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Featured Application: The results of this study provide key information, both linguistic and
technical, to develop a Spanish language hypernasality detection tool which could be used by
non-experts and could run on universally available mobile devices. The results may also guide
the development of hypernasality detection tools for languages other than Spanish.

Abstract: Automatic tools to detect hypernasality have been traditionally designed to analyze
sustained vowels exclusively. This is in sharp contrast with clinical recommendations, which consider
it necessary to use a variety of utterance types (e.g., repeated syllables, sustained sounds, sentences,
etc.) This study explores the feasibility of detecting hypernasality automatically based on speech
samples other than sustained vowels. The participants were 39 patients and 39 healthy controls.
Six types of utterances were used: counting 1-to-10 and repetition of syllable sequences, sustained
consonants, sustained vowel, words and sentences. The recordings were obtained, with the help
of a mobile app, from Spain, Chile and Ecuador. Multiple acoustic features were computed from
each utterance (e.g., MFCC, formant frequency) After a selection process, the best 20 features served
to train different classification algorithms. Accuracy was the highest with syllable sequences and
also with some words and sentences. Accuracy increased slightly by training the classifiers with
between two and three utterances. However, the best results were obtained by combining the results
of multiple classifiers. We conclude that protocols for automatic evaluation of hypernasality should
include a variety of utterance types. It seems feasible to detect hypernasality automatically with
mobile devices.

Keywords: hypernasality; Spanish language; speech acoustic features; ANN; automatic detection of
speech deficits

1. Introduction

Speech is described as hypernasal when there is an abnormal increase in nasal reso-
nance during the production of oral sounds. This condition results from an insufficient
closure of the velopharyngeal port that allows the air stream to flow through the nasal
cavity during the production of oral vowels and consonants. It, thus, may lead to phono-
logical error patterns in consonants (e.g., b > m, d > n) and/or to nasalized vowels (e.g., ã ẽ
ĩ õ ũ). Hypernasality (HN) is commonly observed in patients with cleft palate (CP) and
also in other groups of patients who have short velum which cannot achieve a complete
contact with the posterior pharyngeal wall (e.g., those with a 22q11.2 deletion syndrome;
22q11.2DS). Therefore, evaluating HN is most relevant to make clinical decisions and to
plan effective intervention in these patients [1].

Traditionally, HN has been evaluated perceptually (e.g., CAPS-A protocol; [2]). How-
ever, perceptual evaluation of HN is a complex task, particularly for those without a highly

Appl. Sci. 2021, 11, 8809. https://doi.org/10.3390/app11198809 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2649-7145
https://orcid.org/0000-0001-7817-6442
https://doi.org/10.3390/app11198809
https://doi.org/10.3390/app11198809
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11198809
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11198809?type=check_update&version=2


Appl. Sci. 2021, 11, 8809 2 of 16

specialized training in speech therapy (e.g., many otorhinolaryngologists, pediatricians
or teachers). Part of the difficulty is due to nasality being a gradual phenomenon rather
than a categorical one and to the fact that healthy speakers nasalize to some degree some
oral sounds (as a result of poor coordination of the velum with other articulators, or to
trans-palatal transmission of acoustic energy from the oral cavity to the nasal one [3]).
In addition, in many languages such as Spanish, nasal vowels do not exist as phonemes,
which means that most speakers have difficulties in recognizing nasal vowels as distinct
categories. Finally, pathological HN often co-occurs with compensatory errors and/or
low intelligibility, which may make it even harder to identify it [4]. These considerations
have motivated researchers to develop objective measures of HN. One promising approach
consists in using automatic classification systems trained with different sets of acoustic
features [5]. This approach has two major advantages: it is non-invasive and the required
technology is nowadays universally available (e.g., by using mobile phones).

In the past there have been many proposals to evaluate HN based on acoustic in-
formation. While the results in terms of accuracy are generally excellent, most studies
have used only a limited number of utterance types, such as sustained vowels [6–11].
This is not clearly compatible with standard clinical recommendations [2], which strongly
recommend that patients are evaluated using a variety of phonemes and utterances with
varying complexity (e.g., CAPS-A protocol, [2,12]).

As regards phonemic diversity, the CAPS-A protocol identifies three levels of nasal-
ization, depending on which segments are nasalized: (1) mild: nasalization evident only
on closed vowels (e.g., /i u/); (2) moderate: nasalization observable in closed and open
vowels (e.g., /a e o i u/); and (3) severe: nasalization observable in all vowels and in voiced
consonants (e.g., /b d g/). Furthermore, Kummer et al. [12] proposes that syllable series
including the voiceless stops such as /p t k/ should be used to study nasalization. As
regards to utterance complexity, it is generally emphasized that different utterance types
are needed to provide valuable information (e.g., isolated vowels, words, sequences of
syllables repetition, sentences and spontaneous speech [2,12–16]). However, Kummer
et al. [12] consider that two of these tasks are especially helpful: on the one hand, repetition
of syllabic sequences such as /ta ta ta ta ta . . . /, which allow to isolate individual phonemes
and eliminate context effects; on the other, sentences that contain multiple productions of
the same phoneme placement, which allow to assess the presence of nasal emission in a
connected speech environment. To summarize, according to clinical experts, evaluation
of HN should be based not only on isolated vowels but also on a variety of voiced and
unvoiced consonants which are combined in different utterance types.

Acoustic based studies have used two different approaches to detect HN. Mathad
et al. [4] used Automatic Speech Recognition technology (ASR) to determine which sections
of an utterance have been nasalized. To this end the authors trained an ASR system to
classify audio segments as nasal-vowel, nasal-consonant, oral-vowel, or oral-consonant.
While the results of this approach are most promising, it is important to note that it requires
access to large, annotated corpora that are available only for a few languages and only for
adult speech, which limits its applicability.

A second approach consists in using classification algorithms trained with acoustic
features of specific fragments of a speech signal. Classification algorithms include Random
Forest (RF), Support Vector Machine (SVM) or Artificial Neural Network (ANN). Acoustic
features used in previous studies include, among others, Mel Frequency Cepstrum Coeffi-
cients (MFCCs), the Voice Low Tone to High Tone Ratio (VLTHTR) and the vowel formants
and their bandwidth [6–11]. In most studies using this approach the fragments analyzed
were either sustained vowels [6,8] or vowel fragments that had been annotated manually
in words or sentences [7,9–11]. Only a few studies have used complex utterances to auto-
matically evaluate nasality [17–19]. Golabbakhsh et al. [18] used six sentences containing
stop and fricative consonants which are used routinely by speech therapists to perceptually
assess the quality of speech. The authors trained an SVM classifier with a pool of acoustic
features (e.g., jitter, shimmer, MFCC, bionic wavelet transform entropy and bionic wavelet
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transform energy) which were computed for each utterance. In the best case, accuracy
reached 85% with a sensitivity of 82% and a specificity of 85%. Orozco-Arroyave et al. [17]
analyzed a database of 108 healthy and 128 hypernasal Spanish speaking children. All the
children produced the five Spanish sustained vowels and two words, one with unvoiced
consonants (i.e., koko) and one with one voiced and one unvoiced consonant (i.e., gato).
They trained an SVM classifier using non-linear dynamics features along with a set of six
entropy measures. The results were the best for the vowels /a, i, e, o/ and for the word
gato (i.e., the one with a voiced consonant); the poorest results were observed with vowel
/u/ and word koko. However, the results improved when they selected the best features
from each vowel (accuracy 91%; sensibility: 93–95%; specificity: 88–90%). Altogether these
results indicate that it is feasible to evaluate nasality automatically using running speech
and also by combining different speech samples from the same speaker.

To summarize, there seems to be a mismatch between clinical studies, on the one
hand, which emphasize the importance of exploring a variety of speech sounds and
utterance types and automatic analysis research, on the other, which has focused mainly
on sustained vowels or a limited number of words or sentences. One obvious reason why
most technical studies have used sustained vowels is because in such case the spectrum is
stable throughout a relatively long window, which increases the probability of detecting
the relatively small acoustic effects introduced by the nasal resonance. If more complex
utterances are considered (e.g., full sentences) and assuming that we do not use an ASR
approach, it will be necessary to compute the average spectrum, which may blur the local
effects of nasality. However, as shown by Orozco-Arroyave et al. [17] and others, at least
in some cases the average spectrum may serve to detect HN. Indeed, it seems reasonable
to speculate that the effects of HN might be measurable in the same utterance types in
which humans perceive HN with relative ease (e.g., repeated syllables, sentences with
voiced consonants, etc. [12]) and that the results might be improved by combining multiple
utterances. It remains to clarify to what extent these speculations can be confirmed.

This study explores to what extent utterances other than sustained vowels can be used
to detect HN automatically. Our main aim is to identify which utterances or combination
of utterances, if any, might be the most optimal ones for this task. We expected that,
similarly to what has been observed in clinical practice, the effects of HN might be most
clearly observable in some subtypes of utterances (e.g., repeated syllables, words and
sentences [12]). In the long term, we aim to develop a HN detection tool that is accessible
to a large audience and particularly to clinicians without speech therapy expertise (e.g.,
pediatricians, otorhinolaryngologists) In order to cope with this long-term objective, we
decided to collect the data using a mobile app. Thus, a second aim of this study is to test
to what point audio data obtained using a mobile app can be used to evaluate HN. We
anticipated that, thanks to the advances in mobile phone devices, it might be possible to
detect HN.

2. Materials and Methods

As part of this study, we created a database of healthy and hypernasal Spanish
speakers. The speakers were either children or female adults. The data were obtained using
a mobile app, ASICA (see Appendix A for instructions), developed as part of this project,
which allowed us to include patients from three different Spanish speaking countries
(Chile, Ecuador and Spain). Note that this mobile app was developed as a response to the
COVID-19 crisis and the impossibility of recording the participants in our lab. Based on
these recordings we proceeded to define a hypernasal dataset and an oral dataset. For this
end, two approaches might be considered. One consists in including in the hypernasal
dataset only those utterances for which there was perceptual evidence of HN (i.e., item-by-
item approach). Another consists in including in the hypernasal dataset all the utterances
of those speakers which have been previously classified as hypernasal (i.e., speaker-by-
speaker approach). Given the difficulty to annotate the full database item-by-item, we
decided to use a speaker-by-speaker approach.
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The resulting datasets were used to run multiple tests that consisted in training and
evaluating a HN classifier. Each test was characterized by: (1) the utterance or list of
utterances used to train and evaluate the classifier (e.g., syllable sequence ta ta ta, the word
dedo, both the sequence ta ta ta and the word dedo); (2) the subset of acoustic features (e.g.,
MFCC4 of utterance tatata . . . ) and the classification algorithm (e.g., RF, SVM or ANN).
As a first step we ran forty-four tests, each one with one utterance in the database. We
assumed that as the accuracy of the automatic classifiers would be partly determined by
the utterances used to train them, when accuracy was very high (e.g., “in discriminating
healthy speakers from patients by using syllable repetition”), it would indicate that the
utterance used was an optimal candidate to automatically evaluate HN. Next, we ran tests
using more than one utterance to train and evaluate each classifier. For this end we created
what we call optimal lists of utterances (see details in Section 2.6). Finally, we explored the
feasibility of computing, for each speaker, a hypernasality score (HN Score) by combining
the results of multiple tests of the same participant. Note that this last approach emulates
the scoring used in many speech evaluation tasks, in which a partial score is provided
per item and a global score is obtained by computing (e.g., summing) the results of the
individual items in the task.

2.1. Database and Selected Participants

The database was created with the help of an IOS app named ASICA. It included
the recordings of 54 patients and 49 healthy speakers, all of whom were native Spanish
language speakers. In this database we defined as patient any speaker with a clinical history
associated to the presence of HN, which means that some patients did produce hypernasal
speech when they were recorded, whereas others were non-nasal due to previous successful
treatments. The patients were from Spain (N = 36), Chile (N = 16) and Ecuador (N = 2) and
they were recruited from diverse clinical facilities and parents’ associations:

• Hospital Materno infantil de Málaga, Spain (N = 12);
• ASAFiLAP, the Andalusian Cleft Palate Association, Spain (N = 9);
• 22q.11 Andalusian Association, Spain (N = 10);
• Fuensocial CAIT Fuengirola, Spain (N = 1);
• Clínica Médica Fuengirola, Spain (N = 3);
• Independent Speech Therapist, Spain (N = 1);
• Hospital Gantz, Santiago de Chile (N = 16);
• Independent Speech Therapist, Ecuador (N = 2).

The control speakers were recruited through social media and with the help of the
patients’ associations. For the purpose of this study, we selected from the database those
patients that matched these criteria:

1. Age and sex: female adult 18–42 years old or child 5–15 years old.
2. Mean fundamental frequency: above 180 Hz.
3. Data completion: the patient produced, at least, 90% of the utterances in the task.
4. Audio quality: loud masking noise was observed in fewer than a 10% of the utterances.
5. Confirmed HN. In the case of the patients, HN was confirmed perceptually by three

trained speech therapists in at least five utterances.

The application of these criteria resulted in a total of 39 patients (1 from Ecuador, 15
from Chile and 23 from Spain). The control group was selected so that it included the same
number of speakers as the experimental group, with the two groups matched on age (for
children) and age and sex (for adults). All the control speakers were from Spain except one
that was from Ecuador.

2.2. Materials

The protocol to collect speech samples was elaborated according to the International
Speech Parameters Group recommendations [14]. It is a double aimed protocol since it
pretends to obtain a list of utterances that is sufficiently informative so as to perceptually
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evaluate HN and, furthermore, it provides reliable outcomes that can be compared with
other studies, independently of the language of testing [2,12,13,15,16]. It contains six
subtasks (T1–T6) and registers three types of speech samples: (1) rotten speech is recorded
by counting from 1 to 10 (T1); (2) repeated speech is obtained by means of sequences of
syllables (T2); words (T5); and sentences (T6); and (3) sustained sounds are represented by
two fricative consonants /f, s/ (T3) and vowel /a/ (T4). Table 1 shows the list of utterances
in each subtask as well as the instructions provided to the participants.

Table 1. Utterances in the repetition task.

Subtask Instruction Utterances

T1. Counting Count one to ten Uno, dos, tres, cuatro, cinco seis, siete, ocho, nueve,
diez

T2. Syllables Repeat the syllable rapidly pa pa pa . . . , ta, ta, ta . . . , ka ka ka . . .
pi pi pi . . . , ti, ti, ti . . . , ki ki ki . . .

T3. Sustained consonants Produce a long consonant /fffff . . . /
/sssss . . . /

T4. Sustained vowels Produce a long /a/ /aaaaa . . . /

T5. Words Imitate these words moto, boca, piano, pie, niño, llave, luna, campana
indio, dedo, gafas, silla, cuchara, sol, jaula, zapatos

T6. Sentences Imitate these sentences

Voiced stop consonants:
Al gato de Ágata le gusta el yogur (/g/)

A David le duele el dedo (/d/).
El bebé va bien con babuchas (/b/)

Voiceless stop consonants:
Tómate toda tu taza de té (/t/)
Papá puede pelar a Pili (/p/)

Quique coge el papel de calco (/k/)
Fricative consonants:

Si llueve le llevo la llave a Yolanda (//)
Susi sale sola y se ensucia (/s/)

Fali fue a la feria inflando un globo (/f/)
Los zapatos de Cecilia son azules (/θ/)
La jirafa de Jesús se mojó jugando (/x/)

Affricate consonant:
Chuchu y Chelo chillan mucho (//)

Approximants:
Lali y Luna leen los carteles (/l/)

Vowels:
Uy, ahí hay algo

Nasals:
Mi mamá me mima mucho (/m/)
El nene nos canta una nana (/n/)

The syllable repetition task (T2) consists of a series of consonant–vowel sequences.
Three types of plosive consonants (i.e., /p t k/) are used to construct this task because
their articulation pattern requires good velar motor coordination between the unvoiced
occlusion and the vowel. In order to avoid a too long repetition task, which is quite boring
for kids, only two vowels are used to design these syllables sequences. The vowel /i/
was selected because it is the one that requires the softest velar closure (softer than other
closed vowels such as /u e o/); and the vowel /a/ was selected because it requires a quite
harder velopharyngeal closure. As regards to the words repetition task (i.e., T5), 16 items
have been selected from a previously published test [20]. Selection criteria consisted of
gathering a representation of most of the Spanish consonants in a Consonant-Vowel context.
Syllables with complex onset (e.g., pl, pr, as in pla, pra) were avoided because of their motor
complexity, which requires greater involvement of articulators such as tongue or lips
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and, thus, they deserve a linguistic maturity that falls beyond the velopharyngeal closure
capability. The T6 subtask includes 16 sentences, each one with predominance of one
type of consonant. Following international recommendations, two sentences with nasal
consonants were also included [14].

2.3. Data Collection

In order to participate in the study, the participants used the mobile app ASICA,
which can be downloaded from Apple Store. Before running the app each participant (or
parent/tutor in the case of minors) was instructed regarding the aim of the study and
was required to sign one informed consent form. Then, the participants were advised to
watch a short 2 min video that illustrates how the task proceeds and gives some advice
regarding the need to avoid background noise; when necessary, further details were given
by phone or email. Finally, each participant was provided a unique ID that is necessary to
run the app.

Once the user opens the app, he or she is requested to insert the ID. The task starts with
one example token after which the six subtasks described in Table 1 are run sequentially.
Each task begins with a short description indicating the type of utterance that is going
to be presented and continues with the utterances to be imitated. For each utterance, the
app produces the utterance and then waits between 3 and 9 s (depending on the target
utterance) for the speaker to imitate it. Once the task is completed all the audio recordings
are stored in a cloud database from where our research team downloaded them for further
analyses.

2.4. Acoustic Features

Due to the remote and unsupervised nature of data collection and the wide range
of patients’ characteristics, the recording was designed to last longer than usual. Hence,
audio data will contain a substantial amount of silence before and after the task-objective
audio, introducing background noise of no interest in the classification analysis. In order
to reduce the amount of silence recorded on each task we used, before feature calculation,
a speech/background discriminator based on [21]. The discriminator, which assumes
that the first 100 ms contain background noise, computes the endpoints of each speech
utterance.

Based on previous evidence, the following selection of features were computed from
each utterance: MFCC coefficients, the first three formants together with their bandwidths
(BW) and distances and the VLTHTR [6,10,22,23]. The 13-dimensional MFCC features
were calculated using moving Hamming windows. The windows were 25 ms long with
15 ms overlap. The first MFCC coefficient (MFCC0) was computed as the log energy of
the signal. Delta and delta-delta MFCC values (first and second derivatives) were not
included because they showed a low capacity to differentiate healthy and hypernasal
speech during initial analyses. A set of F1, F2 and F3 formants was computed using
16-order linear prediction coefficients (LPC) together with their bandwidth, which was also
used to calculate the distances among the formants (i.e., F1-F2, F1-F3 and F2-F3). For all
these features, a mean value was obtained for each utterance. VLTHTR was defined as
the logarithmic ratio between the signal power at low and high frequencies [6]. The audio
spectra were derived using the long-term average spectrum calculated from the average
power spectral density obtained from a series of overlapping FFTs; the FFT length was
4096 and the hop size was 2048. In this study, multiple cutoff values were used so separate
low and high frequencies: from 400 Hz to 900 Hz with 100 Hz steps. All these features
were calculated using custom code in Matlab R2020b and Audio Toolbox functions.

2.5. Classification Algorithms

We evaluated the performance of three different methods for classifying the audio
data: RF, SVM and ANN. In all these methods, a feature selection and reduction process
was conducted before classification, using an absolute value two-sample t-test with pooled
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variance estimate algorithm. Each method was evaluated independently using (K = 5)-fold
cross-validation. This method ensures that each fold of the classifier has equal proportion
of data from each class and allows to reduce any error due to partition of the data. Finally,
note that the feature selection and reduction process was repeated for each fold, which
ensures a neat separation between the training and testing processes.

The SVM classifiers used linear kernel function with auto-optimization of hyperparam-
eters. The RF classifiers used bootstrap-aggregated decision trees. The architecture of ANN
HN model is shown in Figure 1. The input layer consists of 20 nodes, corresponding to the
20-dimesional speech features selected for each classification task. The model is comprised
of 4-hidden layers, where each layer has 1024 hidden neurons with rectified linear unit
(ReLU) activation. The final output layer has 2 SoftMax nodes, each corresponding to one
class of speakers (i.e., hypernasal and healthy).

Figure 1. Architecture of the ANN model.

2.6. Utterance Selection and HN Score

As a first step we carried out forty-four single utterance tests (i.e., by using one
utterance in each test). Next, we ran diverse tests in which each classifier was trained with
multiple utterances (rather than a single utterance). As the number of possible utterance
combinations is very high, the following procedure was used to create what might be an
optimal list of utterances: (1) A (size = 1) list consisting of the utterance providing the highest
accuracy in the one-utterance tests (i.e., base list) is created (e.g., word dedo); (2) a new test
is run for each utterance which is not currently included in the base list (i.e., forty-three in
the first step); in these tests, training and evaluation use the base list together with one new
utterance (e.g., word dedo + syllable sequence ka; word dedo + syllable sequence ki, etc.); the
utterance in the test with the highest accuracy is added to the base list; (3) step 2 is repeated
while the accuracy increases. This process is repeated separately for SVM, RF and ANN.

Finally, we explored the feasibility of computing a hypernasality score (HN Score) for
each speaker. The HN Score was the result of dividing the number of times that the speaker
has been classified as HN by the total number of tests. Thus, the HN Score ranges from
0% (never classified as HN) to 100% (always classified as HN). Note that the HN Scores
may vary depending on the actual tests used to compute it, for which it will be necessary
to determine which list of tests provides the best results (i.e., to discriminate the patients
from the healthy speakers). In order to interpret the results obtained with the HN Score
it is important to consider that some participants may score close to 50% (i.e., indicating
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that the HN Score does not clarify whether or not the speaker is HN). Here, we use these
criteria to interpret the results:

• HN Score < 40%: the speaker is not HN;
• HN Score in the range 40–60%: HN can be neither confirmed nor discarded;
• HN Score > 60%: the speaker is HN.

3. Results
3.1. Preliminary Analyses of the Database

One of the aims of this study was to explore the feasibility of using mobile devices to
assess HN. Thus, it is important to examine the causes to exclude 15 out of 54 patients in
the database. The causes for exclusion were the following:

• Four patients produced fewer than 90% of the utterances. Two of them were three
years old and two more were four years old.

• One participant was excluded due to background noise masking his utterances.
• One male participant had a mean F0 of 156 Hz.
• HN was not confirmed in nine patients. These patients were non-nasal due to previous

successful treatments.

It is important to highlight that the selected database was far from ideal: many
selected audio recordings had background noise and some speakers did not complete the
full task. As regards to ambient noise, we manually annotated the utterances for which
there was background noise above 50 dB (with the audios normalized to 70 dB). For most
speakers 50 dB background noise was not frequent (i.e., occurring in fewer than 10% of the
utterances). Noise was frequent (i.e., >20% of the utterances) in 14% of the controls and
36% of the patients. As regards to data completion, 86% of the selected controls and 63%
of the selected patients produced all the utterances and only one control and one patient
failed to repeat more than five utterances. Figure 2 shows two illustrative examples of
recording with and without background noise.

Figure 2. Audio sample with background noise (speaker fis06825) and with silent background
(speaker fis09874). Both samples are normalized to 70 dB. The black line represents audio data. The
green line is the absolute value of amplitude of the signal.

Finally, in order to have a better understanding of the patient’s data, we decided to
annotate item-by-item the utterances for which there was at least one instance of nasalized
consonant. Note that this is not a full description of the database, because vowels were
not manually annotated. However, this could provide a clear idea regarding the extent of
the variability within the database. As expected, the results were highly variable: no child
nasalized (one or more) consonants in all the utterances and no utterance was nasalized by
all the patients (see Figure 3). For instance, the patient that nasalized the most (i.e., 813)
did not nasalize the consonants in several utterances that were nasalized most frequently
(e.g., pa pa pa . . . , boca, silla, etc.)
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Figure 3. Item-by-item detail of the utterances with at least one consonant nasalized. Each column corresponds to one
patient and each row to one utterance in the repetition task. Black cells: two experts agree that at least one oral consonant
has been nasalized in the utterance. Grey cells: the experts disagree. White cells: two experts agree that no oral consonant
has been nasalized. Note that this table is an incomplete description of the database: it does not show vowel nasalization.

3.2. Results for Forty-Four Single Utterances

Figure 4 shows the accuracies obtained for the single-utterance tests. The values
ranged between a minimum of 46% (ANN-T5 luna) and a maximum of 81% (SVM-T5
dedo). The best results were obtained with SVM classifiers in 25 utterances, with RF in
17 utterances and with ANN in only 8 cases. As Figure 4 shows, the best results (i.e.,
accuracy >75%) were obtained with four of the syllable sequences, two words and one
sentence. Then, there is a group of utterances for which the accuracy was also relatively
high (i.e., 70–75%) and which included the two other syllable sequences, one word, five
sentences and the sustained consonant /f/. The lowest scores (i.e., 50–60%) were obtained
with eight of the words and one sentence. Altogether, these results show that the accuracy
of automatic classifiers varies substantially depending on the utterance used to train them.
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Figure 4. Accuracy of the 44 single-utterance SVM, RF and ANN tests. The utterances are sorted, from left to right, according
to the accuracy in the best classifier.

3.3. Multiple Utterance Training Corpus

Following the procedure described in the Section 2.6, we computed the optimal list of
utterances for each algorithm (see Table 2). In the case of the RF and ANN tests, the results
showed an increase in accuracy from one to two utterances and a reduction with three or
more utterances. In the case of SVM, the peak accuracy was obtained with three and four
utterances. As it is possible that our approach might miss better candidate utterance lists,
we decided to run further tests using the N most accurate utterances (for N from 2 to 12).
For instance, in the case of the SVM classifier, we ran tests with these utterance lists: (1)
T5 dedo; (2) T5 dedo + T2 pi; (3) T5 dedo + T2 pi + T2 ka, etc. None of these tests resulted in
accuracy rates higher than the ones obtained with the optimal lists presented in Table 2.

Table 2. Optimal utterance lists.

Algorithm Optimal Lists and Cumulative Accuracy

SVM

Base list: T5 dedo (81%)
+T3 fff (88%)
+T2 pa (92%)

+T6 Susi sale sola (92%)
T6 A David (91%)

RF
Base list: T2 ka (84%)

T5 dedo (86%)
(2) +T3 f (83%)

ANN
Base list: T2 pi (79%)
+T6 A David (86%)

+T2 ka (76%)

3.4. Combining Classifiers: HN Score

As explained in the Method section, by combining the results of multiple utterances
we obtained a HN Score per participant. In order to facilitate the interpretation of these
results we assume that HN Score > 60% indicates that the HN has been confirmed, while
HN Score < 40% indicates that it is rejected; finally, scores in the 40–60% range do not allow
to confirm or discard HN. Figure 5 shows the results obtained when using: (1) forty-four
classifiers (i.e., one per utterance; HN Score (44)); note that for each utterance we chose the
classifier with the highest accuracy (i.e., SVM, RF or AMM),(2) the sixteen classifiers with
accuracy above 70% (i.e., HN Score (16)) and (3) the seven classifiers with accuracy above
75% together with the optimal SVM list shown in Table 2 (i.e., HN Score (7 + Sel)). In all
three cases, the majority of the patients scored higher than 60% and the majority of the
controls scored lower than 40%. However, there were some clear differences between the
three selections.
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Figure 5. HN Score using forty-four single-utterance (top), using the best 16 utterances (i.e., with accuracy > 70%) (middle),
and using the best 7 utterances + the SVM optimal list (bottom). Each blue bar represents one control participant. Each
orange bar represents one patient. The grey box shows the speakers with intermediate scores (i.e., 40–60%). Note that the
blue bars to the left of the grey box and the orange bars to the right are, respectively, true negatives (TN) and true positives
(TP). On the contrary, the orange bars to the left are false negatives (FN) and the blue bars to the right are false positives (FP).

The group mean for the patients was 66% when using the forty-four one-utterance
classifiers (HN Score (44)) and it increased to 77% in HN Score (16) and to 81% in HN Score
(7 + Sel). In the case of the controls the mean values were, respectively, 31%, 24% and 20%
(for HN Scores 44, 16 and 7 +Sel). The increased discriminability of HN Score (7 + Sel)
can also be observed by examining the results qualitatively (Figure 5 bottom): In this case
there were only three speakers in the 40–60% region (Figure 5 bottom) and only one false
negative (i.e., a patient scoring below 40%) and one false positive (i.e., a control speaker
scoring above 60%). Thus, the discriminability improves as the number of tests used to
compute the HN Score was reduced. Table 3 provides some details of the utterances and
features used in the test selected for HN Score (7 + Sel). Note that in Table 3 the list of
features included in each case are those which were selected in the five folds during the
cross-correlation train-evaluation process (see Section 2).
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Table 3. Utterances and classifiers used in the HN Score (7 + Sel).

Utterances Alg. Results Features

T5 dedo
+T3 fff
+T2 pa

SVM
Spec.: 92%
Sens.: 92%
Acc.: 92%

T5 dedo: bwf1, f3, f1-f3, f2-f3
T3 fff : mfcc2, mfcc10, fcc13
T2 pa: mfcc1, mfcc5, mfcc9

T5 dedo SVM
Spec.: 85%
Sens.: 77%
Acc.: 81%

bwf1, bwf2, f3, f1-f3, f2-f3
mfcc2, mfcc5, mfcc11, mfcc12

vlhr400, vlhr500, vlhr600, vlhr900

T2 ka SVM
Spec.: 73%
Sens.: 85

Acc.: 79%

bwf1, bwf3, f1, f3, f1-f3, f2-f3,
mfcc1, mfcc3, mfcc4, mfcc6, mfcc7, mfcc10,

mfcc11, vlhr900

T2 ki RF
Spec.: 75%
Sens.: 83%
Acc.: 79%

bwf1, bwf2, bwf3, f1,
mfcc1, mfcc2, mfcc3, mfcc4, mfcc6, mfcc7,

mfcc11, mfcc12, vlhr800, vlhr900

T2 pi RF
Spec.: 79%
Sens.: 79%
Acc.: 79%

bwf1, bwf3, f2, f3, f1-f3, f2-f3
mfcc1, mfcc2, mfcc3, mfcc5, mfcc6, mfcc8,

mfcc12, vlhr600, vlhr700

T2 ta RF
Spec.: 75%
Sens.: 80%
Acc.: 77%

bwf1, bwf2, f3, f1-f3, f2-f3
mfcc1, mfcc2, mfcc4, mfcc5, mfcc6, mfcc7,

mfcc8, mfcc9, vlhr400, vlhr500, vlhr600

T5 pez SVM
Spec.: 77%
Sens.: 77%
Acc.: 77%

bwf1, bwf3, f3, f1-f3, f2-f3
mfcc2, mfcc4, mfcc5, mfcc6, mfcc8

vlhr400

T6 A David SVM
Spec.: 77%
Sens.: 74%
Acc.: 76%

bwf1, bwf3, f2, f1-f2, f2-f3,
mfcc2, mfcc4, mfcc5, mfcc7, mfcc11,

mfcc12
vlhr400, vlhr500, vlhr600

Given that the controls’ and the patients’ recordings differed in the amount of back-
ground noise, we analyzed whether this had any effect on the HN Score. For this end, we
divided the patients into two subgroups: those with background noise (N = 14) and those
without background noise. Note that if the presence of background noise biased the results
the patients with background noise might be classified as hypernasal more frequently that
the remaining patients. However, the mean HN Score (7 + Sel) was slightly lower for the
patients recorded with background noise than for those without noise (79% vs. 83%). Thus,
it seems that the presence of noise did not bias the results.

4. Discussion

Two were the main objectives of this study. In the first place we aimed to determine
whether or not it was possible to detect HN with utterances more complex than sustained
sounds and, in that case, which were such utterances. A second aim was to test the
feasibility of using mobile devices to detect HN. To this end we created a database of
speech samples obtained with the help of a mobile app. From this database we excluded
the patients for which there was no evidence of HN. It is important that the requisite to
include the patients (i.e., individual-by-individual basis) implies that some of the utterances
in the nasal group might be non-nasal. Given that this methodological decision might be
considered a potential limitation we will begin the discussion with this issue. Then, we
will discuss the main results.

The decision to select the participants on an individual-by-individual basis, rather
than utterance-by-utterance, was motivated by practical considerations: it is clearly less
time-consuming than the alternative approach. Our approach might have reduced the
accuracy of the classifiers because many non-nasalized utterances were included in the
patient’s database. However, the relatively good results in terms of accuracy indicate that
the approach was a valid one. Two factors may have contributed to our results. One is the
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possibility that patients’ HN persists in some utterances to such a minimal degree that the
human ear is not capable of recognizing it. The other is that, as noted in clinical research,
there are contexts which favor HN and the feature selection and reduction process may
have discarded the utterances that do not favor HN.

Our results show that syllables sequences and, to a lesser extent, specific sentences,
words and sustained consonants, are the most appropriate types of utterances to evaluate
HN automatically. In contrast, the accuracy obtained by using rotten speech (i.e., counting
one to ten) or sustained vowels is relatively low. In order to explain these results it may
be helpful to compare the accuracy of three groups of utterances: (1) the /pa ta ka/ series
versus the sustained vowel /a/; (2) rotten speech versus sentences; and (3) the sustained
vowel /a/ versus the sustained consonant /f/.

As to first pair (i.e., syllable sequences vs. sustained vowel /a/), our results showed
that the accuracy was relatively high in syllable sequences /pa ta ka/ and relatively low in
/a/. This result indicates that the sustained vowels were very similar in the two groups, but
the syllables were relatively different. In order to interpret these results, it is relevant to note
that in the /pa ta ka/ series the same vowel is produced repeatedly; this means that, when
produced by a healthy speaker, the average spectrum should be very similar to that of a
vowel /a/. Thus, we interpret that patients are producing atypical syllable sequences. One
possible interpretation of this result is that, due the increased effort required to produce
the syllable sequences, the patients may struggle to control the velum, which may result in
some degree of HN ([12]). However, it is also possible that the velopharyngeal insufficiency
has led patients to modify slightly the articulatory patterns to produce these sounds (i.e.,
subtle compensatory mechanisms): these articulatory changes might modify the spectral
configuration of the target sound in ways that may pass undetected to the human expert
but that could be detected by the automatic classification system [24].

As to the second pair, rotten speech (i.e., counting one-to-ten) versus sentences, the
accuracy of the former is clearly lower than that of some sentence (see Figure 4). Two
factors may have contributed to this result. One is that numbers may have been practiced
intensively by some children, for which at least some participants might be particularly
effective in avoiding HN in this precise case. In contrast, the sentences may favor HN
because they have multiple instances of the same consonant in different verbal contexts,
all of which can impede the effective control of the velar closure. Another factor is that in
the one-to-ten series, HN may occur occasionally (e.g., in one or two phonemes) and, thus,
it may be blurred after averaging multiple window frames. In contrast, the phonological
structure of some sentences may lead to relatively frequent instances of HN.

As to the sustained consonant /f/, the results indicate that this utterance might be
effective in discriminating the patients from the controls either alone or in combination
with other utterances (see Table 3). This result is relevant because, in the clinical context,
this consonant is used commonly to detect air scape in HN patients, but not to detect nasal
resonance. However, the results shown in Table 3 indicate that the two groups differed
significantly in at least three MFCC features, suggesting that there are spectral differences
between the /f/ sounds produced by the patients and the ones produced by the controls.
Two possible explanations can be suggested for this result, which are identical to the ones
noted in the case of the syllable sequences: the effect might be caused by presence of nasal
resonance or, alternatively, it might be associated with learned articulatory patterns aimed
to compensate the difficulty to generate sufficient oral air pressure.

Another relevant outcome of this study is that classifiers trained with between two
and three utterances were more accurate than those using just one (see Table 2). This
result extends those of Orozco-Arroyave et al. [17], who showed that classifying HN
using individual vowels was less effective than using multiple vowel utterances. One
possible explanation for these results is that HN is a complex phenomenon and that a single
utterance type may not be sufficient to capture all the variation that can be observed among
hypernasal patients. Note that the reduction in accuracy when the number of utterances
increases is most possibly the result of the feature selection process, which did not take
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into account the correlation between the selected features. This may have led to select
redundant features and to discard other features that might contribute to the classification
problem. However, our results also show that a better approach to capture the complexity
of HN consists in combining the results of multiple classifiers. Using the HN Score we
observed that combining the results of a small list of highly accurate classifiers allows not
only to discriminate the two classes, but also to discard speakers for which the automatic
classifiers provided conflicting results. This result shows that it is more effective to evaluate
HN based on multiple utterances than based on a single utterance.

A secondary aim of this study was to determine the feasibility of using mobile devices
to detect HN automatically. This approach presents at least two potential limitations: one
related to the participants’ implication in the task and another related to the acoustic context.
Regarding the participants’ implication, this may arise due to multiple circumstances
(limited attention, lack of motivation, etc.) However, the results are promising as they show
that the majority of the participants completed the task. The only exception were children
aged three or four, for whom the task may have been too difficult or too long. For this
group it seems that it might be appropriate to develop a shorter task, for which the results
described above provide some alternatives (e.g., using exclusively syllable repetition, or
a limited number of utterances such as the ones included in Table 3). Regarding the
acoustic context, one potential problem was the presence of noise (e.g., from other speakers,
electronic devices such as computers or air conditioners, cars) This might be particularly
relevant for patients whose respiratory weakness can make their voice less audible than that
of controls. However, the results indicate that this has not been an important limitation: the
HN Scores were slightly lower in the patients with background noise than in the patients
without background noise, which shows that the background of noise had a limited impact
on the results. Altogether our results indicate that it is feasible to use mobile devices to
make an automatic assessment of HN.

Our results point to some issues that require further exploration. In the first place,
the results of this study suggest that patients and controls differed notably in how they
produced syllables sequences and the sustained consonant /f/. However, we could
not clarify whether these differences were due to the presence of nasal resonance or,
alternatively, to adaptations in the articulatory patterns used to produce these sounds.
Clarifying this issue might be most valuable to have better understanding of the speech
characteristics of hypernasal speakers. In the second place, regarding the possibility of
using mobile devices in speech evaluation, two limitations must be noted. In the first place,
we did not carry a comparison between data obtained with our app and data obtained with
other recording techniques. Unfortunately, due to the COVID-19 crisis, we were not able to
obtain such data. In the second place, it should be emphasized that, in this study, we used
devices of relatively high quality (i.e., iPhone and iPad). Thus, it is necessary to explore to
what extent the results are the same independently of the recording tools used and whether
or not the accuracy of the different classifiers remains equally high when using devices of a
lower quality. Finally, future studies should explore whether or not the methodology used
in this study can serve to grade the severity of HN and also to detect changes associated to
medical and speech therapy treatments.

5. Conclusions

There are three main conclusions of the present study. The first one is that it is possible
to use well known acoustic analysis and automatic classification algorithms to develop a
HN detection tool based on running speech. The second conclusion is that the protocols for
automatic evaluation of HN, like those used by human experts, should include a variety of
utterance types. Finally, the third conclusion is that it is feasible today to use universally
available tools such as mobile phones to evaluate HN.
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Appendix A. Instructions to Use the app ASICA

The app ASICA can be downloaded from Apple Store with no cost. It can be used in
IOS type devices (iPhone and iPad) with at least iOS 12.4 or higher. A video tutorial (in
Spanish) can be obtained from https://fb.watch/5JYIT32j6c/ (accessed on 1 May 2021).
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