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Abstract: In a recent paper we have described an optical implementation of a measure-once one-way
quantum finite automaton recognizing a well-known family of unary periodic languages, accepting
words not in the language with a given error probability. To process input words, the automaton
exploits the degree of polarization of single photons and, to reduce the acceptance error probability, a
technique of confidence amplification using the photon counts is implemented. In this paper, we
show that the performance of this automaton may be further improved by using strategies that
suitably consider both the orthogonal output polarizations of the photon. In our analysis, we also
take into account how detector dark counts may affect the performance of the automaton.

Keywords: quantum finite automata; periodic languages; confidence amplification; photodetection

1. Introduction

In the recent years, quantum computers have eventually leaped out of the laborato-
ries [1] and become accessible to a still growing community interested in investigating their
actual potentialities. Nevertheless, a full-featured quantum computer is still far from being
built. However, it is reasonable to think of classical computers exploiting some quantum
components. In this framework, quantum finite automata [2,3]—theoretical models for
quantum machines with finite memory—may play a key role, as they model small-size
quantum computational devices that can be embedded in classical ones. Among possible
models, the so-called measure-once one-way quantum finite automaton [4,5] is the sim-
plest, and it has been shown to be the most promising for a physical realization [6]. In fact,
restricted models of computation, such as quantum versions of finite automata, have been
theoretically studied [7-9] and, very recently, experimentally investigated [6,10].

In [6], a measure-once one-way quantum finite automaton recognizing a well-known
family of unary periodic languages [4], namely, languages L, has been implemented
using quantum optical technology [11,12]. In our implementation, a given input word is
accepted by the automaton, with a given error probability, whenever a single photon arrives
at the output of the device with a specific polarization. In particular, the experimental
realization, based on the manipulation of single-photon polarization and photodetection,
has demonstrated the possibility of building small quantum computational component to
be embedded in more sophisticated and precise quantum finite automata or also in other
computational systems and approaches [13-15]. Albeit the photonic automaton realized
in [6] is fed with single photons, it works in a regime where polarized laser pulses (coherent
states) are enough, up to detecting the intensity of the output signals instead of counting
the number of photons successfully passing through the device with a given polarization
(see in [6] for details).

Appl. Sci. 2021, 11, 8768. https:/ /doi.org/10.3390/app11188768

https:/ /www.mdpi.com/journal/applsci


https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0582-4941
https://orcid.org/0000-0002-7778-7257
https://orcid.org/0000-0003-3948-4658
https://orcid.org/0000-0002-2733-927X
https://orcid.org/0000-0001-7523-7289
https://orcid.org/0000-0002-9251-0731
https://doi.org/10.3390/app11188768
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11188768
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11188768?type=check_update&version=1

Appl. Sci. 2021, 11, 8768

20f12

In this paper, we propose an enhanced version of our photonic automaton mentioned
above, where, to further reduce the acceptance error probability, we consider not only the
photons with the “correct” polarization, but also the other ones. To achieve this goal, the use
of single-photon techniques turns out to be crucial, such as the detection of coincidence
count to reduce the dark-count rate of the photodetectors [16]. Analytical and numerical
results, supported by simulated experiments, show that the enhanced version allows to
reduce the error probability by orders of magnitude compared to the previous version,
or, analogously, to drastically reduce the mean number of photons needed to achieve the
same performance.

The paper is structured as follows. As our work requires some previous knowledge
from Theoretical Computer Science about formal languages and finite automata, Section 2
is devoted to introduce the reader to these topics, providing the relevant motivations.
In Section 3, we briefly review basics of formal language theory and the definition of a
measure-once one-way quantum finite automaton. Section 4 describes the implementation
of the measure-once one-way quantum finite automaton based on the polarization of single
photons, linear optical elements, and photodetectors. In Section 5, we explain how to
improve the confidence of the obtained measure-once one-way quantum finite automaton
by processing the number of counts at the detectors. We also introduce new strategies that
reduce the error probability, namely, the probability that a “wrong” word is accepted by
the automaton or a “correct” word is rejected. The numerical results and the simulated
experiments are reported in Section 6. We close the paper with some concluding remarks
in Section 7.

2. Formal Languages, Finite Automata, and Quantum Computing

In this section, we would like to expand on motivations that have been driving our
research covered by the present contribution and the previous one in [6]. The aim of our
work, that bridges between Theoretical Computer Science and Experimental Quantum
Optics, has been and is to show that a quantum computing device with finite memory is
physically realizable by means of photonics, using a very limited amount of “quantum
hardware”. To the best of our knowledge, our physical implementation, described here
and in [6], of a quantum finite automaton for language acceptation is the first proposed in
the literature. Thus, we have shown how the quantum behaviour of microscopic systems
can actually represent a computational resource, as theoretically established within the
discipline of Quantum Computing. From this perspective, the simple language L, intro-
duced in the next section and for which we build our photonic quantum finite automaton,
is not really the point here. Instead, the point is the concrete creation of a programmable
fully quantum computer with finite memory.

With this being said, we would also like to quickly comment on the language L, from
a Theoretical Computer Science viewpoint. Notwithstanding its simplicity, the language
Ly, plays a crucial role in Descriptional Complexity Theory (see, e.g., in [17-21]), the area
of Formal Language Theory in which the size of computational models is investigated.
In particular, a well-consolidated trend in Descriptional Complexity is devoted to study
the size of several types of finite automata. The reader is referred to, e.g., the work in [22]
for extensive presentations of automata theory. Very roughly speaking, the hardware of a
(one-way) finite automaton A features a read-only input tape consisting of a sequence of
cells, each one being able to store an input symbol. The tape is scanned by an input head
always moving one position right at each step. At each time during the computation of A,
a finite state control is in a state from a finite set Q. Some of the states in Q are designated
as accepting states, while a state g9 € Q is a designated initial state. The computation
of A on aword (i.e., a finite sequence of symbols) w from a given input alphabet begins
by having (i) w stored symbol by symbol, left to right, in the cells of the input tape; (ii)
the input head scanning the leftmost tape cell; and (iii) the finite state control being in the
state go. In a move, A reads the symbol below the input head and, depending on such a
symbol and the state of the finite state control, it switches to the next state according to
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a fixed transition function and moves the input head one position forward. We say that
A accepts w whenever it enters an accepting state after scanning the rightmost symbol
of w; otherwise, A rejects w. The language accepted by A consists of all the input words
accepted by A.

The one described so far is the original model of a finite automaton, called determin-
istic. Several variants of such an original model have been introduced and studied in
the literature, sharing the same hardware but different dynamics. Therefore, we have
nondeterministic, probabilistic and, recently, quantum finite automata (see, e.g., in [23-25]).
Furthermore, two-way automata are studied, where the input head can move back and
forth on the input tape.

Finite automata represent a formidable theoretical model used in the design and
analysis of several devices such as the control units for vending machines, elevators, traffic
lights, combination locks, etc. Particularly important is the use of finite automata in
very large-scale integration (VLSI) design, namely, in the project of sequential networks
which are the building blocks of modern computers and digital systems. Very roughly
speaking, a sequential network is a boolean circuit equipped with memory. Engineering
a sequential network typically requires modeling its behaviour with a finite automaton
whose number of states directly influences the amount of hardware (i.e., the number of logic
gates) employed in the electronic realization of the sequential network. From this point of
view, having fewer states in the modeling finite automaton directly results in employing
smaller hardware which, in turn, means having less energy absorption and fewer cooling
problems. These “physical” considerations, that are of paramount importance given
the current level of digital device miniaturization, have led to define the size of a finite
automaton as the number of its states. In particular, reducing or increasing the number
of states is studied, when using different computational paradigms (e.g., deterministic,
nondeterministic, probabilistic, quantum, one-way, and two-way) on a finite automaton to
perform a given task. Here, is where our simple language L;;, comes into play. In fact, this
language is universally used as a benchmark to emphasize the succinctness of several types
of automata. Several results in the literature shows that accepting L,; on classical models
of finite state automata is particularly size-consuming (i.e., it requires a great number of
states), while only two basis states are enough on quantum finite automata, as we will see
in the next section.

Modular design frameworks have been theoretically proposed [7-9], where more
reliable and sophisticated quantum automata can be built by suitably composing (see,
e.g., in [26]) easy-to-obtain variants of the quantum automaton for L;,. Hence, our work
provides crucial and concrete quantum components for such frameworks, and suggest in-
vestigating a physical implementation of some automata composition laws. More generally,
the Krohn—-Rhodes decomposition theorem [27] states that any classical finite automaton
can be simulated by composing very “simple” finite automata: one of these simple au-
tomata is exactly the one for L;,. From this perspective, our photonic quantum automaton
could be hardwired into “hybrid” architectures joining classical and quantum components
to build very succinct finite state devices operating in environments where dimension and
energy absorption are particularly critical issues (e.g., drone or robot-based systems [28]).

3. Measure-Once One-Way Quantum Finite Automaton

Here, we briefly overview the main concepts on automata and formal language
theory. We refer the interested reader to any of the standard books on these subjects
(see, e.g., in [22]), as well as to our contribution [6].

An alphabet is any finite set ¥ of elements called symbols. A word on X is any
sequence 0107 - - - 0 with 0; € . The set of all words on X is denoted by *. A language L
on ¥ is any subset of X*, i.e., L C X*. If |X| = 1, we say that X is a unary alphabet,
and languages on unary alphabets are called unary languages. In case of unary alphabets,
we customarily let & = {a} so that a unary language is any set L C a*. We let a* be the
unary word obtained by concatenating k times the symbol a.
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In what follows, we will be interested in the unary language L,; defined as
Ly = {a* | k € N and k(mod m) = 0}. (1)

This language is rather famous in the realm of automata theory, since it has proven
particularly “size-consuming” to be accepted by several models of classical automata, as
the number of needed states increases with m [6]. The reader may find a deep investigation
on this fact in the literature [22,29-31]. On the other hand, as presented in [6], very
succinct measure-once one-way quantum finite automata (1qfa’s, from now on) may be
designed and physically realized for L;,. Let us now sketch the main ingredients for a 1qfa
accepting Ly,.

If we consider the two orthogonal states |[H) = (1,0) and |V) = (0,1), the 1qfa is
defined as (here we use the formalism based on the Dirac’s notation; the analysis based on
a more general formalism can be found in [6])

Ar = {H), Uy, PH' P)

where |H) represents the initial state, the unitary operation applied by the automaton upon
processing any input symbol a is defined as

U = exp(—ifnoy) (©)
cosb,, sinfy
= , : (4)
—sin6, cos6,,
with 6, = 71/m and oy, the Pauli matrix, while PH = |H)(H| is the projector onto the

mono-dimensional accepting subspace spanned by |H). The probability p 4, (a¥) that the
1qfa A; accepts the word a* writes as

pa, (a) = p () = [(H|U | H) ®)

=1 k(mod m) =0
< cos?6,, otherwise.

= cos? (k) — { (6)

Therefore, the 1qfa A; perfectly recognizes the word a* € Ly, as we can set a cut
point A and an isolation p to the following values (see in [6] for details on accepting languages
with isolated cut point)

2 e
:1+COS Om and le cos Gm. %

A 2 2

However, .4, may also recognize an input word not in L, with a non-null probability.
In the following, we let a1 with k;(mod m) = 1 any of the word with the highest
probability of erroneously being accepted, i.e., cos? 6, which tends to 1 as m gets large.
This can be seen also by the fact that p — 0 as m increases.

As matter of fact, we can also introduce the following 1qft, where we still consider
the initial state |H), but, at the output, we focus on the final projection involving the state
|V), namely

Az = {|H), Un, 1~ PV}, ®)

where PV = |V)(V|. Indeed, A, is formally equivalent to A, as T — PV = PH. In fact,
the probability of accepting a word is now given by

=1 k(mod m) =0
< cos?0,, otherwise

pa(a*) =1—p¥(a") — { €)
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that is the same as in Equation (6), as one may expect. Nevertheless, we show in the next
section that the two are not equivalent in a photonic implementation for reasons that will
be clear soon.

4. Photonic Implementation of the 1qfa

A photonic implementation of the 1qfa described in the previous section was proposed
and demonstrated in [6]. Figure 1 depicts the main elements of the enhanced version of the
automata we will describe in the following.

k rotators of PY
polarisation detector

H PH
-'>Hﬂ,,ﬂ NG \;

single photon W Veostanian +sntianvy < detector

source . .
polarizing beam splitter (PBS)

Figure 1. Scheme of the photonic implementation of the 1qfa highlighting the main involved optical
elements. See the text for details.

The state of the automaton is encoded in the polarization of single photons, and the
Hilbert space is H = span{|H),|V)}. A single photon source generates a horizontal-
polarized state, |H), which is sent to k rotators of polarization, a* being the input word to
be processed. Each rotator corresponds to a unitary rotation of an amount 68,,, which is
thus language-dependent. After the rotators, the single photon state reads

|k0y,) = cos(kby,)|H) + sin(k6y,)|V) (10)

and it is sent to a polarizing beam splitter (PBS; see Figure 1) that reflects the vertical
polarization component and transmits the horizontal one. Finally, two photodetectors
placed after the PBS realize the projective measure of P! and PV. As the reader can see,
the scheme is almost the same of that proposed in [6], but here we will implement a new
inference strategy exploiting the outcomes from both the detectors.

As we observed in the previous section, the automata A; and A, accept with certainty
aword a* that belongs to L,,. However, there is a high probability that an incorrect word,
such as a*1 with k; mod m # 0 can be accepted, as we can see from Equations (6) and (9).
Therefore, strategies based on a single-photon shot may not be the optimal way to recognize
an arbitrary word a¥.

5. Confidence Amplification: An Enhanced Strategy

To reduce the probability of error, we can adopt a technique of confidence amplification
as also proposed in [6], namely, we sent a mean number of photons (N¢) and we count the
number of click N¥ (k) at the photodetector x = H, V, see Figure 1. Therefore, the observed
detection frequency at detector x = H, V for an input word a* will be

. NX(k) (Nos>1 o,
= <N(c>) - pAI_:m(ak). (11)

Thereafter, we turn our problem into that of discriminating among the corresponding
detection frequencies and, in particular, we can focus on those related to k = 0 (or, equiva-
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lently, k' mod m = 0) and k = 1 (or, more in general, k mod m = 1), since if k > 1 one
has fiT < fF(fY > f!). To implement this strategy, we set a threshold frequency as

1 H
x x +fl x =H,
fx :fO +f1 — 2 (12)
th 2 fV

where ff (f) is the highest (lowest) frequency of erroneously accepted words a*1, while
& (fY) is the frequency corresponding to the correct word. In this formula, we have
distinguished the two different strategies: for the H detector, fi! = 1, as the corresponding
photon will always be detected; instead, for the V' detector, f} = 0, as no photon is detected
when the word belongs to L,,. Therefore, the strategy is to accept the word if f,f{ > ftﬁ
(fY < f¥)and rejectitif i1 < fi(fY > f¥). From now on, we will refer to these strategies
as “H strategy” and “V strategy”, respectively.

In an ideal scenario, namely, without fluctuations in the sent number of photons, it is
clear that the two approaches are complementary and yield to the same conclusion, as the
single detections in H and V are perfectly correlated. Moreover, given that only the words
a* € L, satisfy the condition f; > fy,, with this strategy we have a zero error probability,
provided that (N¢) is large enough such that the integer part of NH (NY) is strictly positive
(negative) than N (k1) (N} (k1)), i.e., we have the conditions

{N’(I}{IJ _ \‘<Nc>(1 +2C0529m)J > {<Nc> cos? eer (13)
NG| = {<bﬁ)‘§“9‘%"J < [{Nc) sin? 6, . (14)

In Figure 2 (black lines and dots), we report the minimum values of (N;) such that the
last two inequalities hold.

Figure 2. Black line and dots: minimum value (NC>"”” such that Equation (13) (left plot) and
Equation (14) (right plot) are satisfied as a function of m in the absence of dark counts (Ng. = 0).
Red line and dots (Ng. = 50), blue line and dot (Ng. = 100): minimum vale (N)"" such that
Equation (22) (left plot) and Equation (23) (right plot) are satisfied. Notice the different scaling for
the y-axis.

In a realistic scenario, the photo-detection is influenced by two distinct noisy effects
that can affect the error probability. The first is that the number of detected photons follows
a Poisson distribution [32], that is, we have

pe ¥
n!

Poi(n; u) = (15)
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that is, the probability of detect n photons depends on the average number of detected
photons y. How this affects the error probability has been thoroughly addressed both
theoretically and experimentally in [6].

The second effect that we should consider in order to apply our enhanced strategy is
due to the dark counts, namely, the random counts registered by the detector without any
incident light on it. Being still related to the detection process, also the dark counts follow a
Poissonian distribution, whose mean (N4.) depends on the particular detector one choose
to use. In a typical quantum optics experiment, the dark-count rate ranges from tens to
hundreds of photons per second, but this number can be drastically reduced by using
coincidence counting techniques [16], up to making this effect negligible. For instance,
in the implementation in [6] the dark counts where only 0.001% of the effective coincidence
counts. As the dark counts occurs randomly, we cannot distinguish between a dark
count and signal one. Therefore, the probability of detecting N photon in the H or V
photodetector for a word a* is finally given by

“+00 +o00

PE(N) =Y Y Poi(n;17*)Poi(m; (Ngc) )0 m,N (16)
n=0m=0
= Poi(N; 1) (17)

where 77 = (N.) cos?(kf),) and 7V = (N¢) sin?(k6,,), while we have defined the overall
mean number of detected photons as

utl = (N.) cos? (k) + (Ng.) and  p} = (Nc) sin(kfp) + (Ngc)- (18)

As we noticed above, the dark count rate is usually very small with respect to the
detected count rate of the signal. Therefore, for the H detector which detects the higher
number of photons, see Equation (18), they are relevant only when (N) ~ (Ngc). On the
contrary, for the V detector, detecting the lower number of photons, their role is funda-
mental in determining the performance of the photonic automaton, as ), = pgc = (Ngc)-
This is the main difference between the two strategies: in the first, we need to distinguish
between two finite mean numbers of photon y,; = (N¢) + (Ng.) and yg , while in the sec-

ond case, we need to distinguish between the noise due to dark counts, being u), = (Ng.),
and yl‘é . However, to assess the performance of second strategy with respect the first one,
we need to evaluate the probability of errors in the two cases.

Let us first find the threshold values in the two different strategy. We need to find the
intersection between two Poissonian distributions for a word belong to L,, and a word
a*1 with highest probability of being erroneously being accepted, as show in Figure 3.
By imposing Poi(Nt’;l; yi‘) = Poi(Nt’fl,' u,), where x = H, V, we find an exact solution for
Nj, given by (see the vertical dashed line in Figure 3)

. P — M,

= Tk 1
T In g, —Inpf (19)

To highlight the dark counts effects, we introduce the ratio 7 = (Ng.)/ (N¢), and we have

H (N¢) sin? 0,
prm— 2
Nin In(1+7%) —In(cos? 0, + 1)’ 20)
2
NY = (Nc) sin” 0y, 1)

In(sin? 6, +7) —In(y)

In our framework, the accepting problem is introduced as binary discrimination
between the correct word and the word with the highest probability of error. However,
in the photonic realization of the automata [6], when the number of input photons is small
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and m is large, also word with larger k(mod 1) may contribute to the error. For this reason,
like in the ideal case, we establish the minimum number of input photon (N)"" which
are necessary to faithfully consider the problem as binary discrimination.

0015
~
mr:‘ 0.010
=
e
‘S 0005
~
0.000 : 0.00 |
400 450 500 550 600 650 700 750 0 50 100 150 200 250

n n

Figure 3. Probability density function of the Poissonian distribution in Equation (17) for the H detec-
tor (left plot) and the V detector (right plot) for (N¢) = 500, Ng. = 100 and m = 11. The probability
of error in Equations (25) and (29) are, respectively, p;/ = 0.034 (V detector) and pf = 0.205 (H
detector). The gray dashed line is the threshold values in Equation (19). The values of the involved
parameters have been chosen to better highlight the investigated effect.

To have faithfully binary discrimination the fluctuations due to the word with the
second-largest probability of error, i.e., a word a*2 with k(mod m) = 2, must be much
larger than the fluctuations due to the correct word, where here for “large” we mean at least
two standard deviations. In this way, the discrimination can be considered only between
the words a™ and a¥1. In the case of a Poissonian random variable, the standard deviation
is the square root of the mean for Poissonian random variables. Hence, we have the two
conditions, respectively, for the H and V detector

piy 20/ i < — 20/ i, (22)
HDe +2/EDe < ity — 24/ - (23)

In the first one we ask that the fluctuations due to the word with the second largest proba-
bility of error, i.e., a word k, with ky(mod m) = 2 are much larger than the fluctuations due
to dark counts. In a similar way, we define the threshold for the horizontal detector. These
equations can be solved for (N.) and set a lower bounds for it such that the probability of
error can be evaluated in term of a binary discrimination problem, as shown in Figure 2
(red and blue lines and points) .
Now, we can evaluate the probability of error for the two strategies. Indeed, this is
equal to
pe = p(d)p* (@ — a") + p(a™)p*(a™ — a), (24)

where we have denoted p*(a’ — a/) as the probability of detecting the word a’ as a/ by the
detector x = H, V. As we have no a priori knowledge on the input word we set the prior
probabilities p(a¥1) = p(a™) = 1/2, and for the V detector we obtain

- v v
1 LNthJ (‘ul‘(/)”e Hiy +o0 V(n;l e~ Hdc
TR PR @)
i e
_ [, TUNg] +1 pac) ~ T(INi) +1,;4,‘{1)] 26)
2 [N J!

1 Nesin? 0, +Nge o=t LNXJ
ey LN 27)
Nic LNthJ !
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where I'(a, x) is the incomplete Gamma function
—+o0
I'(a,x) = / et 1dt, (28)
X

Analogously, we may evaluate the probability of error for the detection of a horizon-
tally polarized photon, i.e.,

Ni | _uH Hyn, =My

1 | Ny (VH)ne ul +oo (‘uk) e "k

H

e I e e P @)
n=0 n=|NE|+1

Eventually, we can introduce a third strategy that combines the two described so far:
for each beam of photon, we propose to measure both the H and V polarization and to
combine the results so obtained. From a theoretical point of view, this is equivalent to the
automata presented before, as in the ideal case the two detectors perfectly agree, i.e., one
sees the photon and the other one does not see it. However, in the non-ideal case, noisy
fluctuations affect photodetection. As the fluctuations in the H detector are independent
from the one in the V detector, the probability of erroneously accepting it by looking at
both H and V is given as

pe = p(a)pH (@ — a")p" (a" — ™)+ p(a™)pH (@ — d)pV (@ = d)  (30)
where | here stands for joint.

6. Numerical Results and Simulations

The comparison of the three strategies is reported in Figure 4. We see that the V
strategy outperforms the H strategy for all the possible values of input photon, reaching
almost a negligible error for approximately an order of magnitude less than the H strategy.
The joint strategy realizes a further enhancement, even though the pg approaches 0 with
the same order of magnitude of (N.) as pY. We have also reported the solution for
the inequalities (22) and (23) as a point along the corresponding line: for smaller value,
the probabilities of error are not reliable as the contribution of the words with larger
k(mod m) is not negligible. In addition, increasing the average number of dark counts
slightly increases the probability of error for all the strategies considered, even though no
significant effects are detected for the considered range of values of (Ny.).

In Figure 5, we show the number of counts at the H and V' detectors from a simulated
experiment. We can see a significant reduction of the fluctuations in the V detector, which
is also marked by the significant difference in the probability of error pX and pY. The main
reason is that the counts in the V detector are affected only by the randomness due to the
dark counts (if present), while in the H detector the expected number of photons contributes
to the randomness of the outcomes as well. We have also reported the results for words of
length k(mod m) = 2, which are are significantly separated from NZ(m) and NZ¥ (k1) as the
value of (N¢) considered is much larger than the threshold given in (22) and (23).
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03 . —— H strategy 03 .
04 """" V strategy 04 m=
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Figure 4. Probability of error for the different strategies as functions of the average num-
ber of input photon (N¢) in a semi-log plot. Red line: m = 5; blue line: m = 11; green
line m = 23. (Top panels): H (solid lines) and V (dashed lines) strategies in the absence of dark
counts (left) and for (Ng.) = 100 (right). (Bottom panel): joint strategy in the case (Ng.) = 100.
The dots on the lines refer to the threshold values evaluated according to (22) and (23). See the text
for details.
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Figure 5. Simulation of N} (k) for the horizontal (left) and vertical (right) automata as a function of
the experimental run number (Rep). Green dot: k = m = 11, i.e., k(mod m) = 0; red dot: k = 12,
i.e., k(mod m) = 1; orange dot: k = 13, i.e., k(mod m) = 2; black dashed line: Njj . We considered
(Nge) = 100 and (N.) = 500 (the same parameters of Figure 3). The probabilities of error given
in Equations (25) and (29) are respectively p! = 0.034 and p!! = 0.205. The minimum number of
input (N¢) for the H detector, solution of (22), is (NH)™" = 238, while for V, solution of (23), is
(NYymin — 151,

7. Conclusions

In this work, we have presented an enhanced photonic implementation of 1gfa for the
recognition of unary language that significantly improves the performance obtained by
the one originally proposed in [6]. The protocol uses the polarization degree of freedom of
single photons, and exploits the possibility of detecting not only the horizontal polarization,
as in [6], but also the vertical one. The resulting scheme largely outperforms the original
automaton for smaller values of the mean number of sent photon (N,). In addition, we
have extended the results previously found with a detailed analysis of the conditions for
which such 1gfa can work with high reliability. We have evaluated the minimum number
of photons that must be sent in order to solve faithfully the inherent binary discrimination
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problem. As one would expect, the minimum (N,) is smaller for the automaton that relies
on the new strategy based on the V detector.

In our analysis, we have discussed the presence of dark counts in the detection of
both strategies, and we have evaluated their effects both on the probability of error and on
the minimum (N.). Eventually, we also examined a joint strategy in which we combine
both the H and the V detection, which can indeed be used at no additional cost. We have
therefore proved that when the number of sent photon is constrained to small values, the V
detection version of the 1gfa should be preferred.

Our results pave the way to the effective implementation of 1qfa using quantum
optical platform, thus opening the possibility of processing strings of input symbols using
feasible devices and, in turn, to introduce quantum languages and compare the complexity
of classes of languages in classical and quantum cases. More generally, as the assessment
of the actual power of quantum computers is one of the most significant challenges of
quantum technology, implementing quantum automata provides a relevant arena to better
understand the computing capabilities offered by quantum devices.
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