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Abstract: Adequate estimation is a crucial factor for the implementation of software projects within
set customer requirements. The use of Case Point Analysis (UCP) is the latest and most accurate
method for estimating the effort and cost of realizing software products. This paper will present a
new, improved UCP model constructed based on two different artificial neural network (ANN) archi-
tectures based on Taguchi Orthogonal Vector Plans. ANNs are an exceptional artificial intelligence
tool that have been proven to be reliable and stable in this area of software engineering. The Taguchi
method of Orthogonal Vector Plans is an optimization method that reduces the number of iterations
required, which significantly shortens estimation time. The goal is to construct models that give a
minimum magnitude relative error (MRE) value concerning previous approaches and techniques. A
minimum number of iterations (less than six) and a minimum value of MMRE (less than 10%) have
been achieved. The obtained results significantly improve the accuracy and reliability of estimating
the effort and cost involved in the implementation of software projects.

Keywords: software development estimation; Use Case Point Analysis; orthogonal array-based
experiment; artificial neural networks design

1. Introduction

The most important activity in the software development process is the assessment
of effort, which includes assessing the time and money required for the software project
to be successfully completed. Project development time is critical, both for project clients
and project implementers. The amount of money required for investment in a project
influences whether the project will be started or not, and whether it will end within
the set framework. Software companies use a variety of software tools and services to
meet customer requirements. Many methods measure the size of software, its complexity,
and the time needed to build it. All methods can be divided according to whether they
are parametric or nonparametric [1–3]. Within this division, there are several different
approaches, three of which are the most commonly used:

1. An approach based on analyzing the number of source code lines and estimating
the effort required to implement the project. The most commonly used model of this
approach is the Constructive Cost Model (COCOMO2000) [4,5].

2. An approach based on the analysis of functional points to estimate the magnitude
of the functionality of the software being developed. Within this approach, two
models were initially distinguished: IFPUG (created by the International Function
Point Users Group) [6] and Mk II (Mark II) [7]. Subsequently, within the IFPUG
model, the following were developed: NESMA NESMA (created by the Netherlands
Software Metrics Association) [8], IFPUG 4.1, and COSMIC FP (the COmmon Software
Measurement International Consortium function point) [9].

3. An approach based on the analysis of users and use cases for the assessment of effort.
Within this approach, the most commonly used models are: COBRA (COnstraint-
Based Reconstruction and Analysis) [10] and UCP (Use Case Point Analysis) [11].
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1.1. Use Case Point Analysis

The UCP method is most often used for estimating the real size of a software project.
This method of estimating the effort required to implement a particular system considers
the use cases of the system. It analyzes system users and different scenarios to adequately
assess the effort required. It uses twenty-one parameters for assessment, of which thir-
teen parameters are technical characteristics of the system, and the remaining eight are
environmental factors [12–15].

The technical characteristics of the system being evaluated are as follows: distributed
system, system response time, efficiency, complexity of internal processes, code reuse, ease
of installation, ease of use, transfer to other platforms, system maintenance, competitive-
ness, parallel processing, security requirements, access to external systems, and end-user
training.

The following environmental factors are assessed: compliance with the used devel-
opment process, experience with applications, experience in object-oriented technologies,
ability of the chief analyst, team motivation, stability requirements, adaptation of working
hours of team members, and complexity of the programming language.

The system users and use cases are used together to determine the real size of the UCP
method. The users of the system are divided into three groups: simple (depending on the
interaction with the system, they are assigned a weight factor of (1); medium (depending
on internal/external communication, they are assigned a weight factor of (2); and complex
(depending on the complexity of interactions, they are assigned a weight factor of (3). There
are also three categories of use cases that are defined based on the number of transactions
executed (number of users and system messaging): simple (for less than three transactions,
with weighting factor of five assigned); medium (from 4 to 7 transactions, with weighting
factor of 10 assigned); and complex (more than eight transactions, with a weighting factor
of 15 assigned).

The size of the system is defined based on a six-dimensional vector whose elements
represent the complexity of the previously mentioned users and the cases of users in the
system.

The estimated value is calculated based on the formulas established by G. Karner [16]:
UAW (Unadjusted Actor Weight)—this input value is a functional point that can

determine the level of complexity of system users. Users can be simple system operators or
other external systems. Each user is ranked according to their level of complexity and can
be: Simple, Average, and Complex (1)–(4).

SimpleA = ∑(SimpleActor) ∗ SimpleWeight, where SimpleWeight = 1; (1)

AverageA = ∑(AverageActor) ∗ AverageWeight, where AverageWeight = 2; (2)

ComplexA = ∑(ComplexActor) ∗ ComplexWeight, where ComplexWeight = 3; (3)

UAW = SimpleA + AverageA + ComplexA (4)

UUCW (Unadjusted Use Case Weight)—this input value is a functional point that can
determine the level of complexity of use cases. Each use case is ranked according to its
level of complexity and can be: Simple, Average and Complex (5)–(8).

SimpleUUCW = ∑(SimpleUCW) ∗ SimpleWeight,

where
SimpleWeight = 5, (transactions ≤ 3, analysis classes < 5) (5)

AverageUUCW = ∑(AverageUCW) ∗ AverageWeight,

where

AverageWeight = 10, (4 ≤ transactions ≤ 7, 5 ≤ analysis classes ≤ 10) (6)
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ComplexUUCW = ∑(ComplexUCW)× ComplexWeight,

where
ComplexWeight = 15; (transactions > 7, analysis classes ≥ 10) (7)

UUCW = SimpleUUCW + AverageUUCW + ComplexUUCW (8)

UUCP (Unadjusted Use Case Points) is determined by following Equation (9):

UUCP = UUCW + UAW (9)

TCF (Technical Complexity Factor) is an estimate of the technical complexity of the
system and can be described by the following Equations (10) and (11):

TCF = 0.6 + (0.01 × FactorT) (10)

FactorT = ∑ Weight ∗ AssignedValue, (11)

where AssignedValue is from 0 to 5 and represents a technical factor of the estimated process.
ECF (Environmental Complexity Factor) is one of the factors affecting the size of

the project expressed in Use Case points. It is calculated according to the following
Equations (12) and (13):

ECF = 1.4 + (−0.03 × FactorE) (12)

FactorE = ∑ Weight ∗ AssignedValue, (13)

where AssignedValue is from 0 to 5 and represents an environmental factor of the estimated
process.

AUCP (Adjusted Use Case Point) is the final size of the system expressed in Use Case
points and is calculated as follows (14):

AUCP = UUCP × TCF × ECF (14)

Real effort is represented, via the UCP approach, as a six-dimensional vector, where
its value is calculated as the norm of the vector as follows (15) and (16):

UCP = (UAW, UUCW, UUCP, TCF, ECF, AUCP) (15)

‖
→

UCP‖ = UAW + UUCW + UUCP + TCF + ECF + AUCP (16)

Real effort is represented, via the UCP approach, as a four-dimensional vector, where
its value is calculated as the norm of the vector as follows (17) and (18):

UCP = (UAW, UUCW, TCF, ECF) (17)

‖
→

UCP‖ = UAW + UUCW + TCF + ECF (18)

where UUCP= UAW+ UUCW, and AUCP = UUCP × TXF × ECF.
In both cases, Real Effort is obtained as the norm of the UCP vector and represents

the real functional size or number of points of use cases. This method is currently most
commonly used to assess effort [17], although it is not standardized within ISO standards
such as the previous two.

1.2. Taguchi Orthogonal Arrays

This paper aims to present a new, improved UCP model constructed using artifi-
cial neural networks based on Taguchi’s orthogonal vector plans. ANNs represent a
tremendous artificial intelligence tool and are often used in combination with parametric
methods [18,19]. Using various ANN architectures, we can arrive at a fast, accurate, and
reliable estimate of the effort and cost required to develop a project. Each ANN archi-
tecture is based on robust design methods, i.e., Taguchi methods of orthogonal vector
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plans. A robust method design implies meeting the prescribed criteria when planning
and implementing software. Taguchi’s orthogonal vector plans are based on a unique set
of Latin Squares [20,21]. The discovery of orthogonal vector plans and their application
minimizes crucial parameters for the project’s successful development. The impact pa-
rameters are not duplicated, which achieves a much faster estimation of the efforts and
costs of a particular project. This design method is based on a factorial experiment realized
only with all possible experimental combinations of parameter values. The construction
of, e.g., the artificial neural ANN-L36prim architecture using Taguchi’s orthogonal plan
achieves a higher convergence rate, reducing the time and number of iterations required
to achieve the minimum MMRE. The number of iterations required for the implemen-
tation of the Full Factorial Plan (FFP) within a robustly designed experiment is N = LP

(for example, when three levels with 16 parameters are used according to FFP, it is nec-
essary to execute N = 3112431 = 8,503,056.00 experiments). Using the Taguchi orthogonal
vector plan with 16 parameters (weight coefficients) on three levels, only 36 experiments
are necessary. The Taguchi method of robust design reduces experiments by 99.99%
(0.9999957662 . . . = 1 − (36/8 503 056)). It is expected that the new, improved UCP ap-
proach constructed based on different ANN architectures that are in line with the Taguchi
Orthogonal Plans will give better results than the previously proposed UCP model.

This article is structured as follows: Section 2 provides an overview of previous studies
that applied UCP for effort estimation in software projects. Section 3 explains the new,
improved UCP model with the methodology used. Section 4 discusses the obtained results.
The concluding remarks are given in the last section.

2. Related Work

The UCP method is the latest and the most widespread method for estimating the
effort and costs involved in the realization of software products. The most significant
advantage of this method is that the lowest values of relative error in estimation are
obtained—between 20% and 35%. The best result achieved by this method is an error value
of about 10% [22]. Many researchers [17,23–25] have combined this method with other
parametric models and models of artificial intelligence. In a previous study [26], the UCP
method was used for the estimation of size and effort for mobile applications. Android
mobile applications were considered as a case study, and modified UCP was also proposed.
The authors of [14] proposed a framework for UCP-based techniques to promote reusability
in the development of software applications. The results showed that the framework met
five quality attributes, and that it can be used in the early stages of software development.
In [27], a systematic review of studies with the best practices in terms of use case point
(UCP) and expert judgment-based effort estimation techniques was given. The authors
of [28] presented the results of four different models that include the UCP method and
Neuro-Fuzzy logic. It was concluded that the Neuro-fuzzy logic model using revised
use case points and modified environmental gives the best fitting accuracy at an early
stage compared to other models. In another relevant study [29], the authors compared the
benefits of statistical analyses of effort estimation approaches for seven real-world software
development projects. In addition, they contrasted a conventional Use Case points method
with iUCP, an HCI (Human-centric)-enhanced model. Furthermore, they proposed an
enhancement of the original iUCP effort estimation formula.

The critical decisions that defined the new, improved model within the UCP approach
were as follows:

• Examination of the influence of two linearly dependent input values (UUCP and
AUCP) on the change in the MMRE value;

• Comparative analysis of two different architectures of artificial neural networks and
the obtained results;

• Division of the used dataset to a scale of 70:30, i.e., 70 projects from the selected dataset
were used for the training process, while 30 were used for the testing process;
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• Finding the most efficient methods of encoding and decoding input values, such as
the fuzzification method;

• The requirement of a minimum number of performed experiments;
• Testing and validation on other datasets.

3. New, Improved UCP—Our Approach

For the new, improved UCP model, the following architectures and corresponding
orthogonal vector plans are used:

1. UCP and ANN-L16

The first proposed architecture is denoted as ANN-L16. It consists of six input values,
one hidden layer with two nodes, one output, and a total number of fifteen weighting
factors (Wi, i = 1, 15), whose initial values are from the interval [−1, 1]. The Taguchi
Orthogonal Array used in the construction of this proposed architecture contains two
levels, L1 and L2 (Figure 1; Table 1) [2,3,30,31].
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Figure 1. ANN architecture with one hidden layer (ANN-L16).

Table 1. Taguchi Orthogonal Array (L16 = 215).

ANN-L16 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15

ANN1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1
ANN2 L1 L1 L1 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 L2 L2
ANN3 L1 L1 L1 L2 L2 L2 L2 L1 L1 L1 L1 L2 L2 L2 L2
ANN4 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 L2 L1 L1 L1 L1
ANN5 L1 L2 L2 L1 L1 L2 L2 L1 L1 L2 L2 L1 L1 L2 L2
ANN6 L1 L2 L2 L1 L1 L2 L2 L2 L2 L1 L1 L2 L2 L1 L1
ANN7 L1 L2 L2 L2 L2 L1 L1 L1 L1 L2 L2 L2 L2 L1 L1
ANN8 L1 L2 L2 L2 L2 L1 L1 L2 L2 L1 L1 L1 L1 L2 L2
ANN9 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

ANN10 L2 L1 L2 L1 L2 L1 L2 L2 L1 L2 L1 L2 L1 L2 L1
ANN11 L2 L1 L2 L2 L1 L2 L1 L1 L2 L1 L2 L2 L1 L2 L1
ANN12 L2 L1 L2 L2 L1 L2 L1 L2 L1 L2 L1 L1 L2 L1 L2
ANN13 L2 L2 L1 L1 L2 L2 L1 L1 L2 L2 L1 L1 L2 L2 L1
ANN14 L2 L2 L1 L1 L2 L2 L1 L2 L1 L1 L2 L2 L1 L1 L2
ANN15 L2 L2 L1 L2 L1 L1 L2 L1 L2 L2 L1 L2 L1 L1 L2
ANN16 L2 L2 L1 L2 L1 L1 L2 L2 L1 L1 L2 L1 L2 L2 L1
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2. UCP and ANN-L36prim

The second proposed architecture is denoted as ANN-L36prim. It consists of four
input values, one hidden layer with three nodes, one output, and a total number of sixteen
weighting factors (Wi, i = 1, 16), whose initial values are from the interval [−1, 0, 1].
The Taguchi Orthogonal Array used in the construction of this proposed architecture is
combined, where the first eleven parameters and the last sixteenth parameter are with
three levels, L1, L2, and L3, while the remaining four parameters are with two levels, L1
and L2 (Figure 2; Table 2) [2,3,30,31].
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Figure 2. ANN architecture with one hidden layer (ANN-L36prim).

The experiment presented in this paper consists of three parts:

1. Training of two different ANN architectures constructed according to the correspond-
ing Taguchi orthogonal vector plans (ANN-L16 and ANN36prim);

2. Testing of the ANN that gave the best results (the lowest MMRE value) in the first
part of the experiment, for two proposed architectures on the same dataset;

3. Validation of the ANN that gave the best results (the lowest MMRE value) in the first
part of the experiment, for each selected architecture, but using different datasets.

3.1. Data Sets Used in the UCP Approach

For the first and second part of the experiment, the Use Case Point Benchmark Dataset
by Radek Silhavy (UCP Benchmark Dataset) [32] was used. In contrast, in the third part,
the combined datasets, composed of projects of different industrial companies, were used.
The results in Table 3 indicate a more homogeneous structure of the projects used in all
three parts of the experiment, which can be concluded based on the standard deviation
results in Table 4.

3.2. The Methodology Used within the Improved UCP Model

The appropriate methodology was selected for the experimental part of the UCP
approach based on several trial experiments. The order of the experiment was constructed
based on a robust design algorithm and is shown in Figure 3.
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Table 2. Taguchi Orthogonal Array (L36prim = 3112431).

ANN-L36prim W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16

ANN1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1
ANN2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L1 L1 L1 L1
ANN3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L1 L1 L1 L1
ANN4 L1 L1 L1 L1 L2 L2 L2 L2 L3 L3 L3 L3 L1 L2 L2 L1
ANN5 L1 L1 L1 L1 L3 L3 L3 L3 L2 L2 L2 L2 L1 L2 L2 L1
ANN6 L3 L3 L3 L3 L1 L1 L1 L1 L2 L2 L2 L2 L1 L2 L2 L1
ANN7 L1 L1 L2 L3 L1 L2 L3 L3 L1 L1 L1 L3 L2 L1 L2 L1
ANN8 L2 L2 L3 L1 L2 L3 L1 L1 L2 L3 L3 L1 L2 L1 L2 L1
ANN9 L3 L3 L1 L2 L3 L1 L2 L2 L3 L1 L1 L2 L2 L1 L2 L1
ANN10 L1 L1 L3 L2 L1 L3 L2 L3 L2 L1 L3 L2 L2 L2 L1 L1
ANN11 L2 L2 L1 L3 L2 L1 L3 L1 L3 L2 L1 L3 L2 L2 L1 L1
ANN12 L3 L3 L2 L1 L3 L2 L1 L2 L1 L3 L2 L1 L2 L2 L1 L1
ANN13 L1 L2 L3 L1 L3 L2 L1 L3 L3 L2 L1 L2 L1 L1 L1 L2
ANN14 L2 L3 L1 L2 L1 L3 L2 L1 L1 L3 L2 L3 L1 L1 L1 L2
ANN15 L3 L1 L2 L3 L2 L1 L3 L2 L2 L1 L3 L1 L1 L1 L1 L2
ANN16 L1 L2 L3 L2 L1 L1 L3 L2 L3 L3 L2 L1 L1 L2 L2 L2
ANN17 L2 L3 L1 L3 L2 L2 L1 L3 L1 L1 L3 L2 L1 L2 L2 L2
ANN18 L3 L1 L2 L1 L3 L3 L2 L1 L2 L2 L1 L3 L1 L2 L2 L2
ANN19 L1 L2 L1 L3 L3 L3 L1 L2 L2 L1 L2 L3 L2 L1 L2 L2
ANN20 L2 L3 L2 L1 L1 L1 L2 L3 L3 L2 L3 L1 L2 L1 L2 L2
ANN21 L3 L1 L3 L2 L2 L2 L3 L1 L1 L3 L1 L2 L2 L1 L2 L2
ANN22 L1 L2 L2 L3 L3 L1 L2 L1 L1 L3 L3 L2 L2 L2 L1 L2
ANN23 L2 L3 L3 L1 L1 L2 L3 L2 L2 L1 L1 L3 L2 L2 L1 L2
ANN24 L3 L1 L1 L2 L2 L3 L1 L3 L3 L2 L2 L1 L2 L2 L1 L2
ANN25 L1 L3 L2 L1 L2 L3 L3 L1 L3 L1 L2 L2 L1 L1 L1 L3
ANN26 L2 L1 L3 L2 L3 L1 L1 L2 L1 L2 L3 L3 L1 L1 L1 L3
ANN27 L3 L2 L1 L3 L1 L2 L2 L3 L2 L3 L1 L1 L1 L1 L1 L3
ANN28 L1 L3 L2 L2 L2 L1 L1 L3 L2 L3 L1 L3 L1 L2 L2 L3
ANN29 L2 L1 L3 L3 L3 L2 L2 L1 L3 L1 L2 L1 L1 L2 L2 L3
ANN30 L3 L2 L1 L1 L1 L3 L3 L2 L1 L2 L3 L2 L1 L2 L2 L3
ANN31 L1 L3 L3 L3 L2 L3 L2 L2 L1 L2 L1 L1 L2 L1 L2 L3
ANN32 L2 L1 L1 L1 L3 L1 L3 L3 L3 L3 L2 L2 L2 L1 L2 L3
ANN33 L3 L2 L2 L2 L1 L2 L1 L1 L3 L1 L3 L3 L2 L1 L2 L3
ANN34 L1 L3 L1 L2 L3 L2 L3 L1 L2 L2 L3 L1 L2 L2 L1 L3
ANN35 L2 L1 L2 L3 L1 L3 L1 L2 L3 L3 L1 L2 L2 L2 L1 L3
ANN36 L3 L2 L3 L1 L2 L1 L2 L3 L1 L1 L2 L3 L2 L2 L1 L3

Table 3. Information on used datasets (UCP).

Dataset Number of Projects Experiment

Dataset_1 UCP Benchmark Dataset 50 Training
Dataset_2 UCP Benchmark Dataset 21 Testing
Dataset_3 Combined 18 Validation1
Dataset_4 Combined Industrial projects 17 Validation2

Table 4. Basic statistics about dataset (UCP).

Datasets N Min (PM) Max (PM) Mean (PM) Std. Deviation (PM)

Dataset_1 50 5775.0 7970.0 6506.940 653.0308
Dataset_2 21 6162.6 6525.3 6393.993 118.1858
Dataset_3 18 2692.1 3246.6 2988.392 233.2270
Dataset_4 17 2176.0 3216.0 2589.400 352.0859
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Step 1: Input layer

The input values of the first proposed architecture ANN-L16 are six input values,
four of which are independent (UAW, UUCW, TCF, and ECF) and two dependent (UUCP
and AUCP). The input values of the second proposed architecture ANN-L36prim are four
independent input values: UAW, UUCW, TCF, and ECF.

Step 2:

All input values are transformed according to the following formula: The function
µD(X): R → [0, 1] translates the real values of input signals into coded values from the
interval [0, 1] in the following way: µD(Xi) = (Xi − Xmin)/(Xmax − Xmin) [33,34], where D
is the set of data on which the experiment is performed, Xi is the input value, Xmin is the
smallest input value, and Xmax the greatest input value on the observed dataset.

Step 3:

The sigmoid function, as the activation function of the hidden layer, is used (19):

yi =
1

1 + e−xi
, i = 1, n (19)

The construction of the activation function is based on a combination of input values
and corresponding weight coefficients Wi for each of the listed ANN architectures.

The hidden and output layer functions, for the ANN-L16 architecture, are as follows
(20)–(22):

Y1 = 1/
(

1 + e−(X1·W1+X2·W3+X3·W5+X4·W7+X5·W9+X6·W11)
)

(20)

Y2 = 1/
(

1 + e−(X1·W2+X2·W4+X3·W6+X4·W8+X5·W10+X6·W12)
)

(21)

EstE f f ANN − L16 = 1/
(

1 + e−(Y1·W13+Y2·W14+1·W15)
)

(22)

where Y1, Y2, and Y3 are the hidden layer functions and EstEffortANN-L16 represents the
output function.

The hidden and output layer functions for the ANN-L36prim architecture are as
follows (23)–(26):

Y1 =
1

1 + e−(X1·W1+X2·W4+X3·W7+X4·W10)
(23)
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Y2 =
1

1 + e−(X1·W2+X2·W5+X3·W8+X4·W11)
(24)

Y3 =
1

1 + e−(X1·W3+X2·W6+X3·W9+X4·W12)
(25)

EstE f f ortANN − L36prim =
1

1 + e−(Y1·W13+Y2·W14+Y3·W15+1·W16)
(26)

where Y1, Y2, and Y3 are the hidden layer functions and EstEffortANN-L36prim represents
the output function.

In the first proposed ANN-L16 architecture, an orthogonal vector plan of two levels
L1 and L2, and the initial values of the weighting factors Wi that take the values from the
interval [−1, 1], are used. The second proposed architecture has an orthogonal vector plan
of three levels, L1, L2, and L3, and the initial values of the weighting factors Wi that take
the values from the interval [−1, 0, 1]. For each subsequent iteration, new weight factor
values must be calculated as follows (e.g., for ANN-L16 architecture) [2–4] (27):

W1L1 = cost1 + cost2 + . . . + cost8
W1L2 = cost9 + cost10 + . . . + cost16

. . .
W15L1 = cost1 + cost6 + . . . + cost16
W15L2 = cost2 + cost3 + . . . + cost15

where cost(i) = Σ MRE(ANN(i))

(27)

For each subsequent iteration, the interval [−1, 1] is divided depending on the cost
effect function as follows [7,30] (28):

W1L1new = W1L1old
W1L2new = W1L2old + (W1L3old −W1L2old)/2

W1L3new = W1L3old
(28)

where W1L1old, W1L2old, and W1L3old are values form the previous iteration. The set of
input values of each dataset converges depending on the value of the cost effect function.

Step 4:

The defuzzification method is used according to the following Formulas (29) and (30) [35]:

Yi = (Xmin + µD(Xi)) · (Xmax − Xmin) (29)

OA(ANNi) = Yi, where i = 16, i = 36. (30)

where OA represents actual effort of the particular project, which is calculated based on
ANN-L12 and ANN-L36prim.

Step 5:

For each iteration in our experiment, the output values are obtained according to the
following formulas/measures [2,4,30] (31)–(35):

Deviation = |ActE f f ort− EstE f f ort| (31)

MAEi =
1
n

n

∑
i=1
|ActE f f ort− EstE f f ort| (32)

MRE = Deviation/ActE f f ort (33)

MRE =
1
n
·

n

∑
i=1

MREi (34)

MMRE = mean (MRE) (35)
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For each of the experimental parts in every iteration, the Gradient Descent is monitored
with the condition GA < 0.01, calculated as [4,30,31] (36):

GA = MREi1 −MREi2 < 0.01, where i = 1, . . . , n n is a number o f ANN. (36)

Step 6:

This step concerns the influence of the dependent variables UUCP and AUCP on the
change in MMRE value.

1. The influence of the input parameter UUCP and its value are calculated as (37):

δ1 = mean(MMRE) − mean(MMRE1) (37)

where MMRE1 is mean(MMRE) when UUCP = 0;
2. The influence of the input parameter AUCP and its value are calculated as (38):

δ2 = mean(MMRE) − mean(MMRE2) when AUCP = 0; (38)

Step 7: Correlation, Prediction

The Pearson’s [36], Spearman’s [37] and R2 [38] coefficients are monitored (39).

Correl(X, Y) =
∑N

i=1(xi − x)(yi − y)√
∑N

i=1(xi − x)2 ∑N
i=1(yi − y)2

(39)

The second and third parts are executed by the same algorithm as the first part, with
different projects and datasets being used. The second part uses the ISBSG dataset, but
with projects that were not used in the first part. In the third part, the Desharnais dataset
and combined dataset are used.

Additionally, prediction at 25%, 30%, and 50% is the percentage of the total number of
ANNs that meet the GA criterion (40) [39–41].

PRED(x)
1
n
·

n

∑
i=1

{
1, i f MRE ≤ x

0, otherwise

PRED(k) = count(MRE) < 25%
PRED(k) = count(MRE) < 30%

PRED(k) = count(MRE) < 50%, where k = 25, k = 30, and k = 50.

(40)

The second and third parts are executed by the same algorithm as the first part, with
different projects and datasets being used. The second part uses the also UCP Benchmark
(Mendeley) dataset, but with projects that were not used in the first part. In the third part,
the combined industrial datasets were used.

4. Discussion

With the UCP model, it is possible to measure the size of the system as with the model
of functional points. A model that uses system user characteristics and use cases is a newer
method of software evaluation. It is one of the most commonly used models due to the
exceptional evaluation results that its application can achieve. The disadvantage of this
model is that it does not consider the data structure in the system because such data are
not contained in the cases of use. Table 5 shows the results obtained by training the first
proposed ANN-L16 architecture on the used dataset. The number of iterations concerning
the set GA criterion was monitored. The GA criterion was met after four iterations. Based
on all MRE values in each executed iteration, the “Winner” network, i.e., the ANN network
with the lowest MRE value, was determined. Additionally, the MMRE value was calculated
for each iteration. The obtained value of the “Winner” network (ANN6) is 6.7%, and the
value for MMRE is 7.1%. In addition to examining the MMRE value, the convergence rate
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on all training data for the two ANN architectures was examined. It can be concluded that
the ANN-L36prim architecture quickly converges to the minimum knowledge of MMRE
compared to the ANN-L16 architecture (Figure 4).

Table 5. ANN-L16 training results.

No. of Iter. 1. 2. 3. 4.

ANN-L16 MRE GA MRE GA MRE GA MRE GA

ANN1 0.084 0.084 0.080 0.004 0.076 0.004 0.072 0.004
ANN2 0.196 0.196 0.112 0.084 0.082 0.030 0.073 0.009
ANN3 0.188 0.188 0.113 0.076 0.081 0.031 0.072 0.009
ANN4 0.085 0.085 0.077 0.008 0.074 0.003 0.072 0.003
ANN5 0.161 0.161 0.105 0.056 0.080 0.025 0.073 0.008
ANN6 0.069 0.069 0.068 0.002 0.067 0.000 0.067 0.000
ANN7 0.078 0.078 0.073 0.006 0.071 0.002 0.070 0.001
ANN8 0.151 0.151 0.105 0.046 0.081 0.024 0.073 0.008
ANN9 0.191 0.191 0.120 0.071 0.076 0.044 0.072 0.004

ANN10 0.073 0.073 0.080 0.007 0.074 0.006 0.073 0.001
ANN11 0.078 0.078 0.080 0.001 0.075 0.005 0.072 0.003
ANN12 0.130 0.130 0.084 0.047 0.074 0.010 0.070 0.003
ANN13 0.113 0.113 0.083 0.030 0.074 0.009 0.071 0.002
ANN14 0.094 0.094 0.080 0.014 0.072 0.008 0.071 0.002
ANN15 0.094 0.094 0.080 0.015 0.073 0.007 0.071 0.002
ANN16 0.102 0.102 0.082 0.021 0.074 0.008 0.071 0.002

GA 16 10 5 0

Winner 6.9% 6.8% 6.7% 6.7%

MMRE 11.8% 8.9% 7.5% 7.1%
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A graphical representation of the GA values, during four iterations, is shown in
Figure 5.

A graphical representation of the MRE value for the Winner network, relative to the
MMRE value on the training dataset, during the four iterations, is given in Figure 6.

Table 6 shows the results obtained by training the second proposed ANN-36prim
architecture on the used dataset. The number of iterations concerning the set GA criterion
was monitored. The GA criterion was met after six iterations. Based on all MRE values in
each executed iteration, the “Winner” network was determined, i.e., the ANN network with
the lowest MRE value. Additionally, the MMRE value was calculated for each iteration.
The obtained value of the “Winner” network (ANN10) is 6.9%, and the value for MMRE
is 7.0%.

A graphical representation of GA values, during six iterations, is shown in Figure 7.
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A graphical representation of the MRE value for the Winner network, relative to the
MMRE value on the training dataset, during six iterations, is given in Figure 8.
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The obtained results for the two proposed architectures, ANN-L16 and ANN-L36, in
all three parts of the experiment showed that the different nature of the data set does not
affect the complexity of the architecture used. That is, it does not depend on the value of
the input values. In the first proposed architecture, ANN-L16, all six input values were
used (where four are linearly independent and two linearly dependent), and the MMRE
value in all three parts of the experiment is 7.5% of Table 7. Using the second architecture,
ANN-L36prim, with four independent input values, the same MMRE value, of 7.5%, was
obtained in all three parts of the experiment (Table 7). The error differences in individual
parts of the experiment are not more than 0.5%, indicating the proposed model’s reliability.

Table 7. MMRE value in all three parts of the experiment (UCP).

Datasets
ANN-L16 ANN-L36prim

Part of Experiment
MMRE (%) MMRE (%)

Dataset_1
6.7 7.0 Training
7.1 7.1 Testing

Dataset_2 8.0 7.5 Validation1
Dataset_3 8.3 8.4 Validation2

AVERAGE(MMRE) 7.5 7.5

The huge values of the correlation coefficients (Pearson’s and Spearman’s rho) further
show the consistency of the actual and estimated values obtained using the proposed
models. In the ANN-L36prim architecture, the Pearson value is 0.983, which indicates an
exceptional interrelationship between the observed values (Table 8).

Table 8. Correlation coefficients (UCP).

Correlation ANN-L16 ANN-L36prim

Pearson’s 0.875 0.983
Spearman’s rho 0.784 0.962

Prediction represents the number of projects that have an error less than the set
criterion. Prediction can further confirm the validity and reliability of the models used. For
all three proposed criteria (PRED (25), PRED (30), and PRED (50)) and in all three parts of
the experiment, using both proposed architectures, the value is 100% (Table 9).
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Table 9. Prediction values (UCP).

Training

PRED (%) ANN-L16 (%) ANN-L36prim (%)
PRED(25) 100.0 100.0
PRED(30) 100.0 100.0
PRED(50) 100.0 100.0

Testing

PRED(25) 100.0 100.0
PRED(30) 100.0 100.0
PRED(50) 100.0 100.0

Validation1

PRED(25) 100.0 100.0
PRED(30) 100.0 100.0
PRED(50) 100.0 100.0

Validation2

PRED(25) 100.0 100.0
PRED(30) 100.0 100.0
PRED(50) 100.0 100.0

By examining the influence of dependent and independent variables on the change in
the MMRE value, it was shown that it is sufficient to use a four-dimensional vector instead
of a six-dimensional vector. The error with dependent input values on the four datasets
used is between −0.3 and 0.5, which is less than 1%. The most significant influence is the
input value of AUCP (Dataset_3), and the change in the value of MMRE is, in this case,
higher by 0.5%. The slightest influence has the input value of UUCW (Dataset_4), and
the change in the value of MMRE is, in this case, lower by 0.5%, which would mean that
the error can be reduced/increased if the observed values are further analyzed. It can be
concluded that the architecture with six input sizes can be replaced with the architecture
with four input sizes. That is, in the observed approach, the ANN-L16 architecture can be
replaced with the ANN-L36prim architecture (Table 10).

Table 10. Influence of the input values on the change in MMRE (UCP).

Dataset MMRE UAW UUCW UUCP TCF ECF AUCP

Dataset_1 6.7% 7.1% 6.7% 7.0% 6.7% 6.7% 7.1%
Dataset_2 7.0% 7.1% 7.0% 7.2% 6.9% 7.1% 7.2%
Dataset_3 8.0% 7.9% 8.1% 7.9% 8.1% 8.1% 7.5%
Dataset_4 8.3% 7.9% 8.4% 7.9% 8.3% 8.2% 8.0%

From Table 11, it can be concluded that the dependent variable UUCP has less impact
than the dependent variable AUCP. The most significant influence of AUCP (Dataset_3) on
the change in the MMRE value is 0.5%. The slightest influence of AUCP (Dataset_1) on the
change in the MMRE value is −0.3%.

Table 11. Influence of dependent variables (UUCP and AUCP) on the change in the MMRE value.

Dataset UUCP g − UUCP = MMRE − UUCP AUCP g − AUCP = MMRE − AUCP

Dataset_1 6.9% −0.1% 6.8% −0.3%
Dataset_2 7.1% −0.1% 7.1% −0.1%
Dataset_3 8.0% 0.1% 8.0% 0.5%
Dataset_4 8.2% 0.2% 8.2% 0.2%

max 0.2% max 0.5%
min −0.1% min −0.3%
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A graphical representation of the dependent input values of UUCP and AUCP with
the values of their errors is given in Figure 9.
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By comparing the results of the parametric method COCOMO2000 with improved CO-
COMO2000 and ANN, it can be concluded that the model error is reduced by
193.1/43.3 = 4.5 times. In the second proposed approach, comparing the parametric method
COCOMO2000 and the improved COSMIC FP and ANN, the model error reduction is
193.1/28.8 = 6.7 times. Compared with the COCOMO2000 parametric method with UCP
and ANN, the model error reduction is 193.1/7.5 = 25.7 times (Table 12; Figure 10). In
the first proposed approach, the lowest model error value is 43.3% for the ANN-L36 ar-
chitecture. In the second proposed approach, the lowest error value is achieved with
ANN-L36prim, with a value of 28.8%. In the third proposed approach, both proposed
architectures, ANN-L16 and ANN-L36prim, give the lowest model error value of 7.5%
(Table 12; Figure 10). It can be concluded that the third proposed UCP approach achieves
the lowest MMRE value. In addition, the ANN-L16 architecture in this approach converges
rapidly and reaches the “stop criterion” after the fourth iteration, which is also the lowest
number of repeated iterations that apply to all architectures used in all three proposed
approaches. The influence of dependent variables on the change of MMRE values in the
ANN-L16 architecture is less than 0.5%. It can be concluded that the improved UCP model
using the ANN-L16 architecture is the best-proposed estimate of effort and cost for software
project development.

Table 12. MMRE values for the approaches used.

MMRE (%) COCOMO2000 and ANN COSMIC FP and ANN UCP and ANN

COCOMO2000 ANN-L9 ANN-L18 ANN-L27 ANN-L36 ANN-L12 ANN-L36prim ANN-L16 ANN-L36prim
193.1% 72.0% 59.7% 45.3% 43.3% 29.7% 28.8% 7.5% 7.5%

By selecting the best ANN architectures, which achieved the lowest MMRE value
for each of the three proposed improved models, it can be concluded that: COSMIC FP
and ANN are 43.3/28.8 = 1.5 times better than COCOMO2000 and ANN; UCP and ANN
are 48.8/7.5 = 5.8 times better than COCOMO2000 and ANN; and UCP and ANN are
28.8/7.5 = 3.8 times better than COSMIC FP and ANN (Table 13).
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Table 13. COCOMO2000 and ANN vs. COSMIC FP and ANN vs. UCP and ANN.

MMRE (%)
COCOMO2000 and ANN COSMIC FP and ANN UCP and ANN

ANN-L36 ANN-L36prim ANN-L16 ANN-L36prim
43.3% 28.8% 7.5% 7.5%

The results shown for this approach (UCP) in the previous tables and figures were
processed in the R programming language and checked in the Python programming
language within the RStudio environment. The data required for statistical analysis were
processed using the IBM SPSS Statistical 25 software tool.

5. Conclusions

The proposed UCP model uses two different ANN architectures and four different
datasets, a sigmoid activation function, a fuzzification method, and a Taguchi method to
estimate the effort and cost of software development. By monitoring the MMRE value
and the convergence rate of each of these architectures, this model gives much better
results compared to the previous two models. Based on the three performed parts of the
experiment, it was concluded that the ANN-L16 architecture converges after the fourth
iteration and gives an MMRE value of only 7.5%, which is 35.8% better than the first
COCOMO2000 model. The error value of the UCP model is 21.3% lower than the other
proposed COSMIC FP model. Following the prediction through all parts of the experiment,
both ANN architectures of this model have a value of 100%, which means that the model is
exact, accurate, and reliable. In addition to the MMRE value, the influence of the dependent
variables UUCP and AUCP was monitored to check the influence on the change in the
MMRE value. The resulting error is less than 0.5%, so it can be concluded that the ANN-
L36prim architecture and vice versa can replace the ANN-L16 architecture. Compared
to the results obtained in previous studies, the best so far being 10% [22], our proposed
approach gave a better result. The main advantages of this model are as follows: the number
of iterations being in the interval from 4 to 6, which means reduced effort estimation time
thanks to the exceptional convergence rate of both architectures; the simplicity of the two
proposed ANN architectures; the high coverage of different real effort values; and the
lowest MMRE value being 7.5%. A possible drawback is the finding of new methods
that could further reduce the MMRE value. There are no specific limitations in applying
this approach. This model can be used alone or in combination with the previous two
for assessment depending on the company’s historical data for which the software is
implemented. Although not as standardized as the previous two, it is increasingly used
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by software companies, software engineers, and teams to assess the effort required to
implement software projects effectively.

Possible applications of the proposed model are as follows: signal processing; image
and speech recognition; the recognition and processing of natural languages and different
types of knowledge; the recognition of printed texts; and others. This model can also be
successfully used in the medical sciences to construct various software solutions to diagnose
many diseases. In addition, it is widely used in meteorology to forecast weather conditions.
It can be relevant in nuclear science, robotics, automatic control, telecommunications,
finance, and banking services.

Numerous new applications of the proposed model of artificial intelligence are ex-
pected in the future. Future research will focus on constructing models to solve problems
related to cybercrime.

Author Contributions: Conceptualization, N.R., D.R., M.I. and L.L.; Data curation, N.R., D.R., M.I.
and L.L.; Formal analysis, N.R., D.R., M.I. and L.L.; Funding acquisition, N.R., D.R., M.I. and L.L.;
Investigation, N.R., D.R., M.I. and L.L.; Methodology, N.R., D.R., M.I. and L.L.; Project administration,
N.R., D.R., M.I. and L.L.; Resources, N.R., D.R., M.I. and L.L.; Software, N.R., D.R., M.I. and L.L.;
Supervision, N.R., D.R., M.I. and L.L.; Validation, N.R., D.R., M.I. and L.L.; Visualization, N.R., D.R.,
M.I. and L.L.; Writing—original draft, N.R., D.R., M.I. and L.L.; Writing—review & editing, N.R.,
D.R., M.I. and L.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This study is based on the research and data that will be presented in
detail in the doctoral dissertation of Nevena Rankovic.

Acknowledgments: Mirjana Ivanovic acknowledge financial support of the Ministry of Education, Sci-
ence and Technological Development of the Republic of Serbia (Grant No. 451-03-9/2021-14/ 200125).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fadhil, A.A.; Alsarraj, R.G.H.; Altaie, A.M. Software Cost Estimation Based on Dolphin Algorithm. IEEE Access 2020, 8,

75279–75287. [CrossRef]
2. Stoica, A.; Blosiu, J. Neural Learning using orthogonal arrays. Adv. Intell. Syst. 1997, 41, 418.
3. Khaw, J.F.; Lim, B.; Lim, L.E. Optimal design of neural networks using the Taguchi method. Neurocomputing 1995, 7, 225–245.

[CrossRef]
4. Rankovic, N.; Rankovic, D.; Ivanovic, M.; Lazic, L. A New Approach to Software Effort Estimation Using Different Artificial

Neural Network Architectures and Taguchi Orthogonal Arrays. IEEE Access 2021, 9, 26926–26936. [CrossRef]
5. Langsari, K.; Sarno, R. Optimizing effort and time parameters of COCOMO II estimation using fuzzy multi-objective PSO. In

Proceedings of the 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI),
Yogyakarta, Indonesia, 19–21 September 2017; pp. 1–6. [CrossRef]

6. Quesada-López, C.; Madrigal-Sánchez, D.; Jenkins, M. An Empirical Analysis of IFPUG FPA and COSMIC FP Measurement
Methods. In International Conference on Information Technology & Systems, Bogota, Colombia, 5–7 February 2020; Springer: Cham,
Switzerland, 2020; pp. 265–274.

7. Symons, C. Function point analysis: Difficulties and improvements. IEEE Trans. Softw. Eng. 1988, 14, 2–11. [CrossRef]
8. Lavazza, L.; Liu, G. An Empirical Evaluation of the Accuracy of NESMA Function Points Estimates. ICSEA 2019, 2019, 36.
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