xp − x̂p, e2 = vxp − v̂xp, e3 = bx − b̂x, e4 = yp − ŷp (19)

e5 = vyp − v̂p, e6 = by − b̂y, e7 = ψ− ψ̂x, e8 = bx − b̂x . (20)

By applying the small perturbations in the IMU positioning system, the error dynamic
equation can be derived by the state-space form.

^
xz = Fs(t)εz + η (21)

Here, the 8 × 8 sparse state-space matrix Fs(t) on any time can be defined by

Fs(t) =



0 1 0 0 0 0 0 0
0 0 − cos(ψ) 0 −ωz sin(ψ) f1

(
ψ, aB, b

)
v̂yp

0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 −ωz − sin(ψ) 0 0 − cos(ψ) f2

(
ψ, aB

x , aB
y

)
−v̂xp

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0


, (22)

where f1
(
ψ, aB, b

)
and f2

(
ψ, aB, b

)
are computed by the error of body accelerations aB and

biases b to the yaw ψ on z axis as the following.[
f1
(
ψ, aB, b

)
f2
(
ψ, aB, b

) ] = [ − sin(ψ) cos(ψ)
cos(ψ) − sin(ψ)

][
aB

x − b̂x
aB

y − b̂y

]
(23)

Next, the state-space parameter η is a vector for gyro measurement defined by

η =
[
0, η1, bax, 0, η2, bay, gang, grate

]T (24)

where
(

gang, grate
)

are gyro angle random walk (ARW) and gyro rate random walk (RRW)
and

(
bax, bay

)
are accelerometer biases stabilities. (η1, η2) are computed by the accelerome-

ter noises (nax,nay) to the yaw ψ on the z axis, as follows.[
η1
η2

]
= −

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

][
nax
nay

]
+

[
v̂ypgang
−v̂xpgang

]
(25)

(v̂xp, v̂yp) are (
∫ t

0 aN
x (τ)dτ,

∫ t
0 aN

y (τ)dτ) and (x̂xp, x̂yp) = (
∫ t

0 v̂xp(τ)dτ,
∫ t

0 v̂yp(τ)dτ).

ψ =
∫ t

0 ω̂z(τ)dτ.
(

aN
x , aN

y

)
are derived from Equation (2).

[
aN

x
aN

y

]
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

][
aB

x − b̂x
aB

y − b̂y

]
−
[

v̂xp
−ω̂zv̂yp

]
(26)

ω̂z is the error of the angle velocity to the bias on the z axis; ω̂z = ωz − b̂z.
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The range measurement zz and estimated rand measurement
^
zz for 3 anchors of UWB

can be defined by the Euclidean distance of anchors and a target tag platform including an
anchor height h and the measurement noises n = [n1, n2, n3]

T as follows:

zz(t) = z + n for z = [z1, z2, z3]
T (27)

^
zz(t) =

^
z + n for

^
z = [ẑ1, ẑ1, ẑ1]

T (28)

where [
zi
ẑi

]
=

 √(
xi − xp(t)

)2
+
(
yi − yp(t)

)2
+ h2√(

xi − x̂p(t)
)2

+
(
yi − ŷp(t)

)2
+ h2

+ ni (29)

The extended Kalman filter residual µ, the error between two range measurements zz(t),
^
zz(t),

can be approximated by the gradient matrix Hz =
∂g(x)

∂x and the state variables xz as follows:

µ = zz(t)−
^
zz(t) ≈ [Hz]xz + n (30)

The position and velocity of platform are estimated from the platform and navigation
state variable xz from IMU sensors and the range measurements zz of 3 anchors of UWB
sensors, as shown in Figure 3.

Let us take a closer look at the positioning process by EKT (Extended Kalman filter)
that linearizes the state equation, as shown in Figure 4. EKT assumes the differentiability of
a state transition function instead of the model linearity. There is a closed-form expression
that the estimated state x̂k+1 can be computed by a nonlinear function f of the previous
state x̂k, control uk, noise wk, and time t.

x̂k+1 = f (x̂k, uk, t) + wk (31)

The Jacobians of the predicted state to the previous state and the noise take simple forms
when the noise goes linearly into the state update equation. In EKT, the measurement ẑk
can be computed by a nonlinear function h of the state xk and the measurement noise vk.

ẑk+1 = h(x̂k) + vk (32)

Here, f , h are differentiable. In a sensor module, the position data zk measured at t time
contain noise components, which interfere with signal analysis. Therefore, to predict the
estimated value x̂k for which noise components have been removed, the near-optimal
Kalman gain Kk is computed to predict x̂k in the EKT.

Kk = Pk|k−1HT
k S−1

k (33)

Sk is the residual covariance; Sk = HkPk|k−1HT
k + Rk. The updated state estimate x̂k|k and

covariance estimate can be expressed as

x̂k|k = x̂k|k−1 + Kk ỹk, (34)

Pk|k = (I− Kk Hk)Pk|k−1. (35)

where ỹk is the measurement residual; ỹk = zk − h
(

x̂k|k−1

)
.

Here, x̂k|k−1 and Pk|k−1 represent the predicted state estimate and the predicted covari-
ance estimate, respectively, as follows:

x̂k|k−1 = f
(

x̂k−1|k−1, uk

)
(36)

Pk|k−1 = FkPk−1|k−1FT
k + Qk (37)



Appl. Sci. 2021, 11, 8826 9 of 17

Fk and Hk are the state transition and state variable matrices defined to be Jacobians.
Qk and Rk are the covariance matrix of the system and the measurement noise, respectively.

The final estimated value x̂k|k is predicted by multiplying an appropriate weight on the
basis of Kk with the predicted value x̂k|k−1 and the measured value zk, followed by summing
the two values, while Kk is inversely proportional to the measured noise component, R.
Specifically, as the measured noise component becomes greater, Kk decreases, and the rate
at which zk is reflected in x̂k is decreased. It can be seen that the predicted error covariance,
Pk|k−1, is proportional to the system noise component, Qk, and that Kk is proportional to
Pk|k−1. Therefore, Kt is proportional to Qk. In other words, an increase in Qk signifies
that the reliability of x̂′t is decreased, in which the components of the measured value are
considerably reflected when predicting x̂k|k−1 [6].
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3. Experimental Results by Unit Testing

In this chapter, for evaluating the basic performance of the proposed positioning
system, a basic telecommunication test, a LOS (line of sight) test, a non-LOS (NLOS) test,
and a stopping test in an anechoic chamber were conducted indoors and outdoors.

3.1. Basic Telemmounication Test

A basic telecommunication test was conducted in various places including indoor,
hallway, and outdoor areas, as shown in Figure 5. The experiment examined whether mul-
tiple anchors installed in a fixed position of each place effectively monitor the coordinate
values of immovable or moving tags. The experimental result showed that the packet with
accurate position coordinate values is received normally.

3.2. LOS Test and Non-LOS Test

An LOS test was conducted after verifying the communication function between the
anchor and node. Our LOS test installed three anchors in an indoor space without obstacles
and we repeatedly measured the coordinates of 16 fixed positions for a tag along the x-,
y-axes, as shown in Figure 6. The results of the repeated LOS and NLOS tests are presented
in Table 1. All of the errors in indoor spaces were within ±200 mm.

Table 1. Indoor LOS and NLOS measurement data.

Measurement Error [mm]
LOS NLOS

x Axis y Axis x Axis y Axis

Average 68.01 −29.56 −43.25 −45
Minimum −194 −194 289 107
Maximum 195 188 −382 −237
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After the LOS test, an NLOS test was conducted to inspect the positioning performance
in an indoor space with obstacles. In this experiment, the position coordinates of four tags
in the indoor space were repeatedly measured. From Table 1, the measurement errors in the
NLOS environment were slightly higher than those in the LOS environment, as predicted.
Average measurement errors of LOS and NLOS tests are out 0 mm. However, a lot of tests
for various indoors allows the average errors to approach 0 mm.

3.3. Anechoic Chamber Test

Lastly, the measurement test was conducted in an anechoic chamber. As shown in
Figure 7, four anchors were installed at a 5 m interval in the length, width, and height
directions, and the position of tags were repeatedly measured from four locations in
the chamber.
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The results of the stopping test in an anechoic chamber are presented in Table 2. The
tags were installed to be fixed on a tripod. Measurement errors occurred on average
55.75 mm and 57 mm in the x- and y-axes directions, but on average 144.25 mm in the
z-axis direction, slightly more than the x- and y-axes direction.

Table 2. Measurement error for an immovable target.

Reference Values
Reference 1 Reference 2 Reference 3 Reference 4

x y z x y z x y z x Y z

Ref. coordinates
(mm) 0 0 1800 0 5000 1800 5000 0 1800 5000 5000 1800

Max. deviation
measurement value

(mm)
−43 −58 1893 75 4943 1943 4947 −62 1965 4948 4949 1624

Measurement
absolute error (mm) 43 58 93 75 57 143 53 62 165 52 51 176

4. Experimental Result of the Position Tracking System and Discussion

Following the measurement testing at a fixed position, the experimental results of a
moving object are explained in this chapter. This experiment was conducted in an indoor
anechoic chamber and the actual working environment.

4.1. Position Tracking Experiment in Anechoic Chamber

For this experiment, four anchors were installed at a 5 m interval in the length, width,
and height directions, as shown in Figure 8. The position was repeatedly measured by
controlling the movement of tags in a cubical space, during which the tags were controlled
by being installed on a triaxial Cartesian robot. The results of measuring the position of
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tags moving, as shown in Figure 9, along the triaxial robot, are presented in Table 3. In this
experiment, the position tracking was accurate in the x-axis and y-axis directions, but the
positioning error in the z-axis direction was large.
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Table 3. Measurement data of orthogonal reciprocating motion using testbed.

Axial Direction Ref. Coordinates (mm) Mean Value (mm) Mean Error (mm)

x axis
Min. 2800 2760 40

Max. 3190 3191 41

y axis
Min. 2710 2730 30

Max. 3090 3053 37

z axis
Min. 1500 1321 179

Max. 1890 1985 95

Therefore, a moving average (MA) filter, Kalman filter [7], and our extended Kalman
filters (EKT) were applied to the positioning data for improving the accuracy of positioning
coordinates. Specifically, the MA, Kalman filter, and extended Kalman filter were applied
to the measurement data after placing the tag on the reference coordinate (2700, 2700)
on the fixed z axis. The measurements were taken for approximately 380 times to obtain
reliable data; the results are shown in Figure 10.

The figure shows the results of applying the MA, Kalman filter [7], and our EKT to the
measurement data of moving nodes in an indoor space where multiple anchors are installed,
and it can be observed that the position measurement error is significantly reduced when
both types of filters are applied. The statistical results of the 380 measurements, as shown
in Figure 10, are presented in Table 4; From these results, we found that our ETK-based
method had less errors of 7.6 mm and 13.3 mm on the x and y axes compared to the MA
method and also had less errors of 4.2 mm and 7.8 mm on the x and y axes compared to the
Kalman filter method [7]. According to the numerical data, the application of the extended
Kalman filter produced a smaller positioning error, which also can be confirmed through
the graphical data.

Table 4. Measurement data from sensor units and filtering results.

Min/Max

Measurement Value
(mm) Moving Average (mm) Kalman Filter [7] (mm) Proposed Extended

Kalman Filter (mm)

x y X y x y x Y

Min. 2687.5 2673.3 2691.2 2679.2 2693.4 2683.2 2696.6 2686.8

Max. 2722.1 2723.2 2709.6 2710.9 2708.4 2709.4 2707.4 2705.2

|Max.−Min.| 34.6 49.9 18.4 31.7 15.0 26.2 10.8 18.4

4.2. Position Tracking Experiment in Anechoic Chamber

Lastly, an experiment was conducted to examine the positioning accuracy for a tool in
the actual automobile assembly process at an automobile repair shop, which resembles the
real automobile assembly site. The fixed anchors were installed on four posts of the lift,
and the tags were attached to the tool to measure its moving path, as shown in Figure 11.
For displaying the current position of the tool operating in an automobile model, an
application was developed for operation monitoring to display the position of the tool, as
shown in Figure 12.

4.3. DAA(Detection and Avoid) Experiment

The UWB central frequency band used practically in the development product is
4492.8 MHz, which is included in the technical criteria of the existing frequency band and
the changed frequency band. However, changes in radio frequency and UWB-related laws
act as unexpected variables in development. The mean power density, including antenna
absolute gain, is −70 dBm/MHz or less. IAT (Interference Avoidance Technology) reduces
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the amount to less than −70 dBm/MHz within two seconds and avoids it within 2 s if it
detects signals from other radio stations greater than −61 dBm during operation.
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Average filter (green line), Kalman filter [7] (blue line), and proposed EKF (red line) for (a) x-axis 
and (b) y-axis. 

The figure shows the results of applying the MA, Kalman filter [7], and our EKT to 
the measurement data of moving nodes in an indoor space where multiple anchors are 
installed, and it can be observed that the position measurement error is significantly re-
duced when both types of filters are applied. The statistical results of the 380 measure-
ments, as shown in Figure 10, are presented in Table 4; From these results, we found that 
our ETK-based method had less errors of 7.6 mm and 13.3 mm on the x and y axes com-
pared to the MA method and also had less errors of 4.2 mm and 7.8 mm on the x and y 
axes compared to the Kalman filter method [7]. According to the numerical data, the ap-
plication of the extended Kalman filter produced a smaller positioning error, which also 
can be confirmed through the graphical data. 

Table 4. Measurement data from sensor units and filtering results. 

Min/Max 
Measurement 
Value (mm) 

Moving Average 
(mm) 

Kalman Filter [7] 
(mm) 

Proposed Extended 
Kalman Filter 

(mm) 

x y X y x y x Y 

Min. 2687.5 2673.3 2691.2 2679.2 2693.4 2683.2 2696.6 2686.8 

Max. 2722.1 2723.2 2709.6 2710.9 2708.4 2709.4 2707.4 2705.2 

|Max. − 
Min.| 

34.6 49.9 18.4 31.7 15.0 26.2 10.8 18.4 

  

Figure 10. Measurement results and error for the reference coordinate (2700,2700) using Moving
Average filter (green line), Kalman filter [7] (blue line), and proposed EKF (red line) for (a) x-axis and
(b) y-axis.
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4.2. Position Tracking Experiment in Anechoic Chamber 
Lastly, an experiment was conducted to examine the positioning accuracy for a tool 

in the actual automobile assembly process at an automobile repair shop, which resembles 
the real automobile assembly site. The fixed anchors were installed on four posts of the 
lift, and the tags were attached to the tool to measure its moving path, as shown in Figure 
11. For displaying the current position of the tool operating in an automobile model, an 
application was developed for operation monitoring to display the position of the tool, as 
shown in Figure 12. 
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MHz, as well as signals in addition to BW. If signals were emitted from BW other than 
3.735–4.8 GHz BW, the UWB radio frequency band was used by adjusting the register 
value of DW1000. After BW adjustment, we conducted a wire test and anaerobic radiation 
test through SMA connector wire. The final test conducted through a spectrum analyzer 
confirmed that it was within the frequency range in the regulation. 
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Figure 12. Monitoring display of the position of the tool (red circle).

Spectroscopic analysis shows that the BW (Band Width) was wider than the set
499.2 MHz, as well as signals in addition to BW. If signals were emitted from BW other
than 3.735–4.8 GHz BW, the UWB radio frequency band was used by adjusting the register
value of DW1000. After BW adjustment, we conducted a wire test and anaerobic radiation
test through SMA connector wire. The final test conducted through a spectrum analyzer
confirmed that it was within the frequency range in the regulation.

5. Conclusions

In this study, the UWB and MEMS IMU integrated positioning method was proposed
for a system for accurately identifying and monitoring the position of work tools which
are used in the assembly process of automobile production. Our method measures the
accurate position, velocity, and attitude through a MEMS IMU sensor that is derived
from the inertial navigation formula in 3 coordinate frames of indoor positioning frame
(E-frame), local navigation frame (N frame), EGI frame (I-frame). Then, we computed
the distance between an anchor node and a tag node by the TWR method. Here, we
used the confidence distance compensation trilateration localization method to prevent
the distance error by obstacles or changes in the indoor environment. Our method used
the improved EKR by the error dynamic equation derived from 8 × 8 sparse state-space
matrix, for the integrated positioning algorithms of MEMS IMU and UWB sensors. We
compared our method to the previous UWB and MEMS IMU positioning method-based
moving averaging filter and Kalman filter [7]. The results verified that our method has
less errors (4.2 mm~13.3 mm) than the previous methods. Furthermore, we verified that
the bandwidth is wider than 499.2 MHz and it is within the regularized frequency range,
through DAA experiments. Also, we developed to monitor the accurate position of a work
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tool operating in an automobile model. Recently, the wireless positioning in the IoT has
been researched much for indoor location identification [22,23]. Thus, we intend to study
the applicability of the wireless positioning in the IoT for the future works.
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