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Abstract: Evaluating the site-selection process for photovoltaic (PV) plants is essential for securing
available areas for solar power plant installation in limited spaces. Although the vicinities of highway
networks can be suitable for installing PV plants, in terms of economic feasibility, they have rarely
been investigated because the impacts of various factors, including geographic or weather patterns,
have not been analyzed. In this respect, this study conducts a case study on selecting the site for
PV-panel installation in the vicinity of a highway (e.g., slopes) by integrating geographic information
system (GIS) and building information model (BIM) techniques. Using location (e.g., highways, lakes,
rivers), monthly solar power output, and orographic (e.g., slope) data, suitable regions are identified
with the geo-spatial analysis; then, the amount of power that can be generated is evaluated in the
regions. For the proposed sites, the surface conditions and potential PV systems are transformed and
visualized in a BIM environment. In the results, the power output at optimal sites selected from the
case area was computed at a total of 8227 MWh and was transformed into solar-panel families in
three-dimensional environments. Thus, this study may help to identify optimal sites for PV plants in
the unused areas near highways.

Keywords: solar energy; geographic information system; photovoltaic site selection; building infor-
mation model; infrastructure planning; energy planning

1. Introduction

The demand for energy is steadily increasing with respect to the world’s total energy
supply by source. In particular, fossil fuels (e.g., oil, coal, and natural gas) represent a large
proportion of energy sources; for example, the global share of the total energy supply by
fossil fuels was more than 80% in 2018 [1]. However, fossil fuel use should be reduced
because it has negatively impacted the environment, such as the emission of greenhouse
gases that cause global warming.

Alternatively, renewable energy resources (e.g., solar energy, bioenergy, wind energy,
ocean energy) can alleviate environmental pollution [2]. Among the many renewable
energy sources, solar photovoltaic (PV) power generation is one of the promising renew-
ables, with an infinite supply without additional pollution (e.g., soil contamination, noise
pollution), ease of maintenance, and high reliability. Solar PV electricity production has
sharply increased by nearly 4.7 times (i.e., 472.981%) between 2008 and 2018 [3].

To fulfill the increasing PV demand, large areas are needed to install solar power
plants. However, South Korea has limited space to install power plants because it has
complex terrains, such as mountains. Thus, the analysis of potential sites for installing
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PV plants should precede the construction of effective, lucrative, and sustainable solar PV
plants in limited territories.

Recent studies have focused on investigating optimal sites for PV plants by integrating
geographic information systems (GISs) and multiple-criteria decision-making (MCDM)
frameworks (e.g., the analytic hierarchy process, AHP) [4]. MCDM-based solar-site se-
lection involves selecting the best candidates from among several alternatives in various
criteria; e.g., geographical (e.g., slope, aspect, land use) [5], meteorological (e.g., solar
irradiation, average temperature) [6], economic (e.g., land cost, construction cost) [7], and
locational factors (e.g., distance to urban areas, distance to main roads, distance to power
lines) [8]. Then, the candidate site is determined by estimating the weight of each factor.

For example, Garni and Awasthi [9] presented a GIS-AHP-based solar PV site-selection
approach using various criteria (e.g., solar irradiation, air temperature, slope, land aspect,
proximity to urban areas, proximity to roads, and proximity to power lines) for Saudi
Arabia. They revealed that solar irradiation had the greatest impact on site selection (32.2%
of the total). Tahri et al. [10] also investigated the evaluation of suitable candidates for PV
plants using GIS and AHP for Morocco; they reported that climate factors (solar irradiation:
42%, temperature: 22%) are important in site selection.

In previous studies, solar irradiation has been revealed as a critical factor for selecting
optimal PV power-plant sites. On the other hand, the direct application of PV power-
generation data (e.g., the map-type data in Heo et al. [11]) to investigate potential candidates
can be more useful in terms of energy management and economic feasibility. This is because
PV output data may not only be used to explore suitable sites but also to compute the
electricity production at the candidate sites and, further, use it for economic analyses, such
as marginal profits [12,13].

Despite these advantages, research has rarely been conducted on the application of
PV power output to site selection, as existing PV power-output estimation is only based on
single or a few historical data collected from specific regions (i.e., solar farms) and does not
consider topographical effects. Specifically, the insufficient use of historical PV power data
may create challenges when geographic or weather patterns differ from the area where the
data were collected. For example, the spatial heterogeneity of different terrain types (e.g.,
plains, mountains, and urban areas) can influence solar-energy estimation. Heo et al. [14]
revealed that the error of the estimation model was relatively higher in mountainous areas,
with higher spatial complexity than in plains or urban areas.

Moreover, although GIS and decision-making approaches are suitable for investigating
site selection for PV plants at a national scale, the application of PV site-selection techniques
to planning infrastructures (e.g., highway networks) and energy management remains
unknown. Previous studies on PV-plant site selection have largely focused on investigating
candidate sites at a national scale by analyzing the impacts of various factors (e.g., solar
irradiation, slope, aspect, proximity to transmission, proximity to the road) on electrical-
power production. For instance, Settou et al. [15] proposed the AHP and GIS-based method
for site selection of PV power plants in Algeria. They indicated that geographically suitable
area is extracted from analyzing the various factors (e.g., proximity to the electric grid,
global solar irradiation, proximity to the major roads network, proximity to cities, distance
to land use, soil type, and slope), and estimated the annual potential of electrical energy
using an equation proposed by Asakereh et al., 2017 [16] that multiplies global solar
irradiation in horizontal area, the total area of suitable land, the fraction of the active area
on the total area (70%), and the efficiency of PV systems converting sunlight into electricity.
Although existing approaches have included meaningful results and contributions, not
all of the estimated suitable areas for PV plants can be fully utilized because of low
economic feasibility, such as additional installations of electrical facilities in areas far from
transmission facilities or the high purchase price of land in private areas.

As an alternative, recent studies have applied site-selection approaches to directly
evaluate how much power can be produced in civil infrastructure areas, such as unused
areas near highway networks (e.g., noise barriers or slopes in highways). For example,
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Faturrochman et al. [17] integrated a noise barrier into PV systems located in the vicinity of
roadways. This integrated approach has the advantage of collecting direct and reflected
radiation from both directions of the road. In addition, Kim et al. [12] conducted an
economic analysis and computation of the solar-power generation resulting from the
installation of panels in the unused interchange areas of highways. In particular, the slopes
on both sides of the highway have potential benefits; highway slopes are generally unused
land, which leads to cost savings, such as purchasing land for power-plant construction [18].
Proximity to roads can enable the trading of electricity produced from PV plants without
installing additional electrical facilities, such as power lines or inverters [12].

Furthermore, in recent studies, visualization of data in three-dimensional (3D) space
is important to support decisions of predicting solar irradiation in realistic 3D objects (e.g.,
the roofs on buildings) [19]. For example, Chow et al. [19] and Kausika and Sark. [20]
presented the assessment of solar potential using 3D models with GIS. They predict the
annual [20] or hourly [19] solar irradiation map in buildings and surrounding terrain. In
particular, Gergelova et al. [21] represented to search of PV installation on roofs and predict
PV generation with GIS and computer-aided design (CAD) software. They segmented
suitable areas of roofs that satisfied geographical features (e.g., slope, aspect, hill shade)
through a 3D model from the LiDAR data.

Utilizing a site-selection approach for PV plants in highway construction or design
leads to efficient energy management and planning for highway projects [12,18]. However,
for better-informed site selection, a geo-spatial analysis is necessary to capture geographical
and topographical features that can vary the solar-power output [11]. Therefore, to fill
this gap in the literature, this study proposes an approach for optimally selecting sites
for PV plants using the map-type PV power-estimation model presented in [11] under a
GIS environment and visualizes the proposed sites in building information model (BIM)
environments, using the integration of BIM and GIS. This approach is capable of evaluating
solar PV power generation in suitable regions while planning and managing both energy
and highway infrastructure systems. By doing that, the primary objective of this research
is to support the least intrusive site selections of solar PV plants considering existing
infrastructure and terrain conditions.

2. Methods

This study conducts a case study to investigate and provide an evaluation method
for site selection using a PV power-estimation model [11] for installing PV plants near
highway networks in South Korea. The proposed evaluation method discovers optimal
sites that satisfy different constraints and restrictions (e.g., distance to highways, slope,
topography conditions) by a geo-spatial analysis with a GIS and computes the potential
monthly power output in the candidate areas. Specifically, available installation regions in
the study area (i.e., the district of Ucheon-myeon) were transformed and visualized in BIM
environments. The energy management could then be considered during the planning
stage of highway-infrastructure construction by representing the PV power output to the
solar panels as families in the BIM (including the monthly PV power output, shape type,
and coordinates).

Figure 1 illustrates the overall procedure for selecting the sites of PV plants, which
includes four stages: (1) data collection and processing, (2) geo-spatial analysis, (3) evalua-
tion of PV power outputs, and (4) result visualization. In the first stage, the terrain data
(a digital elevation map, or DEM) were collected from publicly available numerical maps,
and then PV power-generation data were obtained using the terrain data. The weather
data (i.e., solar irradiation, temperature, precipitation, and wind speed) were generated
using the computational method presented in [11].
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Figure 1. Four-step flowchart for selecting the sites of PV power plants.

In the second stage, a spatial analysis using a GIS was used to investigate suitable
regions near highway networks using different constraints and restrictions (e.g., distance
to highway (under 200 m), non-reservoirs, non-rivers, and lower slopes (<15◦)) to rule out
the regions unsuitable for installing PV plants.

In the third stage, to compute the power generation (MWh) produced in each 30 × 30 m2

area, the potential monthly power output is evaluated by computing the PV plant’s capacity
in the suitable regions extracted by the second stage. In particular, the evaluation examines
regional differences and monthly trends by comparing national and regional scales. In
addition, the distribution map and a heatmap are used to cluster the PV power outputs,
where power plants can be built on a large scale among candidate sites extracted from the
spatial analysis. Finally, the results are transformed into PV plants, as families of solar
panels in the BIM environment.

2.1. Data Collection and Processing

This study uses four terrain data types (e.g., highway networks, slope maps computed
from elevation maps, and river and reservoir maps from numerical data) and the PV
power-output data presented in [11]. All data used for site selection were digitalized using
a uniform coordinate system (i.e., World Geodetic System 1984 (WGS84) 52N), scaling (i.e.,
1/5000), and resolution (i.e., 30 × 30 m2 resolution). In particular, the PV power output per
capacity per hour data [14] are represented as raster images (i.e., tagged image file format,
or TIF), with 30 × 30 pixels, where one pixel is equivalent to 30 × 30 m2 (i.e., one PV power
output per capacity per hour is covered with 810,000 m2).

The location data (Table 1) were collected from continuous numerical maps to select
suitable regions for PV plants with geo-spatial analyses, where the spatial information (e.g.,
contours, reservoirs, and rivers) is represented by points, polylines, or polygons (vector
format). These location data were collected from the National Spatial Data Infrastructure
of Korea (NSDI) as unity coordinates (i.e., geodetic reference system 1980 (GRS80), EPSG:
5181). To unify the coordinate system of the location data, the raw location data’s coordinate
is transformed into WGS 84 52N format. In addition, in Table 1, orography data (i.e., slope
map) are extracted using a digital elevation model (DEM) generated from raster image-
based elevation maps (i.e., TIF format) transformed from vector-type elevation contours.
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Table 1. Description of data used for site selection.

Criterion Sub-Criterion Source Unit

Location Highway networks [22] m
Lake & reservoir [2] m

River [2] m
Climatic PV output per capacity per hour [11] h

Orography Slope [23] ◦

Ucheon-myeon in Gangwon-do, South Korea, was chosen as the case-study area
(Figure 2). The study shows a detailed spatial analysis and visualizes the construction
of solar PV power plants in the vicinity of highway networks in 3D BIM environments.
The district of Ucheon-myeon is geographically located between the 37.4◦ and 37.5◦ north
latitudes and 128.0◦ and 128.1◦ east longitudes. The case-study area lies at an elevation
of 000 m and is located in a mountainous area near a national park (Chiak-mountain). In
addition, the study area has an average slope of 17.14◦, which is relatively higher than
that of urban or plain areas (under 15◦) and includes reservoirs and rivers where solar
plants cannot be installed. Because this study area contains inappropriate conditions for
power plant sites, a delicate spatial analysis is required for identifying installation sites for
PV plants.
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2.2. Restrictions for Site Selection

For a suitability analysis, the distance to highway networks (>200 m), higher slope
regions (>15◦), and non-installable areas (e.g., river and reservoir areas) were considered
as constraint factors. First, the highway network data were confined to 200 m to limit the
candidate sites for installing solar power plants (Figure 3b). When the distance between the
transmission site and the solar panels exceeds 200 m, a high voltage drop causes a power
generation loss. In addition, to prevent such losses, additional costs are often incurred for
cable and solar inverter installations and impact the economic feasibility. Thus, this study
limited the distance to highways to a maximum of 200 m, using a buffer function in GIS.
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(a) existing national highway in South Korea, (b) restriction conditions of the distance to highway
networks (<200 m), (c) restriction conditions of non-installable areas (e.g., river, reservoir, higher
slope), and (d) the result of constrained regions by spatial analysis in the case area.

Furthermore, this study used three conditions (e.g., river, reservoir, and slope) to limit
areas that were not suitable for constructing power plants (Figure 3c). In South Korea, solar-
power facilities are limited to 15◦ to ensure safety, such as landslide prevention. Therefore,
this study constrains the search for candidate sites that satisfy gradients between 0◦ and
15◦. Overall, unsuitable sites are sorted out of the buffered regions representing highway
network areas using a map-overlay technique. Multiple dataset layers are overlapped to
identify the relationship of each layer, and then suitable areas are determined, as shown in
Figure 3d.

2.3. Evaluation of PV Power Output in Candidate Sites

The PV power output per capacity per hour data (unit: h) are normalized by dividing
the PV power output into the PV capacity to minimize the bias caused by collecting from
historical measurements in the low capacities. These data are obtained by estimating the
monthly available solar power at a raster level, using the computational method of [11]. The
training model for solar power generation is built based on terrain maps (i.e., DEM), solar
irradiation, temperature, wind speed, and precipitation: terrain maps were used to consider
the effect of reducing solar radiation (e.g., shadow effect) reaching the target terrain by
adjacent terrain, solar irradiation (e.g., direct beam, diffuse-sky radiation) that estimates in
tilted surfaces generated from terrain maps such as slope and aspect information was used
as a major energy source for solar power generation, and three weather components are
used to reflect the constantly changing weather requirements. In short, their method used
map-type data to consider the meteorological and geographical characteristics of a region
adjacent to the PV plant. Their forecasting model achieved a mean absolute percent error
(MAPE) of 8.639%.

Between January 2013 and March 2018, the estimation model showed the best per-
formance in March 2017 (i.e., a MAPE of 5.350%). Thus, this study proceeds with the site



Appl. Sci. 2021, 11, 8785 7 of 16

selection by computing the PV power output (unit of MWh) from the map showing the
estimated PV power output per capacity per hour between January and December 2017.
The PV power output is calculated by multiplying the PV capacity (i.e., unit of MW) by the
power generation per unit capacity per hour (i.e., unit of h).

To obtain information on the PV capacity, the number of panels installed in the
candidate area (i.e., 30 × 30 m2) is multiplied by the standard capacity of one solar panel
(Figure 4a). As shown in Figure 4d, the number of installed panels is computed by
multiplying the number of vertical installations (i.e., 30 m/width of solar panels (W) in
Figure 4a) by the number of horizontal installations (i.e., 30 m/separation distance (d) in
Figure 4b,c).
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tion of separation from horizontal surfaces, (c) computation of separation from tilted surfaces, and (d) solar PV power-plant
capacity at one raster pixel from the PV power-output map in the study area (Ucheon-myeon).

For example, as shown in Figure 4a, this study assumed that a solar panel has a
capacity of 400 W, a width of 1.024 m (W), and a height of 2.024 m (L). Then, the horizontal
separation distance (d) (Figure 4b,c) in the study-area region (37.474◦ north latitude) can
be calculated as 3.75 m, using Equation (1). However, because all candidate sites have
gradients, the separation distance is adjusted by considering the gradient (d’ = 4.471 m), as
shown in Equation (2).

d = L × [cos(a) + sin(a) × tan(latitude + 23.5◦)] (1)

d’ = d × sec(c), (2)

where d is the separation distance, L is the vertical length of a single panel, a (◦) is the angle
between the panel and the horizontal surface, c (◦) is the gradient of the tilted surface, and
d’ is the adjusted separation distance from d for considering the gradient. As a result, the
total solar installation capacity in the study area was 210 solar panels, and the PV output
capacity installed in 30 × 30 m2 is 0.084 MWh.
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2.4. Visualization of PV Output by Integrating a GIS and a BIM Environment

Visualizing the candidate sites for PV plants in a BIM environment can support the
communication and management of energy infrastructure systems. In this visualization
stage, the proposed sites and PV array systems are modeled in a BIM platform by integrat-
ing the GIS into the BIM environment through two processes: (1) data transformation and
(2) model visualization.

In the data-transformation process (Figure 5), to integrate the GIS and BIM environ-
ment, topographic data (i.e., terrain maps), spatial data (i.e., highway layer), and the result
of the PV power output are converted in different manners. The topographic data, repre-
sented by a two-dimensional (2D) DEM map on the GIS, are converted into a toposurface
map in the BIM, where points containing (x, y, z) coordinates are placed. Specifically, each
elevation value included in each grid of DEM map (raster image) is extracted to contour
map with an interval of 30 m, and its contour map is converted into a point layer including
geometry (x, y) positions from coordinate and its layer is saved as (x, y, z) format in CSV
(Comma-separated values) file format. Then, the CSV data, containing elevation data
from a certain location, are transformed into a toposurface in the BIM. Furthermore, vector
format–based spatial data (highway network) are converted into a DWG (from drawing)
file using the GIS function (Export to CAD). Based on Wu et al., 2019 [24], it was assumed
that there are no GIS data loss in the data conversion of this study.
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However, the converted highway network data do not contain z values (i.e., elevation),
indicating that the highway data are represented by the subregion, which overlays the x–y,
based on the highway network layer. In addition, the raster image-based result of the PV
power output is converted into a point layer and then saved in CSV file format, including
(x, y, z) coordinates and PV power-output values. This CSV file is imported into the BIM
using Dynamo, an open-source visual programming language for Revit, to address the
limitations of parametric modeling and data-management processes [25]. In short, the (x, y,
z) coordinates are transformed into solar-panel families in the BIM environment.

In the final step, the plan view of the PV plants in a candidate region near the highway
network is represented by placing a solar panel family on the same scale (i.e., 1/5000) as
the spatial data to the location points in the BIM environment. In particular, to pinpoint
the solar-panel families in the 3D environments (i.e., toposurface), which are the same
as the position of the expected solar PV power generation computed through the spatial
analysis (Section 2.2) and the evaluation of the PV power output (Section 2.3) on the GIS,
the elevation is set differently, depending on the dimensions of the spatial data (e.g., solar
PV power-output data, highway network data) in the BIM environment.
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The highway network data are represented in GIS in 2D format and cannot be placed
on the 3D toposurfaces. Therefore, as shown in Figure 6, the highway data are imported
1000 m higher than the toposurface to prevent them from being obscured by the toposurface.
Then, its data are converted into a subregion shape, based on 0 m in the building elevation
(level). Meanwhile, the solar PV power output data, including 3D coordinates (x, y, z),
are placed on a toposurface using the Dynamo function with the solar panel family. For
example, because point data (i.e., PV power output) cannot be imported directly into the
BIM, the Point.ByCoordinates function from Dynamo is used to position the PV power
output as solar-panel families on the toposurface.
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3. Results

Overall, Figure 7 shows that suitable regions for PV plants were found using the
maps of PV power output per capacity per hour (unit of h) obtained using the method
in [11], using a geo-spatial analysis of the GIS. In particular, this map (Figure 7a) represents
the distribution of the predicted PV outputs in March 2017, classifying them into five
quantile-based classes, with a range of 0 h to 154,492 h. In addition, the national map of the
PV power output (unit of h, Figure 7a) was restricted to regions 200 m from the highway
networks, using a buffer function (Figure 7b). The constrained map of the PV power output
is sorted into suitable regions through a geo-spatial analysis (Section 2.2) at a national scale
(Figure 7c).
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Figure 7b,c show that relatively lower PV output regions were excluded by the geo-
spatial analysis. In addition, the sorted PV outputs in suitable regions at a national scale
were zoomed in to the case area (i.e., district of Ucheon-myeon in South Korea, Figure 7d).
Figure 7d shows that the range of PV output values (133,009 h to 133,215 h) at a regional
scale is unchanged in comparison with the range of the PV output (0 h to 142,163 h) at a
national scale (Figure 7c).

To determine the amount of power that can be generated in the candidate regions, the
solar PV power output (MWh) is evaluated by multiplying the PV power per capacity per
hour (Figure 7) with the power-generation capacity (Section 2.3). The evaluated solar PV
power output is represented in the distribution plots through spatial analysis and different
map scales. Specifically, the distribution plots (Table 2) display the range and distribution
of the evaluated solar PV power output producible in each 30 × 30 m2 area within a 200-m
radius from the highway network.

Table 2. Summary of the distribution of PV outputs potentially produced in different conditions.

Condition
Area
(km2)

Monthly PV Power Output

Total
(GWh)

Mean
(MWh)

Median
(MWh)

Standard
Deviation

Range of PV
Output

Distribution

Within 200 m of
a highway at a
national scale

1896.130 29,002 13.887 13.967 0.697 7.9 to 16.7 MWh

Restricted area
that satisfies the
spatial analysis

at a national
scale

455.063 6784 13.531 13.754 0.920 9.4 to 15.4 MWh

Case study area
that satisfies the
spatial analysis

1.669 8.227 13.407 12.782 0.827 11.2 to 14.4 MWh

The potential production of the PV output within a 200-m radius from the highway
networks, without progressing the spatial analysis, at a national scale is computed as
29,002 GWh in an area of 1896.130 km2. Moreover, the distribution of the PV outputs was
within the range of 7.9 MWh to 16.7 MWh, with a mean, median, and standard deviation
of 13.667 MWh, 13.967 MWh, and 0.697 MWh, respectively. Furthermore, selected areas
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within 200 m of the highway networks were sorted into available regions (i.e., the area was
reduced from 1896.130 km2 to 455.063 km2) while satisfying the spatial analysis (Section 2.2)
to rule out the four factors (distance to road, slope, river, reservoir), that are inappropriate
for installing PV plants.

The restricted area that meets the criteria at a national scale is 455.063 km2, and the
available PV power output in this area is 6784 GWh (within the range of 9.4 to 15.4 MWh,
with a mean, median, and standard deviation of 13.531 MWh, 13.754 MWh, and 0.920 MWh,
respectively). Moreover, the evaluated PV power outputs selected at suitable sites at a
national scale were sorted into specific regions (district of Ucheon-myeon in South Korea)
for a detailed visualization in the BIM environment. The PV output production in the
Ucheon-myeon case area (area of 1.669 km2) is computed as a total of 8.227 GWh, within
the range of 11.2 MWh to 14.4 MWh, with a mean, a median, and a standard deviation of
13.407 MWh, 12.782 MWh, and 0.827 MWh, respectively.

Based on these results, we may infer that solar-power production can be affected by
spatial analyses and changes at the regional scale. For example, the power generation
output (29,002 GWh to 6784 GWh) and range of available production (7.9–16.7 MWh to
9.4–15.4 MWh) are reduced by applying the spatial analysis to the sites selected for PV
plants. In addition, the power-generation output (6784 GWh to 8.227 GWh) and range
of available production (9.4–15.4 MWh to 11.2–14.4 MWh) is reduced by applying the
spatial analysis to the sites selected for PV plants. Meanwhile, the mean and median
power output per unit area has increased as selecting adequate PV sites using spatial
analysis. Mean monthly PV power output per unit area has increased from 7.324 kWh/km2,
29.734 kWh/km2, to 8032.954 kWh/km2 along with site restrictions. In addition, the non-
installation areas of power plants at a national scale, which account for 7.196% of all
candidate sites, were excluded through the spatial analysis proposed in this study. It
implies that the suitable sites to install power plants for more centralized and efficient
electricity production are presented.

Additionally, to visually explore the geographical patterns of PV power outputs in the
case area, the distribution map presented in Table 2 was generated by classifying it into five
classes for visualization, as shown in Figure 8a. Figure 8a shows a trend in which energy
production is lower in the east. In addition, the heatmap in Figure 8b, which draws PV
power-output features as the representative surface of the relative density (i.e., indicating
density values, ranging from cool (i.e., sparse density) to hot (high density), was created,
as shown in Figure 8a. Unlike the PV power-output distribution shown in Figure 8a, the
heatmap tends to cluster in areas with low production. This implies that, although the
energy distribution located in the eastern region is lower than that in the western region,
the eastern region is considered more suitable for installing PV plants because the candidate
sites are densely clustered.
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The above results (compared to Table 2) confirm that regional differences (scale change
of the analysis region) can affect the solar-power generation using a specific date of PV
output data (i.e., March 2017). Thus, this study also identified the monthly trend of PV
power-output production at different scales of candidate sites by computing the aver-
age monthly PV power output (Figure 9). Overall, the monthly PV power output on a
national scale (blue line, Figure 9) achieves a mean, median, and standard deviation of
5,823,123 MWh, 5,793,198 MWh, and 969,678 MWh, respectively.
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When investigating the trend of PV power on a monthly basis, the highest power
generation of 7,592,664 MWh was observed in May 2017, while the lowest power generation
of 4,374,704 MWh was observed in December 2017. In addition, the monthly PV power
output in the case area (i.e., Ucheon-myeon district in South Korea) obtained a mean,
median, and standard deviation of 20,734 MWh, 20,959 MWh, and 4237 MWh, respectively.
When investigating the PV power trend on a monthly basis, the highest power generation
of 28,464 MWh was observed in May 2017 (red lines, Figure 10), whereas the lowest power
generation of 14,207 MWh was observed in December 2017. This implies that the similarity
of variation in monthly PV power output in the two regions may be affected by seasonal
variation, regardless of regional change.

To visualize the 3D PV plant installation in the vicinity of the roads, this study trans-
forms the results from a GIS environment (2D visualization) to a BIM environment (3D
visualization), as shown in Figure 10. In particular, the raster image-based solar PV power
output is transformed to point layers, including (x, y, z) coordinates and potential power
generation in CSV format, on the GIS. Then, the CSV format–based potential power gener-
ation is imported into the list arrangement with a solid shape using the Dynamo function,
as shown in Figure 10.

For example, each list consists of three elements: shape type (e.g., solid), solar PV
output (MWh), and coordinates (x, y, z). In addition, to show the construction of PV plants,
solid shapes are replaced with families of panels in the BIM environment. Each panel’s
family also includes an attribute of PV power-output values to help with energy planning
and highway construction management.
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4. Discussion

Locating suitable regions for installing PV plants is a pivotal step in planning energy
management in infrastructure construction. This research proposes a geo-spatial analysis–
based optimal-site selection approach considering unused sites near highway networks. It
uses digital numerical maps and raster image–based PV power output maps with a GIS. In
addition, the installation of PV plants in suitable areas is visualized in a BIM environment
to apply the concept of energy management to managing civil infrastructure (i.e., highway
networks).

Previous studies could only investigate potential areas for PV plants nationwide
using GIS and decision-making techniques (e.g., AHP). For instance, Colak et al., 2020 [26]
presented optimal site selection for PV plants using GIS and AHP techniques in the case
of Turkey province. They dedicated that ten variables (e.g., solar energy potential, land
cover, aspect, transformer centers, energy transmission lines, etc.) affect the site selection
of PV plants, and they finally selected the candidate sites by restricting to the less clustered
areas (i.e., area <20,000 m2). Also, Liu et al., 2017 [27] searched the optimal sites for PV
power plants using GIS and decision-making methods in four candidate sites in China.
They considered economic profit (e.g., initial investment, total revenue, maintenance cost,
outage cost), solar radiation, elevation, and temperature to execute the sensitivity analysis
for site selection. On the other hand, this proposed approach uses PV power-output maps
and thus, evaluates the potential production of PV power in suitable regions using the
proposed geo-spatial analysis. The experimental results show that, by using PV power
output maps, the proposed method can investigate suitable regions and evaluate the
potential production values (e.g., a total value of 6,783,725 MWh) of PV power output
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in the vicinity of highway networks. The result also demonstrates that the differences of
regional scales can affect the production of PV power (e.g., reduce the range of available
production from 9.4–15.4 MWh to 11.2–14.4 MWh) in Table 2. This study also focused on
the case study area of Ucheon-myeon (the total potential production value was 8227 MWh)
to investigate the candidate sites analyzed on a nationwide scale in more detail. In addition,
unlike recent studies that estimate and assess the solar power generation in a limited area
such as roof [19] using BIM, this paper visualizes as families of solar panels generated from
geo-spatial analysis on a 3D terrain map (toposurface map) with a BIM environment. In
particular, this study visualized the installation of solar panels in the same environments as
the realistic 3D terrain (including x, y, and z positions) near the highway by importing the
amount of potential electricity that can be produced in the suitable sites by spatial analysis
from GIS to BIM and documented the information of potential electricity generation in
virtual space (i.e., BIM environment).

The results show that the proposed approach enables the evaluation of power gen-
eration in the vicinity of highways as unused areas and explores suitable areas with high
production efficiency from the distribution map and heatmap (Figure 8a,b), where the
concentration of suitable regions for the construction of PV plants minimizes the addi-
tional installation of electrical facilities. In addition, visualizing the installation of solar PV
plants near highway networks in BIM environments may help the energy management and
planning of highway management by balancing the energy consumption during highway
maintenance and solar power generation produced on the selected suitable sites for PV
plants in this paper as building an independent smart grid system in BIM and GIS. For
example, if the electricity-consumption data are included in the BIM environment, along
with the potential power generation presented in this study, the energy self-sufficiency rate,
which indicates production surplus in relation to demand, can be efficiently predicted and
support the maintenance and planning of energy infrastructure systems. In this respect,
this research may not only help to investigate suitable regions for PV plants using PV
power-output maps at a regional and national scale but also be potentially utilized for the
energy management and planning of highway-network construction and maintenance.

Although this study can efficiently search for suitable sites for installing solar PV
plants with geo-spatial analysis using horizontal-based highway data as polygon shapes,
future studies need to address the following issues. The proposed method should be
developed by using 3D spatial analysis that can reflect the features’ 3D geometry exactly in
the site selection or solar-energy estimation, which could not be represented by 2D or 2.5D
analysis using DEM with the BIM-based highway network data and geo-spatial data (e.g.,
topography and meteorological data) [28].

This is because the current approach cannot be fully considered or defined for vertical
surfaces, such as the height difference between highways and solar PV plants. For instance,
the horizontal-based highway data did not reflect obstacle factors preventing solar energy
from reaching the candidate sites for PV plants, such as L-type side gutters, soundproof
walls, and changes in highway elevations.

Furthermore, this paper should replace the highway objects that display as subregion
shapes imported from 2D polygon with data using the 3D model-based highway design to
visualize the installation of PV plants near the highway roads. Due to the limitations of the
collected 2D data that is not given in the same section, it makes it challenging to assign
an elevation value to the highway data in the same section. Thus, the existing data in this
paper was converted into a subregion format and limited to highway data displayed in a
3D environment. Accordingly, future studies should be used to the level of detail technique
(LOD 350-level 3D design data that include slopes, side gutters, soundproofing, and eleva-
tions with industry foundation classes (IFC)) for integrating GIS and BIM environments to
implement a 3D-based geo-spatial analysis and more accurate visualization of installation
of PV plant for energy management in 3D environments.
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5. Conclusions

This paper proposed an evaluation method for the site selection of photovoltaic
(PV) plants, which used spatial analysis with a geographic information system (GIS) and
visualized the plan view of the solar PV plant installations in a building-information model
(BIM) environment for energy planning and management when constructing highway
networks. The proposed method can investigate suitable sites that satisfy various criteria
(e.g., distance to roads ≤200 m, slopes ≤15◦, and not in river and reservoir regions) at a
national and regional scale (a small district, Ucheon-myeon in South Korea). In addition,
this study conducts a visualization of the installation of PV sites in highway network
construction using GIS-based result data.

The major findings and contributions of this study are summarized as follows. First,
given the geo-spatial analysis, the proposed method can select optimal sites for PV plants
within the vicinity of highway networks (200 m). Second, the spatial analysis can be
used to discover the less intrusive regional areas where solar PV power generation can be
implemented (e.g., see Table 2). Third, based on the result of changes in the range of PV
production distribution, it was found that the regional scale affects solar PV power genera-
tion. Forth, the available regions for solar-plant installations analyzed from the GIS can be
incorporated into solar-panel families in a 3D environment using an integrated GIS and
BIM approach. Eventually, this approach will enable the transformation of evaluated solar
PV output values, leading to the search for potential sites for PV-plant installation without
regional features (i.e., level of complexity) for energy management in the maintenance of
highway infrastructures (Figure 10).

With the proposed method and visualization model, it is possible to find optimal sites
for PV plants and visualize the feasibility of installing new PV plants in the vicinity of
highway networks in a 3D environment.
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