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Abstract: Mobile Augmented Reality (MAR) is designed to keep pace with high-end mobile comput-
ing and their powerful sensors. This evolution excludes users with low-end devices and network
constraints. This article presents ModAR, a hybrid Android prototype that expands the MAR ex-
perience to the aforementioned target group. It combines feature-based image matching and pose
estimation with fast rendering of 3D textured models. Planar objects of the real environment are
used as pattern images for overlaying users’ meshes or the app’s default ones. Since ModAR is
based on the OpenCV C++ library at Android NDK and OpenGL ES 2.0 graphics API, there are no
dependencies on additional software, operating system version or model-specific hardware. The
developed 3D graphics engine implements optimized vertex-data rendering with a combination
of data grouping, synchronization, sub-texture compression and instancing for limited CPU/GPU
resources and a single-threaded approach. It achieves up to 3× speed-up compared to standard
index rendering, and AR overlay of a 50 K vertices 3D model in less than 30 s. Several deployment
scenarios on pose estimation demonstrate that the oriented FAST detector with an upper threshold of
features per frame combined with the ORB descriptor yield best results in terms of robustness and
efficiency, achieving a 90% reduction of image matching time compared to the time required by the
AGAST detector and the BRISK descriptor, corresponding to pattern recognition accuracy of above
90% for a wide range of scale changes, regardless of any in-plane rotations and partial occlusions of
the pattern.

Keywords: mobile augmented reality; pattern recognition; vertex-based rendering; geometric in-
stancing; camera pose estimation; 3D rendering; ORB; BRISK; OpenCV; OpenGL ES

1. Introduction

Augmented Reality (AR) technology is an information-delivery paradigm that bridges
physical and digital objects intuitively and seamlessly. Such synchronization occurs in
real time through a user’s engagement with the camera of a mobile device. Key factors
that expand its usability are the access to digital content regardless location, the rapid
evolution of sensors and the high visual coherence of virtual and real scene. Mobile
Augmented Reality (MAR) is a promising support medium for motivating students in
learning, recreating in-person event experiences, staff training in healthcare and retail
products personalization. Respectively, the Cultural Heritage (CH) sector is undergoing
a similar digital transformation. Recent applications for touristic sites [1,2], museum
exhibitions and art galleries [3,4] demonstrate the profound impact of MAR on how data are
delivered, perceived and recontextualized. “Changdeok Arirang at Home” is an Android
AR application for remotely experiencing a complete navigation at an UNESCO World
Heritage site, exploiting 5G mobile edge computing (MEC) for fast and seamless interaction
with high-quality AR and Virtual Reality (VR) content [5]. Combined with adaptive data
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transmissions MEC technology, reduces the end-to-end latency while multiple users share
AR and Mixed Reality (MR) content through the ShareAR application [6]. Such multiuser
collaboration interfaces may be the response for open museums that seek a balance between
interactivity and distance through AR technology [7]. In case of outdoor MAR, the fast
transfer of real-world information and the location awareness complement each other.
InvercARgill is a MAR urban tour guide that retrieves on the fly location-based information
and navigates the user to cultural attractions and heritage activities [8]. Both applications
leverage commercial AR Software Development Kits (SDKs) for pose estimation, tracking
and rendering, i.e., ARCore [9] and Wikitude [10], respectively. Typically, the overlaid
multimedia information comprises text, animation, 3D graphics as well as CAD, wireframe
and low-poly models. However, the current advances in photogrammetry, range sensors
and fast surface modelling enrich the CH datasets with high-resolution, geometrically
accurate and realistic 3D reconstructions. Their large size and complex structure dictate
their integration into MAR applications, where visual fidelity is encountered as a crucial
factor. The obvious trade-off between visual quality and overall responsiveness is an issue
that needs to be tackled even by the commercial AR SDKs.

Regarding the technical requirements of the aforementioned MAR approaches and
the trends in media, high-end smartphones and tablets have turned into a necessity. They
incorporate depth APIs for depth maps using RGB cameras, 3D Time of Flight (ToF)
depth sensors, scanner-less LiDARs, multiple GPU texture resolutions as well as the
support required for 5G networks. Moreover, the AR SDKs are running on device models
that fulfil certain minimum hardware requirements, such as quad-core CPUs and the
existence of Inertial Sensor Units (IMU) sensors. The quality of the camera, the version
of the operating system and the architecture also determine the compatibility. While the
performance is increasing in terms of motion sensors and computational power, there
is still a certain number of users who continue to rely on mobile devices going back
almost a decade or long-abandoned versions of operating system. Since they are intended
for basic usage, they lack a high-resolution camera sensor, a 3G network as well as the
adequate CPU power and storage for intensive applications. Furthermore, their IMU
sensors are susceptible to drift over time and their battery drains out in case of sending and
receiving geo-coordinates [11]. They do not qualify support for dedicated SDKs and present
outdated features and compatibility issues with well-established applications like Google
Maps. The above-noted requirements and characteristics of the latest MAR applications on
hardware and software that could be considered as deterrent factors in terms of scaling
the AR experience to low-end devices are summarized in Table 1. Therefore, their users
are excluded from any kind of AR-enabled experience, unless more thought goes into
promoting the accessibility of this technology.

Table 1. Minimum technical specifications and requirements of the modern MAR applications.

Characteristics/Requirements

Hardware

High frame rate camera capture (≈60 FPS)
IMU system (magnetometer, gyroscope, accelerometer)

Display resolution
Quad-core CPU

Software
Android API level

OpenGL ES version
ABI (CPU Architecture) type

Other Network data connectivity

This article presents ModAR, a hybrid MAR Android prototype with cross-vendor
portability for planar surface tracking and overlay of 3D textured models. Physical surfaces
of the real environment detected in real-time act like an origin for positioning the 3D
content. The users can load or capture a pattern image of any planar object and then upload
a 3D model of the OBJ format from the internal storage of their device. Alternatively, they
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can select from a list of the default CH 3D models. The two main processes, i.e., camera
pose estimation and 3D rendering, are wrapped into separate modules and performed at
the C++ native side with the OpenCV library and at the Java side with the OpenGL 2.0 ES
API, respectively. JNI library handles the communication and sharing of objects between
computer and graphics work, such as frames and camera pose parameters.

The development targets low-end and mid-range mobile devices which are not certi-
fied or cannot enable AR technology, due to device compatibility and operating system
constraints. It adapts to low quality camera resolutions, lack of IMU data outputs, net-
work connectivity as well as limited memory and CPU/GPU capabilities. To meet these
constraints, two objectives are set: (i) fast and reliable pose estimation exclusively based
on feature-based image matching; and (ii) high-performance rendering and qualitative
visualization of complex 3D data. For the first objective, two combinations of feature
detectors and binary descriptors are evaluated using two different parameterizations. The
second objective is accomplished by explicitly managing the time and computations spent
on vertex and texture data using vertex data organization, optimized vertex and index
buffers, instancing, texture compression and synchronization primitives at run-time.

The main contributions of this article may be summarized as follows:

• lightweight AR system for inspection and interaction with 3D objects for both indoors
and outdoors;

• precise runtime planar surface recognition through feature-based image matching
with native C++ code and no dependency on AR SDKs or additional software;

• 3D OpenGL ES graphics engine dedicated to textured 3D models of OBJ format
leveraging workload distribution on multi-core CPUs;

• testing and systematic analysis of the performance of well-established feature detectors
and binary descriptors for low-end and mid-range devices regarding computational
time, CPU usage and robustness to changes of scale, rotation and lighting;

• investigation of the optimal combination of vertex data rendering and management,
synchronization and texture compression techniques for complex geometries.

The remainder of this article is structured as follows. Section 2 reviews the state-of-the-
art in OpenCV-based MAR applications, feature detectors and binary descriptors along with
evaluation studies for MAR applications and 3D volume rendering techniques. Section 3
presents the main concepts and methodology of the MAR system implemented with pure
computer vision algorithms and OpenGL ES graphics API operations. In Section 4 the
system architecture and the ModAR prototype are presented. Section 5 showcases ModAR
functionality through various experiments of image matching, pattern identification and 3D
overlays and reports the results of the systematic performance evaluation on compute and
rendering procedures. Finally, Section 6 concludes the findings, strengths and limitations
of the presented work and provides insights into future research.

2. Related Work

In recent years, most AR applications rely on AR SDKs like ARCore [9], WikiTube [10],
EasyAR [12] and Vuforia [13]. However, a few applications, mainly developed by the
research community, do not have any dependencies on any AR SDK and use methods
provided by the OpenCV library for camera pose estimation. For instance, among the
OpenCV-based applications, MAR applications have been developed for augmentation
of CH sites via multimedia content for Android devices [14] and via the past situation
of a monument for Windows tablet PCs [15]; a MAR application for Android devices
that recognizes pattern images in a campus and overlays 2D information is presented
in [16]; a MAR application that overlays a 3D cube on detected patterns is presented in [17].
However, the aforementioned Android applications either augment the real scene via
2D information or via elementary 3D shapes, whereas support for 3D textured models is
available for Windows-based applications entirely written in C++. In addition, a marker-
based MAR framework developed with the use of OpenCV and OpenGL ES is presented
in [18].
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Several detectors and descriptors have been developed for extraction of feature points
that are invariant to several geometric and radiometric transformations. Detectors usually
extract feature points in the so-called “scale space”, to reduce the effect of the change of
scale between images during image matching. Additionally, the detected points are usually
invariant to translation and rotation transformations between images. Other detectors,
which cannot yield subpixel accuracy, identify points of interest based on a comparison
of the gray tones of pixels with their neighbors. Finally, detectors that identify points of
interest based on supervised machine learning techniques have been developed, taking into
account the possibility for each pixel to be a distinct feature. The estimation of the dominant
orientation of the extracted feature points, which is required for achieving invariance in
rotation transformations, is usually based on the gradients of the pixels in the neighboring
area. However, machine learning techniques have also been proposed for dominant orien-
tation estimation. Additionally, a stage of affine shape correction is implemented by some
algorithms, in order to ensure invariance in viewpoint transformations between images,
taking into account the fact that for small image windows, perspective image changes
may be approximated by an affine transformation. Feature point description follows. The
descriptors may be divided into two main categories: floating point descriptors and binary
ones. Floating point descriptors use gradient estimation in a feature support window
(which usually depends on the scale of each detected point and defines its neighborhood).
They are characterized by greater distinctiveness compared to binary descriptors, but
they are computationally demanding. Binary descriptors are usually computed based on
comparison of gray values within the feature support window and save the comparison
results in the form of binary numbers. They are characterized by better speed performance
and lower memory requirements and are thus more suitable for real-time applications.
Machine learning descriptors have also been developed in recent years, being calculated
using a function with trainable parameters. Moreover, recent research on machine learning
techniques, including neural embedding matching [19], multiple kernel active learning [20]
and deeply supervised attention metric-based network [21], may be explored for effective
feature extraction and matching. An extensive evaluation of image feature descriptors
for vision-based marker-less AR applications was implemented in [22]. However, the
testing was performed using a PC-based AR application and was not optimized for MAR.
Additionally, an interesting accuracy measurement of state-of-the-art binary descriptors for
MAR applications was performed in [23] using an Android device. However, this study
does not focus on low-end devices, which is the scope of our work.

Within this article, several combinations of detectors and binary descriptors, optimized
for better performance in real-time applications, are dealt with, within the process of feature-
based image matching. FAST (features from accelerated segment test) is a detector [24]
characterized by speed in detecting corners, being faster than other commonly used point
detection operators (e.g., Harris, Difference-of-Gaussian, etc.). It can also be combined with
machine learning techniques to achieve even better performance in computational time. A
variant of FAST is the AGAST (adaptive and generic accelerated segment test) operator [25],
which shows improved performance through combining specialized decision trees. As
far as feature description is concerned, taking into account the fact that binary descriptors
are faster than floating point ones, only binary descriptors were selected to be tested in
the developed application. BRIEF (binary robust independent elementary features) [26]
is a binary descriptor that relies on random differences of pixels selected around each
feature point, after the image has been blurred. The description of feature points through
BRIEF is independent of changes in contrast and brightness. However, it is sensitive to
rotation transformations. The basic principle of the binary descriptor ORB (oriented FAST
and rotated BRIEF) [27] is the same as that of BRIEF, but the points described by ORB
are invariant to rotation transformations, thanks to the orientation of BRIEF descriptor
based on the angle calculated during the process of feature extraction via a variation of
the FAST operator, in which an orientation assignment mechanism has been added by the
authors of ORB. However, both BRIEF and ORB are sensitive to scale transformations. The
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BRISK (binary robust invariant scalable keypoints) descriptor [28] uses scale information
of the extracted feature points before their description, achieving also independence of
scale transformations, in addition to independence of rotation transformations. BRISK
determines the orientation of feature points detected in scale space and makes comparisons
of the values of tones of point pairs that are evenly extracted in concentric circles around
each feature point. The ORB descriptor uses the FAST detector along with an orientation
assignment mechanism; BRISK uses the AGAST operator.

3D rendering on the mobile tile GPU architecture is an active area of research with
significant number of methods, algorithms and implementations. The rest of the literature
review’s emphasis is on AR-dedicated and general 3D engines for the Android operating
system as well as building blocks and techniques of the OpenGL ES graphics pipeline that
are commonly used for performance optimizations. Graphics engines and frameworks for
Android MAR applications are mainly built under the license of commercial and free SDKs
mentioned above, such as Sceneform [29] for ARCore and the SDK-dependent rendering
engines of WikiTube, EasyAR and Vuforia on native SDK. Among these, Sceneform by
Google integrates an open-source SDK that uses physically based rendering (PBR) to build
AR applications without requiring OpenGL ES.

Regarding 3D loaders of general use with low-level bindings on OpenGL, Filament [30]
is a lightweight cross-platform PRB engine for glTF files format that adapts to low and
medium performance GPUs. 3D Model Viewer [31] is an Android application launched at
the Google Play Store, for loading and visualizing 3D models of OBJ, STL (STereoLithog-
raphy) and DAE (Collada) format. It further integrates features like collision detection,
3D stereoscopic view and raycasting. The Rajawali 3D framework [32] enables importing
and displaying various types of 3D models including OBJ, 3DS and FBX, in the context
of an optimized rendering scheme that supports object serialization and compression. It
has been coupled with Vuforia SDK as the base file parsing and renderer for MAR [33] as
well as with Jaguar client and ARCore SDK for low-latency MAR with object tracking to
the edge cloud [34]. A seminal contribution in the field is the open-source LWJGL Java
Game library [35] with direct and high-performance access to native APIs and bindings to
OpenGL ES. Besides gamification, it has been designed as a low-level interface for graphics
acceleration, addressing any type of visualization need.

In the context of the presented work, no ready-to-use rendering frameworks, engines
or file parsers were utilized. Instead, a graphics engine for high-volume 3D meshes and
low-end hardware was developed from scratch. Recent studies explore performance
acceleration for such large vertex data exploiting the newly introduced objects of shader
storage buffer objects (SSBO) that optimize the existing Uniform Buffer Objects (UBO) and
texture buffer objects (TBO) for random access data in shaders. These objects can be part of
any direct or indirect rendering function of the graphics API, including: Multi-Draw and
Multi-View rendering [36], indirect rendering that issues the drawing commands stored
at a buffer object of GPU and conditional rendering that schedules rendering commands
depending on visibility checks of an occlusion query [37]. In the proposed rendering
scheme, only the techniques compatible with OpenGL ES version 2.0 and associated with
the technical requirements being set are taken into consideration. This version still targets
the widest range of devices in the market and exposes programmable shaders that are
really useful for explicit graphics acceleration. However, evaluation testing on multiple
3D models records bottlenecks at the vertex and fragment processing of the graphics
pipeline. A performance amelioration strategy is the configuration of the number ration
of the shading processing units which substantially balances the load [38]. Occlusion or
visibility culling methods drastically reduce redundant fragment processing computations
by avoiding the processing of occluded surfaces of the 3D model, but are not suitable for
low-power devices [39,40].

Various practices for CPU limited cases and increased draw calls count have been
developed for performance acceleration. Instancing is tailored to complex meshes with
thousands of vertices and entails rendering of multiple identical meshes in a single draw
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call. It has been applied to Building Information Models (BIMs) along with occlusion
culling [41], to 3D CAD models in dynamic scenes [42] or during cloud rendering [43] and
to a k-d tree construction algorithm for massive sets of objects [44]. Regarding texture
management, a series of pre-processing algorithms, including mesh partitioning, parame-
terization and packing along with high-quality texture map generation, achieves a texture
size that maintains the original resolution [45]. A novel texture map representation and
adaptive sampling strategy that stores the appearance relative information directly on 3D
meshes has recently been proposed [46]. However, at the current development phase, the
large-sized meshes cannot be rendered from their compressed mesh texture. A contribution
worth mentioning on texture atlas compression preserves the geometric attributes of the 3D
model with random access decoding and view-dependent transmission [47]. Finally, some
fixed functions of OpenGL and principal methods for performance boost and visual quality
include frustrum culling, per-vertex operations, shader reduction and texture filtering. A
minor degradation of visual quality using a combination of simple techniques compensated
for an average of 19% performance improvement in [48]. The problem of optimizations
on single-threaded applications for low-end hardware has not recently been tackled, as
developers are taking high-end smartphones ownership into granted. Building MAR is
still an arduous task. Designing immersive AR experiences with a low-quality camera, and
for low functional and digital literacy users is even more challenging, but it really achieves
AR democratization.

3. Methodology

Within this section, the pattern-based MAR methodology followed by the ModAR is
presented. The pattern object is assumed to be a planar rectangle surface. A nadir image of
the pattern object, herein after referred to as pattern image, is required for augmentation of
the real-world frames via a 3D model, also required by the proposed method, along with
the camera internal parameters.

The origin of the world coordinate system is assumed to be located at the center of
the pattern object. The X and Y axes lie on the pattern object plane, while the Z axis is
perpendicular to it, pointing to the camera. The X and Y coordinates of the four corners
of the pattern object in the world coordinate system are computed using the normalized
width (W) and height (H) of the pattern image, according to Equation (1):

W =
cols

max(rows, cols)
, H =

rows
max(rows, cols)

, (1)

where cols and rows are the number of columns and rows of the pattern image, respectively.
Thus, the X and Y coordinates of the four corners of the pattern object range from −1 to 1.
Their Z coordinate is set to zero (Figure 1).

Figure 1. Definition of the four coordinates of the pattern image in the world coordinate system.

3.1. Feature Extraction and Image Matching

Feature points are extracted once in the pattern image (offline) and in every camera
frame during runtime. The following combinations of detectors and binary descriptors
are dealt with, within the process of image matching in ModAR: (i) the oriented FAST
detector (i.e., FAST with an orientation assignment mechanism developed by the authors of
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ORB) combined with the ORB descriptor; and (ii) the AGAST detector combined with the
BRISK descriptor. ORB uses the oriented FAST detector, while the BRISK descriptor uses
the AGAST operator. These combinations of detectors—descriptors have been proposed
by the authors of these algorithms, i.e., [27,28], respectively.

The stage of finding correspondences between the extracted feature points is per-
formed by matching their descriptors using a similarity measure. Whereas in case of
floating-point descriptors, this measure is usually the Euclidean distance between the
descriptors, in the case of binary descriptors, the Hamming distance is used. It is calculated
as the number of positions at which the binary values of the descriptor vectors are different.
However, the minimization of the Hamming distance does not suffice, and thus it is com-
bined with other techniques in order to reject incorrect correspondences. In our work, a
cross-check test is implemented. According to this test, the descriptor of each feature in the
pattern image is compared with the descriptor of every feature in the real-world frame and
some candidate correspondences are returned. These are additionally checked through
reverse comparison. Thus, two feature points, i and j, are matched if the nearest neighbor of
the descriptor of point i in the pattern image is the descriptor of point j in the camera frame
and reversely if the nearest neighbor of the descriptor of point j in the camera frame is the
descriptor of point i in the pattern image. However, after cross testing, many outliers still
remain. Therefore, a maximum accepted distance is defined as a threshold (equal to 1/3 of
the descriptor length in bits) and the correspondences are rejected if the Hamming distance
between the descriptors of the matched feature points is above this threshold. In this
way, a significant number of outliers is removed, although a few incorrect matches are not
detected. These are rejected using the RANSAC (random sample consensus) algorithm [49].
The latter is applied if at least 8 matches are detected. Otherwise, the real-world scene
is not augmented, as it is considered that the pattern cannot be recognized in the frame.
RANSAC calculates the parameters of a mathematical model using a data set, which may
contain many errors, relying on the use of minimum data. In the case of ModAR, the
dataset consists of the remaining correspondences and the model is the geometric relation
between the pattern image and the image of the planar pattern object in the camera frame,
i.e., a 2D projective transformation (homography). The correspondences that verify the
homography computed by RANSAC constitute the inliers.

3.2. Pattern Recognition and Camera Pose Estimation

The homography matrix is linearly calculated by RANSAC, with the use of the best
combination of four matches, without using all the inliers detected by the algorithm.
Thus, the initial homography estimation, obtained by RANSAC, is refined using all the
inliers, through nonlinear optimization using the Levenberg–Marquardt algorithm [50]. If
a minimum number of 8 inliers is detected by RANSAC, pattern recognition takes place
and the 3D model is rendered, superimposed on the camera frame. Otherwise, the scene is
not augmented, as the pattern object cannot be recognized in the frame. The recognition
of the pattern object in the camera frame takes place through calculation of the pixel
coordinates of its four corners, using the estimated homography transformation and the
pixel coordinates of the four corners of the pattern image.

The estimation of the camera 6-degrees-of-freedom (6-DOF) pose for every camera
frame is accomplished using the camera interior orientation parameters, the pixel coordi-
nates of the corners of the planar pattern object in the camera frame and their corresponding
coordinates in the world coordinate system. The results of the aforementioned computa-
tion are the translation of the origin of the world coordinate system into the projection
center, which is the origin of the 3D Cartesian camera system, and the rotation of the world
coordinate system into the camera system. The mathematical model used is the projection
transformation, expressed by Equation (2):
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λ

 x
y
1

 =

 c
0
0

0
c
0

x0
y0
1

 r11
r21
r31

r12
r22
r32

r13
r23
r33

t1
t2
t3




X
Y
Z
1

, (2)

where x, y are the image coordinates of a point in the camera frame corrected by the effects
of distortion; X, Y, Z are its real-world coordinates; c is the camera constant; x0, y0 are the
coordinates of the principal point; rij are the elements of the rotation matrix R; ti are the
elements of the translation vector t; and λ is a scale factor.

The elements of the joint rotation-translation matrix are computed linearly according
to Equation (3), after undistortion of the image coordinates of the four corners of the pattern
in the camera frame and computation of the 2D homography H that relates the X, Y world
coordinates of the pattern with the corresponding undistorted image coordinates:

r1 = λK−1h1
r2 = λK−1h2
r3 = r1 × r2
t = λK−1h3

where

h1 =
[

h11 h21 h31
]T

h2 =
[

h12 h22 h32
]T

h3 =
[

h13 h23 h33
]T

r1 =
[

r11 r21 r31
]T

r2 =
[

r12 r22 r32
]T

r3 =
[

r13 r23 r33
]T

and λ =
1

‖K−1h1‖
, (3)

where hij are the elements of the 3 × 3 homography matrix.

Due to noise in data, the computed rotation matrix R =
[

r1 r2 r3
]T may not

satisfy the properties of a rotation matrix. Thus, it is “coerced” to satisfy the orthogonality
condition RRT = RT R = I by calculating its singular value decomposition (SVD), thus
factoring it into two orthonormal matrices U and V and a middle matrix W with the
singular values of R in its diagonal, as shown in Equation (4):

R = UWVT . (4)

The best approximating matrix is then given by Equation (5) [51]:

R̂ = UVT . (5)

Then, the rotation matrix is transformed to a 3D rotation vector, using the Rodrigues
rotation formula [52]. This vector indicates the direction of the rotation axis with its mag-
nitude being equal to the magnitude of the rotation. This axis-angle representation is
more compact than a rotation matrix, so it is more suitable for optimization procedures.
Subsequently, the 6-DOF camera pose is optimized via the Levenberg–Marquardt algo-
rithm and the rotation vector is converted back into a 3 × 3 rotation matrix using the
Rodrigues formula. The result of this process is the joint rotation–translation matrix [R|t]
for each frame.

3.3. 3D Rendering

A 3D geometry encoded in the OBJ format consists of the object file (.obj) and the
material file (.mtl). Wavefront OBJ format properly stores the vertices, faces, normal
textures and texture coordinates. The basic rendering CPU-bound technique is described
as follows. On initialization, the 3D renderer sends the data to a buffer of memory called
Vertex Buffer Object (VBO) which can be accessed by GPU. The OpenGL ES app reads the
attributes of the vertex data and maps them to the vertex shader as attribute values. The
vertex shader expects the position of the vertex to be defined in clip space, relative to the
camera view. Thus, a sequence of transformations, namely Model View Projection (MVP),
is applied to the vertices at each frame and is updated during drawing calls. The model
matrix MMODEL transforms them from the object coordinate system to their υ’ position
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in the world. The view matrix MVIEW sets the translation from the world coordinates to
the, not yet projected, camera coordinates. The separation of the two matrices is rather
conceptual; we can refer to a single matrix called MMODELVIEW. At this point, the coordinate
system is assumed to be centered at the origin, so the MMODELVIEW matrix actually contains
the transformation that places the 3D model in front of the camera. These coordinates are
normalized by applying a perspective projection that is mathematically represented by the
projection matrix MPROJ. Therefore, the transformation of the 3D coordinates in 2D screen
coordinates of the homogeneous space is expressed by Equation (6):

υ′ = MPROJ ·MVIEW ·MMODEL·υ. (6)

Then, at each frame, the application sets the vertex and index buffer iterating over
the different materials and binds the corresponding one to the GPU. The fragment shader
calculates the final color of on-screen pixels, using the interpolated values of UV texturing.
It parses the UV texture coordinates of the texture image of the corresponding 3D model
in order to determine how the 3D surface should be painted. These images are called UV
texture maps and consume the largest amount of the available memory; thus, optimizations
on texture size, format and usage are inevitable for low-end devices. Firstly, the files are
compressed offline with ETC-pack (ETC1 type) and uploaded with GL_RGB8 image format
in order to be stored in RGBA order. Then, sub-texturing is applied with the format PVRTC,
and at a certain ratio, referred to as the level of detail of the sample image. That value
depends on the size of the base mipmap level, i.e., level 0, that defines the effective size of
each texture image. When parts of the textured mesh are updated from the image data, it
is common to copy the entire image. To prevent high texture memory consumption, an
alternative strategy is followed: the whole width of the image is copied, while vertically,
only the part that has changed is copied. Multiple framebuffers are finally used for
the offscreen rendering. During the rendering loop, performance is impacted by high
faces count. Moreover, CH models are georeferenced, packed with coordinates of large
values that may exceed the standard floating-point precision in depth buffer as well as in
texture mapping. In order to efficiently process vertices, a method based on vertex data
organization, frustrum culling and instancing is applied.

The OBJ files are merged into the same buffer objects with the same vertex format
using the same uniform values of a single shader program. To render individual meshes
with a single draw call, offsets are set in order to pick and choose between them. The
model space is rearranged so that all attribute positions are packed in a range of [−1, 1]
around the origin. After calculating the minimum/maximum values of their 3D geometric
coordinates among all positions, the center point is subtracted from all vertex positions
with the corresponding scaling. This center point offset and scale is applied at MMODELVIEW.
Normals are also converted into normalized integers stored in vertex arrays. Filling vertex
buffers with half float coordinates improves the overall rendering performance. Moreover,
indexed draw calls of a small index type are used while the vertices of the meshes are
drawn. This decreases the amount of index data that the GPU needs to access for each
draw call, at the expense of slightly more complicated application logic. To reduce the
scene range and the amount of data transmission between CPU and GPU, chunks of the
models that are not temporarily displayed are excluded using frustrum culling. Only the
vertices that are visible, even partially, are sent to the GPU. This is achieved by setting the
positive values of near and far distances into the orthographic projection matrix.

During instancing, the same mesh is being drawn multiple times. This process
involves storing n matrices in a uniform buffer and calling them once to draw n copies.
The matrix needed for each instance is fetched from the uniform buffer using an indexed
unique value that has to be declared in the shader. The geometry-instancing technique
renders all vertices and triangles of a scene through the shader using one call [53]. Unique
attributes, such as transformation matrices, can be provided for every single occurrence of
the mesh but repetition is a priori. In our case, the AR session comprises one 3D model that
is loaded once the camera module detects the pattern and image matching occurs. When
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tracking is lost between 2 consecutive frames, the 3D model is drawn again at the specific
pose. Destroying and re-rendering or creating a copy of the 3D model’s data to a new
object are expensive procedures for low-end GPUs. Therefore, a batch system that renders
all the active models based on geometry-instancing has been developed. The vertices
of the meshes are already stored into a vertex buffer and the transformation matrices
to a uniform buffer. Then, an instancing stream that contains the index of the matrix
within the uniform buffer is created. The index should be used by the vertex data when
rendering and this approach leads to an identical instancing setup and uniform buffer data.
Besides instancing copies of a single mesh, this technique achieves fast drawing of multiple
non-identical meshes.

The aforementioned methods and proposed strategies are implemented in the context
of an independent 3D graphics engine that configures a complete rendering pipeline for
OBJ 3D models. They reside as activities or functions and constitute building blocks for the
rendering and visualization of the AR scene of ModAR. In addition, they can be built and
used standalone for any other graphics application based on OpenGL ES 2.0.

3.4. Augmented Reality

The AR functionality entails the registration, i.e., the spatial alignment of the real and
virtual objects. For marker-less AR based on pattern detection, the 3D model is expected to
be placed in the center of the pattern, with the Z axis in the direction of the camera. The
coordinates of the vertices of the 3D model in its local coordinate system are transformed
to the world coordinate system by being normalized in the range [−1, 1]. They may also
be multiplied with a user-defined scale factor, in order to give the 3D model the intended
size relatively to the pattern object. The data needed to achieve the registration and the
visualization of the 3D overlay are: (i) the parameters of the camera exterior orientation
estimation, (ii) the camera calibration matrix, (iii) the pattern image as well as (iv) the draw
and load functions of the 3D engine. In our implementation, the camera pose parameters
constitute a shared resource that should be accessed by the compute and rendering module.
For the synchronization of access and the execution of the various calls, semaphores are
exploited. They are memory variables in the form of integers, indispensable for multi-
tasking programming. The 3D model’s pose tracking must wait until the semaphore’s
value is positive, then changes the semaphore’s value by subtracting one from it. When
it is finished, the thread performs feature extraction and pattern detection, which change
the semaphore’s value by adding one to it. However, whenever any process waits, it
continues checking for the semaphore value and waste CPU cycle. To prevent busy waiting,
a system call block is exploited and a queue is created to contain the functions that got
blocked while performing down operation. The process which is currently being executed
is added to the queue, and when completed, it calls the signal function and the previous
process in the queue is resumed. Thus, synchronization prevents extra memory loads and
multiple waisted memory cycles. The elements of the estimated joint rotation-translation
matrix [R|t] of the camera pose object are converted to float values and define the current
model matrix MMODEL. Then, the known intrinsic camera matrix MCAM is translated
from a perspective projection into an OpenGL projection matrix MProj. The view frustrum
specifies the perspective projection MPersp that is then converted into normalized device
coordinates NDC in the range [−1, 1] in 3 axes, according to Equation (7), which describes
their inverse correlation.

MProj = NDC×MPersp. (7)

The clipping points between the “near” and “far” planes of the view frustrum cut it
perpendicularly to the viewing direction. The distance between them affects the precision
of depth-buffering. If the “near” value is reduced, the pixel of vertices near the “far” plane
might be wrongly rendered. Instead of “near” and “far” values, the depth limits are defined
with the field of view (FOV) and the aspect ratio. The AR scene rendering further involves
construction of the vertex and fragment shaders, parsing of the 3D OBJ file, its material
properties and its sub-texture image as well as the lighting and camera settings.
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4. Implementation
4.1. System Architecture

The OpenCV C++ library is used for the computer vision algorithms at the Android
NDK, while the graphics and rendering pipeline are implemented using the OpenGL 2.0
ES API at the Android SDK. The only access from the Java code to C++ is the JNI library
that acts like a bridge for sending and receiving the result of events. The native module
is compiled as a shared library. It is produced by the compilation of the OpenCV C++
native library with the CMake software and is dynamically linked to the source code. The
3D graphics engine wraps the OpenGL procedures on per-vertex calculations, mesh and
texture parsing as well as shader combinations based on render state.

The activity diagram of Figure 2 illustrates the main processes performed by the
ModAR prototype: pattern detection (processes indicated by color outline) and 3D model
rendering (processes indicated by gray outline). The # symbol denotes function or construc-
tor; the types of variables are indicated with italic font; the parameters inside parentheses
are data passed to functions/constructors; the parameters after the: symbol are data re-
turned by functions. These processes run concurrently, each on a thread and share during
execution the camera exterior orientation parameters of each frame (i.e., rotationMatEle-
ments and translationVecElements) and the information of whether the pattern has been
recognized in the frame (ARAugmentation); their access is controlled by a semaphore. In
the compute thread, the native function processPatternImage, which is called once, before
the opening of the camera for augmentation of the real-world frames, takes as input data
the pattern image path defined within the AndroidCameraView activity along with the path
where the keypoints of the pattern image and their descriptors will be saved. It creates
an object from the PatternImage class, passing the pattern image path to its constructor,
and calls the detectFeaturePoints and extractDescriptors functions of the PatternImage class
to detect and describe feature points and return them to processPatternImage. The detect-
FeaturePoints function creates a FeatureDetection object, passing the pattern image to the
constructor of the FeatureDetection class and calls the detect function. The extractDescriptors
function creates a FeatureDescription object, passing the pattern image to the constructor of
the FeatureDescription class and calls the describe function. Within the processPatternImage
function, the keypoints and the descriptors are saved into YML files in the internal memory
of the Android device.

For each frame, the cameraPoseEstimation function is called. It takes as input the
camera frame, the path of the pattern image as well as the paths of its keypoints and
their descriptors. It creates FeatureDetection and FeatureDescription objects and calls the
appropriate functions to detect and describe features in the current frame. It reads the
keypoints and the descriptors from the stored files and creates a Matching object, passing
to the constructor of the Matching class the descriptors of the pattern image and the
current frame. Then, it calls the getMatches function of the Matching class to get the
correspondences and calls the cameraPoseEstimation function to compute the homography
between the pattern object and its view in the frame via the findHomography function.
Subsequently, it calls the perspectiveTransform function to compute the pattern corners in
the frame and computes the camera pose through the solvePnP function, using the image
coordinates of the corners of the pattern in the frame, their world coordinates and the
interior orientation parameters, defined within the cameraPoseEstimation function. Finally,
it calls the Rodrigues function to convert the computed rotation vector to a matrix. The
elements of the rotation matrix and translation vector are passed to the mRenderer activity,
and specifically to the PoseTracking function. Along with these, the integer value 0 for “false”
and 1 for “true” corresponding to the threshold set for the number of inliers is also passed
from cameraPoseEstimation after homography refinement. If the condition is true during
a sequence of 2 frames, the minimum number of inliers has been detected by RANSAC
and the 3D model is visualized. Otherwise, the pattern object cannot be recognized, the 3D
model is hidden from the scene and returns the visibility state to the onRender function to
update pose tracking. Tracking the same inliers in a set of frames reduces the flickering
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effect during visualization due to occlusion, motion blur, or oven, camera noise. In this way,
the model continues to be displayed for at least a number of 2 frames. When the condition
is true, a flag enables instancing the onDrawFrame function and the ModelViewProjection
matrices are recalculated. The ModelView matrix of the model is updated with the pose
values and visualization takes place.

Figure 2. Activity diagram illustrating the main processes performed by the ModAR prototype.

The 3D rendering thread is initialized when the instance of the 3D graphics engine
is associated with the application layer. The mRenderer activity constructs a new renderer
for the SurfaceCameraView. The onSurfaceCreated class enables depth testing and culling
to remove non-visible back faces while onSurfaceChanged adjusts the viewport based on
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geometry changes and calculates the frustrum. Then, the shader type and the framebuffer
of 3D engine along with the methods mClear and mDraw are defined. After performing
these internal initializations, the graphics engine invokes the method initScene, with the
essential for the rendering of the scene objects. All the necessary functionalities for loading
the files and configuring the camera are provided by the ObjParser, ObjLoader, mTexture-
Compression, Camera and Math3D classes of the 3D engine. Then, the ModelView arrays are
instantiated, in addition to the basic lighting for viewing the scene. In the JavaCameraView
class, three main operations are executed: (i) getProjectionMat estimates the camera every
time the camera is initialized or reconfigured and the mRenderer class is notified through
the onProjectionChanged method to update the CamProjMat variable with the new matrix;
(ii) getIntrinsicParam sets the intrinsic camera matrix and translates it into a projection
matrix; and (iii) onCameraFrame gets and stores every frame in order to be sent to Camera-
PoseEstimation. The AndroidCameraView class captures the frame to be used as pattern image
and converts it from bitmap to Mat in order to be passed to processPatternImage. Finally, the
MainARActivity checks for runtime camera permission and library dependencies, holds the
views and sets their order and enables the PoseTracking function execution.

4.2. ModAR Prototype

On ModAR initialization, the users can choose from the main menu the desired pattern
image, if it is already captured, and their 3D file of OBJ format from local storage. The
option of capturing planar objects of their surroundings directly from the prototype’s
camera module and load one of the default 3D models, is also provided. In this case, the 3D
model can be directly selected from a list menu that overlays the camera view. The graphics
user interface of ModAR as well as a scene augmented with a pre-loaded 3D model are
presented in Figure 3. ModAR comes with four 3D models and six default pattern images
stored as bitmaps in the internal memory (Figure 4). Thus, each AR scene consists of one
3D model that is drawn once the corresponding pattern image is met by the camera. The
3D model is displayed in the center of the pattern object, either with a default scale (its
biggest dimension being equal to the biggest dimension of the pattern image) or with a
user-specified scale. If the users want to select another model to be overlaid to the same or
another pattern, they have to return to the previous screen and pick again the files. The
previous surface is destroyed but no cache or buffers destruction occurs. If any of the
previous 3D models is selected, an instanced version is ready for visualization. Figure 5
shows screenshots from the ModAR prototype depicting the pattern recognition and AR
augmentation processes.

Figure 3. Main menu (left), list menu of camera interface (middle) and an AR scene (right) of the
ModAR prototype.
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Figure 4. Default pattern images (depicted with correct relative size) and 3D models stored by the
ModAR prototype.

Figure 5. Screenshots from the ModAR prototype illustrating the pattern recognition and AR
augmentation processes.
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5. Experimental Results and Discussion

In this section, the results of various usage scenarios on pattern identification and
scene augmentation along with an extensive evaluation testing during the execution of the
ModAR prototype on low-specification devices are presented. The input testing dataset
of pattern images and 3D models is described before proceeding to the main evaluation
phase. Then, the results obtained by profiling CPU usage, timing, frame rate and memory
allocation separately on the native side during pattern recognition and on the Java side for
the 3D graphics engine are reported and discussed.

5.1. Testing Dataset and Experimental Setup

The overall objective is to understand the impact of the hardware specifications on
the performance attained by both the computational and rendering operations of ModAR.
Moreover, the examination of the effectiveness of the developed techniques and strategies
as well as the interpretation of the testing results lead to guidelines and suggestions.
The testbed comprises one old low-end and one affordable mid-range Android mobile
device. The minimum target version of ModAR is Android API level 19, a.k.a. Android
4.4 KitKat, released on 31 October 2013 (Table 2) and the OpenGL ES version is 2.0. The
six different pattern images and four 3D models that come with the ModAR prototype
(Figure 4) were used in the experiments. The pattern image hereinafter referred to as
“BOTERO” is part of a book cover; the pattern image “SCYTHE” is the planar front surface
of the box of a board game; the pattern images “SURVEYING” and “JEFFERS” are book
covers; “PAINTING” is a wall painting inside a frame; and “GRAFFITI” is an outdoor
wall mural. The size of the pattern images used in the experiments is within the range
0.07–0.25 MP (see Table 3 for the exact dimensions), while the size of the camera frames
in the test devices is 0.92 MP for the low-end device (720 × 1280 pixels) and 2.07 MP for
the mid-range device (1080 × 1920 pixels), both corresponding to a frame rate of 30 FPS.
The textured Wavefront OBJ models are of multiple scales and heterogeneous sources, like
image-based photogrammetry and terrestrial laser scanning. Each model differs in size
and complexity, thus “POTTERY” and “BUST” are denoted as small models, “STATUE”
as of regular size and “CHURCH” as large model. “STATUE” is the only one with vertex
color and no texture.

Table 2. Dimensions and resolution of the pattern images as well as size and number of faces and
vertices of the 3D models used in the experiments.

Specification Low-End Mid-Range

Model Samsung Galaxy Ace 2 ZTE Blade A5
Year 2012 2019

CPU
800 MHz dual-core 1.6 GHz octacore

ARM Cortex-A9 Spreadtrum SC9863A
GPU ARM Mali 400 IMG8322

Memory 4 GB 16 GB
768 MB RAM 2 GB RAM

Camera 5 MP 13 MP
Video 720 × 1280 pixels, 30 FPS 1080 × 1920 pixels, 30 FPS

Screen Resolution 480 × 800 pixels 720 × 1440 pixels
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Table 3. Dimensions and resolution of the pattern images as well as size and number of faces and
vertices of the 3D models used in the experiments.

Pattern Image Dimensions (Pixels) Resolution (MP)

BOTERO 348 × 717 0.25
SCYTHE 300 × 245 0.07

SURVEYING 310 × 450 0.14
JEFFERS 250 × 294 0.07

PAINTING 336 × 252 0.08
GRAFFITI 400 × 347 0.14

3D Model Size (KB) Faces/Vertices

POTTERY 167 3296/1661
BUST 903 8767/4555

STATUE 1690 21,453/42,712
CHURCH 87 14,645,744/7,335,148

5.2. Image Matching and Pattern Recognition

The BRISK and ORB feature point descriptors along with the corresponding detectors
proposed by the authors of these descriptors were evaluated in the ModAR prototype.
Specifically, the AGAST detector combined with the BRISK descriptor and the FAST detec-
tor along with an orientation assignment mechanism combined with the ORB descriptor
were used. Two different parameterizations were evaluated for each combination of
detector–descriptor, as summarized in Tables 4 and 5.

Table 4. Parameterization evaluated in the experiments performed using the AGAST detector and
the BRISK descriptor.

Experiment AGAST-BRISK-3 AGAST-BRISK-2

AGAST detection threshold score 30 30
Number of octaves 3 2

Scale applied to the pattern used for
sampling the neighborhood of each feature 1 1

Table 5. Parameterization evaluated in the experiments performed using the oriented FAST detector and the ORB descriptor.

Experiment FAST-ORB-2000 FAST-ORB-500

Maximum number of features 2000 500
Pyramid decimation ratio: ratio of each dimension (i.e.,
width/height) of the image of a pyramid level with its

corresponding dimension in the next pyramid level
1.2 1.2

Number of pyramid levels 8 8
Image border size where features are not detected (pixels) 31 31

The level of the pyramid of the source image 0 0
The number of points that forms each element of the

oriented BRIEF descriptor by comparing their brightnesses 2 2

Algorithm used to rank features Harris Harris
Size of the patch used by BRIEF (pixels) 31 31

FAST threshold 20 20

The difference in the experiments performed by the AGAST and BRIEF operators lies
in the number of octaves. Specifically, 3 octaves were evaluated in the experiment “AGAST-
BRISK-3”, while 2 octaves were used in the experiment “AGAST-BRISK-2”. The difference
in the experiments performed by the oriented FAST detector and ORB descriptor lies in
the maximum number of feature points per image, i.e., 2000 features for the experiment
“FAST-ORB-2000” and 500 features for the experiment “FAST-ORB-500”.
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The number of feature points extracted in each pattern image for every experiment
performed by the ModAR prototype is outlined in Table 4. The experiment FAST-ORB-2000
yields the greatest number of feature points in each pattern image, which significantly
differs based on the pattern image. The small dimensions of each pattern image along
with the lack of corners in some of them resulted in much less features than the maximum
threshold of 2000 in this experiment. The experiment FAST-ORB-500 yields approxi-
mately similar numbers of feature points in each pattern image (lying within the range
of 400–500 features), because of the threshold of 500 features per image. The experiments
AGAST-BRISK-3 and AGAST-BRISK-2 yield approximately the same number of features in
the tests performed with the same pattern images, as their only difference is the number of
octaves used in scale-space. The smallest number of feature points per pattern image is
observed either by the experiment AGAST-BRISK-2 or by the experiment FAST-ORB-500.
While the number of feature points extracted by the latter lies near the upper threshold of
features set by this experiment, the number of features extracted by the AGAST detector
greatly depends on the content of the pattern images (i.e., the detected corners) and differs
based on it. Figure 6 illustrates clustered bar charts with the number of feature points for
each pattern image, extracted by the tested detectors with different parameterization.

Figure 6. Clustered bar chart illustrating the number of feature points for each pattern image used in the experiments
extracted by the tested detectors with different parameterization.

Whereas the greatest number of feature points in the small-sized pattern images is
observed for the FAST-ORB-2000 experiment, the greatest number of feature points per
camera frame along with the greatest number of matches is observed by the AGAST-BRISK-
3 and AGAST-BRISK-2 experiments, as outlined in Table 6. This is explained by the lack
of any upper threshold for the number of feature points in the use of the AGAST detector
along with the higher resolution of the camera frames compared to the resolution of the
pattern images. Furthermore, the fact that the number of features along with the number
of outliers significantly differ for every camera frame is due to the quite different content
of each one, which depends on the depicted scene.

Taking into account the fact that a MAR application should act in real-time, the
image matching process between the pattern image and consecutive frames should be
accomplished in the shortest time possible. Hence, a very important measurement of
this research is the computational time of the image matching process, which is the most
resource-demanding task of the computer vision workflow. Table 7 shows the average
computational time required by the four basic steps of the image matching and outlier re-
moval process (i.e., feature detection; feature description; main process of image matching;
and homography estimation for geometric verification of matches) for each experiment
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performed via ModAR using the low-end device. Table 8 shows the corresponding results
for the mid-range device. These results were derived using 50 camera frames for each
pattern image used in the experiments (in total 300 frames); the metrics have been collected
using Android profiler.

Table 6. Number of features extracted in each pattern image, number of features per frame and
number of inliers for the experiments performed using the ModAR prototype.

Experiment AGAST-
BRISK-3

AGAST-
BRISK-2

FAST-ORB-
2000

FAST-ORB-
500

Number of
features in

pattern
image

BOTERO 248 231 823 495
SCYTHE 544 540 1189 430

SURVEYING 781 761 1595 485
JEFFERS 564 553 1079 437

PAINTING 174 168 604 400
GRAFFITI 603 588 1279 475

Number of features per frame 500–2500 500–2500 300–2000 100–500
Number of inliers 10–300 10–250 10–200 10–100

Table 7. Average computational time and percentage of CPU usage in the total computer vision workflow recorded for the
four basic steps of image matching for each experiment performed via the ModAR prototype using the low-end device.

Stage of Computer
Vision Workflow

AGAST-BRISK-3 AGAST-BRISK-2 FAST-ORB-2000 FAST-ORB-500

Time (s) CPU (%) Time (s) CPU (%) Time (s) CPU (%) Time (s) CPU (%)

Feature detection 2.425 49.47 2.296 47.73 0.086 12.51 0.069 12.02
Feature description 2.337 45.91 2.229 46.69 0.230 32.09 0.189 34.29

Image matching 0.029 0.53 0.026 0.43 0.020 2.82 0.016 3.20
Homography estimation 0.089 1.49 0.063 1.31 0.098 19.37 0.035 6.30

Table 8. Average computational time and percentage of CPU usage in the total computer vision workflow recorded for the
four basic steps of image matching for each experiment performed via the ModAR prototype using the mid-range device.

Stage of Computer
Vision Workflow

AGAST-BRISK-3 AGAST-BRISK-2 FAST-ORB-2000 FAST-ORB-500

Time (s) CPU (%) Time (s) CPU (%) Time (s) CPU (%) Time (s) CPU (%)

Feature detection 1.926 49.52 1.851 47.70 0.069 14.21 0.057 10.33
Feature description 1.795 45.50 1.656 46.51 0.194 37.46 0.155 35.25

Image matching 0.027 0.53 0.023 0.41 0.070 13.94 0.012 3.40
Homography estimation 0.080 1.50 0.050 1.28 0.023 3.89 0.026 5.30

As far as the computational time of image matching is concerned, the results showed
that the oriented FAST detector used by ORB along with the ORB descriptor required the
shortest time to complete both the detection and description processes. On the other hand,
the AGAST detector combined with the BRISK descriptor were significantly slower in
terms of computational time required for both the detection and description processes, thus
being unsuitable for real-time AR applications for both low-end and mid-range devices.
Approximately the same time was required for feature detection by AGAST and feature
description by BRISK. However, ORB feature description required almost 3 times more
time to be accomplished compared with feature detection by oriented FAST.

The AGAST-BRISK-3 experiment was the most time consuming one. The AGAST-
BRISK-2 experiment was a little faster. However, both experiments were proved to be
unsuitable for the ModAR prototype. The FAST-ORB-500 experiment was accomplished in
the shortest time, as it required in average 0.309 s for the low-end device and 0.250 s for the
mid-range device. Additionally, the FAST-ORB-2000 experiment proved to be suitable for
AR augmentation, as it was accomplished in average in 0.434 s for the low-end device and
0.356 s for the mid-range device. Thus, only the combination of the oriented FAST detector



Appl. Sci. 2021, 11, 8750 19 of 29

and ORB descriptor were further evaluated in ModAR. They achieve about 90% reduction
in the computational time of image matching compared to the corresponding time required
by the AGAST detector and BRISK descriptor. The rest tasks that complete the computer
vision workflow (mainly the reading of the extracted feature points of the pattern image
and their descriptors in each frame, along with the basic steps of pattern recognition and
camera pose estimation) were completed in less than 0.250 s for all experiments. The total
computational time required by the four basic steps of image matching for each experiment
performed via ModAR is illustrated in the form of clustered bar charts in Figure 7.

Figure 7. Clustered bar charts illustrating the total computational time required by the four basic
steps of the image matching process for each experiment performed via ModAR.

Similar results were achieved regarding CPU usage. Specifically, the amount of CPU
time that the application process uses for each method as a percentage of the total available
CPU time of the device concerning the computer vision workflow is shown in Table 6, for
the low-end device and in Table 7, for the mid-range device. The feature detection and
description tasks implemented by the time-consuming experiments AGAST-BRISK-3 and
AGAST-BRISK-2 correspond to approximately 95% of CPU usage out of the total CPU
usage of the computer vision workflow, whereas the corresponding CPU usage percentage
for feature detection and description by oriented FAST and ORB reaches approximately
50%. The detection of correspondences along with homography estimation are neither
time-consuming tasks nor CPU-demanding, as shown in Tables 6 and 7.

As far as the pattern recognition results are concerned, the correspondences detected
by the ModAR prototype generally lead to successful pattern object recognition in all the
aforementioned experiments. Both AGAST-BRISK and FAST-ORB yield successful pattern
recognition results regardless of the rotation of the pattern object. Whereas the use of the
AGAST detector in combination with the BRISK descriptor yields better results in cases of
strong change of scale between the pattern object and its appearance in the camera frame,
the computational time required by AGAST feature detection and BRISK description is
prohibitive for AR applications, as discussed in the previous paragraphs.

For 100 camera frames for each pattern image (600 frames in total), the recognition
accuracy, i.e., the ratio between the number of successful pattern recognitions in the camera
frames over the total number of frames, is 100% for all combinations (AGAST-BRSIK-
3, AGAST-BRISK-2, FAST-ORB-2000 and FAST-ORB-500) for camera frames where the
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resolution of the pattern in the frame is 0.9 to 4 times the resolution of the pattern image,
regardless of any in-plane rotation. The recognition accuracy for resolution of the pattern
in the frame from 0.4 to 0.9 times the resolution of the pattern image drops to 93% for
FAST-ORB-2000 and 88% for FAST-ORB-500. The recognition accuracy for the combination
AGAST-BRSIK-3 and AGAST-BRISK-2 for resolution of the pattern in the frame from 0.4 to
0.9 times the resolution of the pattern image is better (97% and 95% respectively); however,
the loss in speed is really significant and these combinations are discarded for being used
in ModAR. The FAST-ORB-2000 parameterization achieved more stable results, compared
to FAST-ORB-500, as proved by the aforementioned recognition accuracy. Despite the
slightly better performance in terms of computational time and CPU usage of the latter,
the FAST-ORB-2000 yields the overall best performance in terms of stability of pattern
recognition and good performance in time. Hence, this is the parameterization finally used
by ModAR (and thus adopted by the screenshots from ModAR illustrating the pattern
recognition and AR augmentation processes in Figure 4).

An example of the minimum pattern scale (maximum distance from the pattern object)
for which successful pattern recognition is achieved using the two different detectors—
descriptors (FAST-ORB-2000 and AGAST-BRISK-3) is illustrated in Figure 8, where it
is observed that BRISK permits pattern recognition in bigger changes of scale than ORB.
However, FAST-ORB-2000 yields successful results is an acceptable range of scale, as shown
in Figure 9, where pattern recognition performed by ModAR in camera frames under
different scales and rotations as well as different illumination conditions and occlusion
is shown.

Figure 8. Screenshots from the ModAR prototype illustrating the minimum pattern scale for which
successful pattern recognition is achieved for FAST-ORB-2000 (left) and AGAST-BRISK-3 (right).
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Figure 9. Screenshots from ModAR illustrating the pattern object recognition results under different
conditions of scale, rotation, illumination and occlusions (combination used: FAST-ORB-2000).

5.3. AR Rendering

The overall performance of the proposed vertex-data rendering approach that includes
instancing, frustrum culling, compressed sub-texturing and VBO grouping, is tested on
both devices for the four models separately. The metrics have been collected using Android
profiler and system tracing utility. Validation of the results is achieved through average
values of three sets of measurements on physical devices. Moreover, the “JEFFERS” pattern
image and the combination of FAST-ORB-2000 for the descriptor, detector and maximum
number of feature points per image respectively, are selected. For every device and
experiment, the base frame rate for video capture is 30 FPS, which practically means that
the prototype operates consistently and smoothly at 33.33 ms or less for every screen
refresh. If a GPU operation exceeds this limit, a frame drop occurs. Table 9 reports the
results of GPU and CPU profiling at three critical moments of an AR session: on pattern
recognition, on 3D model loading and on final display of 3D model. The CPU usage has
been recorded for a time period of 40 s.
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Table 9. GPU performance and CPU profiling results during the graphics computations of four AR sessions, one for each
3D model, on the low-end and the mid-range device: average frame rates, timing (total time is highlighted), stutters as well
as graphs of real-time CPU usage of 40 s duration after pattern is recognized and pose tracking is enabled.

Low-End Device Mid-Range Device

Pattern
Recognition Loading Display Pattern

Recognition Loading Display

POTTERY

FPS 25 18 17 30 24 23
Time (s) 0 17 18 0 12 12
Stutters - - - -

CPU load
(0–40 s)

BUST

FPS 26 12 10 29 24 20
Time (s) 0 28 30 0 25 27
Stutters - 3 - 1

CPU load
(0–40 s)

STATUE

FPS 28 22 22 30 25 25
Time (s) 0 26 28 0 17 17
Stutters - 2 - -

CPU load
(0–40 s)

CHURCH

FPS 28 9 8 30 15 13
Time (s) 0 58 61 0 51 54
Stutters - 3 - 1

CPU load
(0–40 s)

The prototype delivers an average of 16 FPS and 24 FPS for mid-range and low-end
devices, respectively, and less than 30 s of delay when simplified meshes of maximum
size of 1.7 MB are overlaid. The AR experience is seamless. The visual quality is high
and the duration of loading and drawing phases, before the virtual scene is visualized, is
indistinct regarding the potential of the devices. However, the performance and overall
experience is degraded in case of the 3D model “CHURCH”, which is significantly larger in
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size and more complicated (1716×more vertices than “STATUE”). The mid-range device
manages to attain a good frame latency distribution maintaining the frame rate half of its
maximum value. The single stutter being recorded is not perceived by the end-user, since
no animations appear to freeze in the scene. However, the drawing time has significantly
increased to 54 s. In the case of the low-end device, the frame drop leads to stutter problems
and visible slowness but surprisingly, the geometric fidelity and texture image resolution
of the 3D overlay are not degraded. The prototype uses almost the 100% of the CPU
processing power of the devices in various phases during the actual drawing. However,
frame rates do not drop in proportion to the recorded CPU load, indicating that the latency
occurs during GPU processing and is driven by the rendering and not by the computing
operations of the Native thread.

These observations stimulate further benchmarking in order to understand the varia-
tions in graphics performance. Slow procedures may lie on memory leaks and undesirable
memory allocation patterns; thus, a replication of the AR testing session for the 3D model
“CHURCH” is conducted using the Memory Profiler tool. The detailed timeline of memory
usage for the first 40 s upon pattern recognition for the low-end and the mid-range device is
presented in Figure 10a. The memory type with the most increased memory consumption
are Graphics (yellow), i.e., the GPU-CPU shared memory used by the graphics buffer
queues. The Native type (dark blue) that represents the objects allocated from the C++
compute thread, consumes an average of 84% less amount of memory than the Graphics
type. The low memory footprint showcases its increased performance in computationally
intensive tasks like features detection and tracking. Size information for the allocated
objects of the rendering classes is provided by running an advanced memory profiling test
under the same conditions. The quantity of memory of the ten classes with the most heap
count in Graphics memory, are presented in Figure 10b.

Figure 10. Memory profiling for the low-end and the mid-range device during an AR session with the 3D Model “CHURCH”:
[a] 40 s timeline upon pattern recognition with the memory allocation of the main memory types, including Graphics
(yellow) and Native (dark blue); [b] graphics objects and classes with the most heap count.

The classes ObjLoader and ObjParser of the developed 3D engine as well as the mRen-
derer of the rendering thread generate the largest number of temporary objects and impose
time restrictions on prototype’s memory allocation per frame. When attempting to render
and load a huge volume of vertices on low-memory devices, performance issues with
excessive demands on CPU arise, like the memory leak that happened during the 20–25 s
on the low-end device (Figure 10b). Furthermore, UV texture mapping has a significant
memory instances count. Therefore, techniques compatible with OpenGL ES 2.0 such as
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vertex-data re-ordering, organization on VBOs and texture compression are essential for
the overall performance amelioration.

The proposed optimizations applied to the developed 3D graphics engine are com-
pared with standard rendering methods to determine their impact and efficacy. The
techniques of (i) instancing and (ii) vertex-data organization are tested individually. In ev-
ery comparative test, the OpenGL ES commands of each technique are organized in groups
using markers and annotated with descriptive labels. For geometry instancing evaluation,
two separate sessions with the 3D models “POTTERY” and “CHURCH” are created for
frame rate of 60 FPS. In the first one, each mesh is drawn ten times with standard index
rendering (glDrawElements) and the second one implements the developed technique that
draws ten instances of each mesh in one call. A unique transformation matrix is applied to
each of the ten meshes in both cases, in order to replicate a real AR usage scenario. Total
rendering time as well as the FPS corresponding to the number of vertices being drawn
at each frame are presented in Table 10 and Figure 11, respectively. The best results are
obtained with instancing, as expected. A total of 16,610 vertices for the “POTTERY” and
427,120 vertices for the STATUE are rendered in a single draw call in less than 20 s and
36 s at the mid-range device and 29 s and 49 s at the low-end one. Regarding drawing
performance, FPS drop is significant after the seventh instance for both devices when
11,627 and 298,984 vertices are being drawn for “POTTERY” and “STATUE”, respectively.
Both sessions render the same number of vertices and it can be concluded that the number
of draw calls is the actual bottleneck. However, the “STATUE” has 26 × more vertices and
is 10× larger in size than “POTTERY” but rendering during instancing is only 1.14x faster
for the low-end and 2.2× slower for the mid-range device. The increased rendering tine
can probably be attributed to the texture file of “POTTERY” which needs to be accessed
and fetched from texture cache memory while GPU is running at the main thread.

Table 10. Total time of drawing ten meshes on a simple 3D scene with the standard and instancing
rendering methods along with the proportional speed up percentage achieved with instancing.

Timing
Metrics POTTERY STATUE

Time (s) Speed Up (%) Time (s) Speed Up (%)

Low-end
Instancing 29.41

278.44
1.926

318.62glDrawElements 81.89 1.795

Mid-range Instancing 20.15
220.15

0.027
215.32glDrawElements 44.36 0.080

Evaluation of the geometry processing stage involves testing vertex fetching efficiency.
The testing environment comprises the 3D models “POTTERY” and “STATUE”, grouped
in the same vertex buffer object with half float coordinates in the normalized model space.
The previous testing session is replicated and executed three times for both devices. The
ten meshes of each model are rendered with the standard glDrawElements() rendering
arrays and the developed VBO format using both index rendering and instancing. The
average frame rate and the total rendering time of each combination are presented in
Tables 11 and 12. Storing groups of 3D models in the same VBO provides significant per-
formance stability for the low-level device and a 3.7× speed gain for the textured model
“POTTERY” and a 3.14× for the model “STATUE” with per vertex color for the standard
index rendering. In both devices, higher frame rates were achieved for “POTTERY” model
compared to the fixed CPU array storages. This result indicates the increased efficiency of
GPU memory types in attributes transfer, like texture coordinates and relevant bindings.
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Figure 11. (a) Number of vertices being drawn per frame and achieved framerate on FPS; (b) FPS for
ten models applying glDrawElements and Instancing methods at the low-end and mid-range devices.

Table 11. Average frame rate and total rendering time of ten meshes of POTTERY and STATUE using
a combination of rendering techniques and buffer storage on the low-end device.

Rendering Performance
on Low-End

POTTERY STATUE

FPS Time (s) FPS Time (s)

Index Rendering + Arrays 21 82.46 12 156.23
Index Rendering + VBOs 39 21.68 29 49.60

Instancing + Arrays 32 28.87 19 49.15
Instancing + VBOs 43 18.52 35 22.88
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Table 12. Average frame rate and total rendering time of ten meshes of POTTERY and STATUE using
a combination of rendering techniques and buffer storage on the mid-range device.

Rendering Performance
on Mid-Range

POTTERY STATUE

FPS Time (s) FPS Time (s)

Index Rendering + Arrays 32 43.95 27 78.12
Index Rendering + VBOs 46 17.99 43 24.18

Instancing + Arrays 42 20.04 40 36.30
Instancing + VBOs 53 12.56 57 13.92

6. Conclusions

In this article, a planar pattern-based MAR prototype, named ModAR, is presented. It
targets low-end mobile devices which are not certified or cannot enable AR technology,
as they lack computational power, compatible operating system version and/or specific
hardware. This user group is rarely considered as a target for AR development.

Several deployment scenarios were implemented to detect the optimized computer
vision and rendering methodology for the developed prototype. The pose of the 3D models
proved to be well aligned with the pattern image for all tested detectors–descriptors
combinations, identifying only minor misalignments after a certain camera distance from
the object. In response to the lack of commercial and research solutions to limited resources,
ModAR attains good precision in positioning and high frame rates. ModAR does not
exceed the size of 400 KB and the evaluation tests on low-end and mid-range smartphones
demonstrate that it achieves 93% pattern recognition accuracy and thus accurate camera
pose estimation for camera frames where the resolution of the pattern in the frame is
0.5 to 0.9 times the resolution of the pattern image, as well as 100% pattern recognition
accuracy for camera frames where the resolution of the depicted pattern is 0.9 to 5 times
the resolution of the pattern image, regardless of any in-plane rotation. The oriented FAST
detector with an upper threshold of 2000 feature points per frame combined with the
ORB descriptor were used in the prototype, as they proved to yield the best results in
terms of robustness and efficiency. The experiments showed that while the use of the
AGAST-BRISK combination of detector–descriptor improves the recognition accuracy by
2–4% (depending on the parameterization used), the loss in speed is dramatical, as the
FAST-ORB combination achieves 90% reduction in image matching time compared to the
time required by the AGAST detector and the BRISK descriptor.

In turns, performance analysis and extensive benchmarking on the graphics techniques
and strategies compatible with the OpenGL ES 2.0 showcased the efficacy of the developed
3D engine and rendering scheme for large vertex data. In less than 30 s and with an
average stable frame rate of 20 FPS for low-specification devices, a medium sized textured
3D model is drawn and overlaid the real scene. The AR experience is delightful at no
expense of visual quality, even for large volume data, exceeding 7 M vertices. The proposed
combination of VBO data grouping, geometric instancing, sub-texturing as well as vertex
data types simplification and frustrum culling, can speed up graphics processing of OBJ
files up to 3× compared to standard rendering methods.

The developed compute system is able to identify and estimate the pose of the 3D mod-
els in various situations (indoors/outdoors) depending on the input pattern image, thus
allowing the methodologies employed in this work to be further extended or optimized.
Future work involves further optimization of the presented workflow for acceleration of
the AR augmentation; investigation into fully-automatic camera calibration of the mobile
devices; further experiments of the ModAR prototype to augment outdoor CH sites with
high-resolution 3D models; and performance of a subjective study in order to understand
and quantify user experience as well as to evaluate the quality of service.
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