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Abstract: With the development of SDN, packet classifiers nowadays need to be provided with
low update latency besides fast lookup performance because switches need to respond to update
control messages from controllers in time to guarantee real-time service in SDN implementations.
Classification in this scenario is called online packet classification. In this paper, we put forward an
improved trie-based algorithm for online packet classification (ITOC), in which we provide a trie
selection strategy to avoid occasional high update latency in the update process of online trie-based
algorithms. Experiments are conducted to validate the effectiveness of our optimization and compare
the performance of ITOC with the offline methods, DPDK ACL. Experimental results demonstrate
that ITOC has the same level of lookup speed with DPDK ACL and greatly decreased the update
latency as well. The update latency of ITOC is only 6.85% of DPDK ACL library in the best case.

Keywords: SDN; SDN switch; packet c; update latency

1. Introduction
1.1. Motivation and Problem Statement

As one of the most important parts of network implementation, packet classification
plays an important role when we provide network services, such as forwarding, routing,
firewall, and some other complex services. Packet classification problems attracted a lot of
interest and have been widely studied for the past two decades [1].

However, new demands emerged in the packet classification of software-defined
networking (SDN) [2]. SDN decouples the control plane and data plane, brings pro-
grammability, and flexibility to the network. SDN implementation heavily relies on SDN
switches. SDN switches use the same lookup tables with match-action rules as traditional
ones. However, their work scenes are quite different.

In traditional switches, the lookup table rules are supposed to be static and could
be preloaded. It means that all rules are ready before the switch works and will not
change during the classifier working. The working status of the switches also remains
unchanged. Such a kind of packet classification is viewed as offline packet classification
problem. The work on this problem mostly focuses on lookup performance, memory usage,
and some other targets.

Meanwhile, in a typical SDN implementation, SDN devices could join and leave fre-
quently, and SDN applications may start and stop at any time. The network is changeable,
and the working status of SDN switches also dynamically changes during working. Corre-
spondingly, this kind of packet classification is called online packet classification problem.
In online packet classification problem, low latency must be taken into consideration while
implementing packet classification methods. On the one hand, the update latency of the
packet classification method in SDN switches influences the forward speed of the switches
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when the lookup table changes. On the other hand, the latency influences the overall
network performance. The SDN controllers need to wait for the reactions of the switches
when they change the status of the SDN network. Many new network implementations [3]
also put forward the same demands, so a packet classification method for online problems
is intensively needed.

1.2. Summary and Limitations of Prior Art

The vast majority of work on packet classification can be divided into two major
categories: the architectural and the algorithmic. Architectural approaches are based on
special hardware platforms, such as Ternary Content Addressable Memory (TCAM) [4–7].
The approaches inevitably have the limitations brought by the hardware platforms as well.
Generally, the approaches based on TCAM are expensive, area-inefficient, and power-
hungry, which are also the inherent limitations of TCAM hardware.

The performance of algorithmic approaches depends on their algorithms, while each
algorithm has its limitations. For instance, the decomposition methods, represented by
Bit Vector (BV) [8–10], lack scalability, and only perform well in small sets. The partition
methods [11–14], represented by decision-tree, lack of flexibility as the decision-tree is
designed to serve static data. Some other methods, such as Tuple Space Search (TSS) [15]
and trie methods [16,17], also have their shortcomings.

Since the trade-off among classification speed, memory footprint, and update com-
plexity is inevitable, a good online packet classification method should give consideration
to both fast lookup and fast update.In online packet classifications, the lookup performance
is determined not only by the lookup speed of algorithms but also by the update speed.
For example, when a flow modifying control message is sent to an SDN switch, the switch
should stop forwarding and update its flow tables. As shown in Figure 1, the update
requests will interrupt the processing progress of lookup requests, and as a result, the num-
ber of lookup requests the switch could finish will be less. If the update process takes too
much time, the lookup requests will accumulate and the overall performance of the switch
will be affected.

Figure 1. The two types of work scenes.

1.3. Technical Challenges and Proposed Approach

Our method is aimed to solve the online packet classification problem and provide
a good packet classification algorithm. In online packet classification problems, we meet
these challenges.

• Unpredictable new rule arriving time, rule contents, and arrival frequency;
• Lack of available optimization for the new work scene;
• The demand for both low update latency and high lookup speed.
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It is worth noting that although the algorithms need a good update performance,
the lookup speed of algorithms is still the most important in online packet classification
problem. Considering this, we design our algorithm based on trie structures, which have a
good lookup performance and optimize the update process. The contribution of our work
can be summarized as follows:

• We put forward an online packet classification algorithm which has a good lookup
performance;

• We design an update time prediction using rule wildness and trie status;
• We implement a trie choosing process based on update time predictions to avoid the

potential high update latency.

The rest of this paper is organized as follows. Section 2 provides a review of the
previous and related work. Section 3 presents our method in detail. Section 4 shows the
experimental results to evaluate our work. Finally, this paper is concluded in Section 5.

2. Related Work
2.1. Online Packet Classification Algorithm

As we mentioned in the introduction, the work scene of online packet classification
algorithms is quite different from the offline ones. So the online algorithms, which are
developed from offline algorithms, changed a lot compared with the offline ones.

In fact, most work on online packet classification algorithm is the algorithmic. For in-
stance, some online decomposition methods, such as a packet classification algorithm with
incremental updates (PCIU) [8], design an incremental update process to get new bit-vectors
when the ruleset changes. Owing to the update process, PCIU has a good update perfor-
mance. However, it has the same shortcoming of poor scalability as other BV methods,
even though it has good lookup performance.

For decision-tree methods, a new method called CutSplit considered update latency.
It separates rules into subsets and builds trees in each subset. When the ruleset changes, it
only needs to rebuild a few of the trees. PartitionSort [18] is a method that first partition
the rules into some sortable subsets and then build a structure called multidimensional
interval tree to support search, insertion, and deletion. These methods have similar ideas.
They divide the search space and build their structures in each subset.

As TSS already meets the update requirement of online packet classification problems,
the only shortcoming to be solved is the lookup speed. In TSS, the lookup speed is related
to the number of tuples. TupleMerge [19] reduced the number of tuples by merging
similar tuples.

Although the online methods have good update performance, most of them have
not been implemented in any actual environment, and some methods only provide test
codes that only support 5-tuple test benchmarks, which are quite different from our SDN
environment. In the SDN implementation environment, we use a southbound interface
called protocol-oblivious forwarding (POF) [20] and the match fields could be longer and
more complex. So we study the optimization ideas of the online methods and design our
method based on trie structure.

2.2. Classification Based on Trie

Similarly to decision tree structure, trie structure is widely used in packet classification,
especially in longest prefix matching. Trie structure is a kind of storage structure, which
means that the content of rules is saved in the nodes of tries. A popular trie-based packet
classification instance is the Access Control List library (ACL library) provided by Data
Plane Development Kit (DPDK) [21]. DPDK is a widely used set of packet processing
libraries and drivers, and DPDK ACL library applies an offline packet classification method.
In DPDK ACL library, the data structure build-up process has the following steps.

First, the method gets all the contents of rules in the ruleset. Then the method
optimizes the ruleset. After the optimizations, the method transforms every rule into a
single trie. The transformed tries then are merged into a total trie. When all tries of rules
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are merged into the total trie, an array is generated from the total trie, and the array is
the result of DPDK ACL buildup process. Figure 2 shows the brief buildup process of
DPDK ACL.

Figure 2. The buildup process of DPDK ACL.

The lookup process of DPDK ACL is quite simple. The key structure is the array
generated in the buildup process. When we search in a table of trie-based methods, we
only need to traverse the array and do some simple operations, such as adding, comparing,
shuffling, and data reading. The total number of operations is a fixed value, so it is easy to
implement a batch lookup interface. The lookup way is the key of trie-based methods to
achieve high lookup speed.

In addition to the excellent performance in ruleset lookup, DPDK ACL library has no
requirement for the match fields of rulesets. So this trie-based packet classification algo-
rithm is the choice when we implemented the software switches for the SDN environment
with protocol-oblivious forwarding.

2.3. Optimizations in Trie-Based Algorithm

As the raw trie-based methods have many shortcomings, some optimizations can be
applied to improve the algorithm. All the optimizations are aimed to shorten the building
time. One idea is reducing trie level numbers to reduce nodes when building the trie.
As the level number of the trie depends on the match fields of rules, the way to reduce the
level number is to skip unused match fields when building a trie. However, in online work
scenes, the new rules are uncertain. No match fields can be skipped as all the match fields
could be used by the next rule.

Another idea is sorting the rules. After sorting, the method will add the rules to
the trie in the sorting order. If the ruleset is complex, the order can influence the final
number of nodes in the trie. However, in online work scenes, the adding order should be
exactly the arriving order of new rules. As both the two optimizations are not applicable in
online work scenes, we will design a new optimization for the online packet classification
algorithm based on tries.
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3. The Proposed Algorithm
3.1. Problem and Analyzing: How to Optimize the Update Process

By updating the trie structure instead of rebuilding it, an online trie-based algorithm
will take less time than DPDK ACL library to get a new lookup structure when the ruleset
changes. Because in most cases, updating has a smaller time complexity than rebuilding.
However, the processing time varies when the input rules are different. The update latency
is uncertain as the new rule is unpredictable. Sometimes the update latency could be very
high, which case is called update latency exploding.

Update latency exploding happens when a rule with many wildcards is inserted into
a ruleset that already has a large number of rules. Under such circumstances, the update
latency can be more than 100 times longer than usual in the worst case. To avoid update
latency exploding, we should explore the update process of the online trie-based algorithm
in depth.

The adding update process has only three main steps: rule transforming, trie merging,
and trie compressing. The trie merging step takes the longest time. In trie merging,
the nodes from the new tries will compare with other nodes in the same level of the old
trie, and the node of the old trie will be operated if it intersects with the node from the
new tries.

The number of nodes that will be operated in trie merging is influenced by rule content.
For example, we suppose that there are two rules in a ruleset, and we mark the rules as
Ra and Rb. Ra is a catch-all rule, in which all bytes of the mask are 0x00, meanwhile Rb
is an exact match rule, in which all bytes of the mask are 0xff. To show the difference
between the two types of rules, we consider a one-byte long merging of the match fields.
The merging processes of the two rules are shown in Figure 3. When inserting Ra, all nodes
in the same level intersect with the new node. When we insert Rb, only one node intersects
with the new node.

Figure 3. The sample of merging in update process.

In addition to the type of rule content, the status of the target trie also influences the
merging process time. Obviously, the number of nodes in the trie will influence the time.
The more nodes the trie contains, the longer time the merging process will take. In the
offline algorithm, DPDK ACL library, the method will split the trie into smaller ones when
there are too many nodes in the trie.

Another trie status is the node distribution in the trie. Considering Rc is a rule which
has catch-all match fields and exact match fields. If the node distribution is average in the
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trie, the number of nodes to be operated will hardly change in the process of Rc insertion
when the exact match fields of Rc change. However, if the node distribution is not average,
the number of nodes will vary when the content of the exact match fields changes.

3.2. Update Latency Prediction

To evaluate the potential update latency, we design a latency prediction algorithm.
The algorithm predicts the latency by calculating the number of potential changing nodes
in the trie merging process. As we know, the trie merging process is an iteration of the
node merging process, and the process will call itself several times. Each time the process
calling itself, one more node will be changed. If we mark the iteration time as N and the
self-calling time as A, the time complexity of the trie merging process is

Tm = TN

= AN ∗ TN−1 + T

= AN ∗ (AN−1 ∗ TN−2 + T) + T

=
N

∑
i=0

i

∏
j=0

Aj ∗ T

= O(NAN)

(1)

where A is the average time of self-calling in each iteration. However, it could take a long
time for us to get the excat Aj number, so we design a prediction formula. As the number
Aj is determined by the new rule node content, current node number, and child node
number of current nodes, so our prediction will consist of these parameters.

The first element is new rule node content. We divide the rule contents into two
types: catch-all and exact match. We introduce a parameter called wildness to describe the
contents. Wildness is a parameter of the match fields in rules. The wildness parameters of
different types of fields are calculated in different ways. The definition of rule wildness is
as following.

Wildness =


Num0

Numbit
, for ternary field;

MAX−MIN
RANGE , for range field;

Lenghpre f ix
Lengh f ield

, for prefix field.

(2)

To simplify the problem, we will only consider the ternary case in the following
sections, and we will treat every byte of the rule as a match field. In this paper, we will
treat a byte as a catch-all byte if the wildness is bigger than 0 and treat a byte as an exact
match byte if the wildness is 0. The rule content type influences the number of child nodes
that will be involved in trie merging. In the trie merging process, an exact byte will involve
only one child node, and a catch-all node will involve all child nodes of current nodes.

The second element is current node number. In trie merging process, current node
number of this iteration is just the result of the last iteration. Therefore in the formula, we
will calculate and remember the current number of each level, and the result of this level
will be used in the next calculation.

The last element is the child node number of current nodes. It is easy to get the node
number of each level in the trie. However, it is difficult to get the child node number
of current nodes. To simplify the question, we only consider two typical child node
distributions: uniform distribution and extremely skewed distribution.

Uniform distribution means that all nodes in this level have the same number of
child nodes. We suppose that an empty trie is with uniform distribution of child node.
With more rules added into the trie, the child node distribution becomes skew gradually.
Comparing with uniform trie models, skewed trie models are more accurate but complex.
We should know the skew of every node to calculate the expectation. So we first put
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forward the prediction of uniform distribution case. When a rule is added to a trie with
uniform distribution, the prediction value in each level is

F0 = 1, Fi =

{
Fi−1, Wi = 0;
Fi−1 × Ni

Ni−1
, Wi > 0.

(3)

Ni is the node numbers in each level of the trie, and Fi is the predicted value in the
i-th level of the trie. So the total value is

Ftotal = ∑ Fi (4)

The actual child node distribution of the trie is not uniform generally, so when we use
this formula for uniform cases to predict update latency, there will be a difference between
the actual changing node number and the calculated one. When the distribution is slightly
skewed, the difference is small, and we can still use the formula to predict update latency.
The difference can be calculated after every update process. From the difference, we can
know whether the formula for uniform cases is still suitable or not. When the old formula
is no longer suitable, we will use another formula:

F0 = 1, Fi =

{
Fi−1, Wi = 0;
Ni, Wi > 0.

(5)

We call Equation (3) AVE Form and call Equation (5) WC Form. The AVE Form value
is an average prediction, and in most cases, the actual value is around the prediction value.
The WC Form value is an upper bound. The WC Form stands for the worst case. As the
skew of the nodes is big enough in the trie, it assumes that all the nodes in the next level
are child nodes of the nodes which have been influenced in the merging process. It means
that all the nodes in the next level will be involved in the merging process if the byte is a
catch-all byte. In practice, the actual value must be less than the WC Form prediction.

3.3. Optimization: Choose a Trie

With the two prediction formulas, we design an optimization method for the trie
update process. The optimization is aimed to avoid high update latency. With the merging
predictions, we can know whether the latency would be high when a rule is added to a trie.
Now the question is how to shorten the time when we know the time consuming would be
too long.

The idea is that although we cannot decide the order of rules, we can decide which
trie the rule will be inserted into. In practice, a trie-based method will build another trie
when the number of nodes in the trie is too big. As a result, there would be more than one
trie. So we can build several tries in the build-up process.

When we insert a rule, we choose one from the tries according to the latency pre-
dictions. For a trie, we will first use AVE Form to predict the latency. When we find the
prediction is much less than the actual value, we will mark the trie as a bad trie and use WC
Form to calculate latency predictions for it again. By finding a trie with a latency prediction
lower than a threshold, we can avoid high update latency. Figure 4 shows the new insertion
process, and the pseudocode of the new insert process is shown in Algorithm 1.
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Figure 4. The update process of ITOC.

Algorithm 1: Insertion process with trie choosing.
Input: the insert rule R, ruleset S with tries {T1 T2 . . . Tn}, threshold Nt
Output: ruleset S with tries

1 for Ti in S do
2 if Ti is full then
3 continue;
4 else if Ti is Good then
5 calculate prediction time Np of R and Ti in AVE Form;
6 else
7 calculate prediction time Np of R and Ti in WC Form;
8 end
9 if Np < Nt then

10 choose Ti;
11 end
12 end
13 if no T is chosen then
14 init new trie Tn+1 in S;
15 choose Tn+1;
16 end
17 insert R into the chosen Tc;
18 generate lookup array of S;
19 get actual node operation time Na;
20 if Na < Nt then
21 change Tc status into Bad;
22 end

Although our optimization could shorten the latency of trie merging, we also need to
consider the time cost of the optimization. Luckily, the time complexity of our optimization
is negligible compared with the time complexity of trie merging.

Our optimization consists of two steps: wildness calculation and prediction calculation.
For wildness calculation, as the wildness is calculated for every byte individually, the time
complexity Tw is:

Tw = O(N) (6)
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where N is the number of bytes in the rule match fields. For prediction calculation,
the prediction is the sum of the prediction of each level, and we calculate the prediction for
all the tries in the worst case. So the time complexity of prediction calculation Tp is:

Tp = kO(N) (7)

The time complexity of our optimization is the sum of the two steps, so the time
complexity of our optimization To is:

To = Tw + Tp

= O(N) + kO(N)
(8)

Because k is a limited value, the time complexity of our optimization is O(N).
As calculated before, the time complexity of trie merging Tm is O(NAN) where A is

the average time of self-calling in each iteration. As A is a value from [1, 255], the time
complexity of trie merging is much bigger than our optimization. The operations in trie
merging functions will take much more time than the calculations in our optimization. So
we can conclude that the time cost of our optimization will not influence the update latency
of the method.

Additionally, the influence of our optimization on the lookup performance is slight.
Our optimization does not change the lookup process and the lookup data structure, so
the only factor of lookup performance changing is the number of tries. Generally, online
trie-based methods will build more trie structures than offline ones. Our optimization
actively splits the trie structures, which means the possibility of more tries. The difference
in trie number will lead to a gap in lookup performance. Fortunately, when the flow table
is large, the number difference caused by our optimization is no longer significant.

In addition to update and lookup performance, we also consider the memory usage.
As an algorithm for online packet classification problems, the method should maintain more
data structures than offline methods. However, the core data structures of the algorithms
are similar. So compared with DPDK ACL, ITOC will not have a significant increase in
memory usage.

3.4. Implementation in DPDK

To validate our method, implementing it in DPDK is the best choice because the
original method is a library provided by DPDK. There are several problems we meet when
we implement the method.

The first one is the size of index groups in each leaf node. Theoretically, matching
ranges of the rules could coincide, and the number of rules in a rule overlap is limitless.
However, when we implement the method, we should limit the number of indices in the
trie data structure with a maximum to save the memory space and to make the structure
easy to implement. In our implementation, we choose the maximum number as 8.

The second one is to choose the thresholds of the insert process. In our method, there
are three thresholds: the threshold for AVE Form, the threshold for WC Form, and the
threshold for Form switch. In the implementation, our thresholds are chosen according
to the results of simulations. The results are given in the next chapter. Finally, we set the
thresholds as following: the threshold for AVE Form is 2000, the threshold for WC Form is
10,000, and the threshold for Form switch is 2000.

4. Experimental Results
4.1. Simulation Setup

The popular way to get test datasets is using the tool called ClassBench [22]. We use
a work based on it called ClassBench-ng [23] because the old ClassBench is too old and
no longer supported now. We use ClassBench-ng to generate 5-tuple rulesets to test our
method. ClassBench-ng also provides three types of seed files: access control lists (ACL),
firewalls (FW), and IP-chains (IPC)). So we now have three types of rulesets with different
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properties. As the size of the ruleset is also important, we generated rulesets in three
different sizes to show the influence of rule numbers.

The simulation program runs on a Linux platform with Intel Xeon Silver 4208 CPU@
2.10 GHz and 64 GB of RAM. The operating system is CentOS release 7.9.2009. Our program
works with DPDK, gets rulesets from configuration files, and reads data files to simulate
network packet input.

As ITOC is an online packet classification algorithm improved from DPDK ACL,
we conducted these experiments in the simulation environment. We first designed an
experiment to find the best threshold set for ITOC. Then another experiment was fin-
ished to verify the effectiveness of the optimization in ITOC. Afterward, we provided the
lookup performance comparison of ITOC and some recent algorithmic approaches. Finally,
we compared the performance of ITOC with DPDK ACL library, especially the overall
performance in online work scenes.

4.2. Simulation Results

Herein, we give out the results of the simulations using different threshold values.
The simulations are aimed to find out proper thresholds for the implementation and other
simulations. The results are shown in Tables 1–3.

Table 1. Performance of different AVE Form thresholds (WC Form threshold: 10,000, Form Switch
threshold: 2000).

Dataset 100 200 500 800 1000 2000 3000 4000 5000

ACL 10 7 6 5 5 5 5 4 4
FW 16 11 9 8 8 7 7 9 10
IPC 11 7 7 7 7 6 9 10 11

Table 2. Performance of different WC Form thresholds (AVE Form threshold: 2000, Form Switch
threshold: 2000).

Dataset 2000 3000 4000 5000 6000 7000 8000 9000 10,000

ACL 5 5 5 5 5 5 5 5 5
FW 7 7 7 7 7 7 7 7 7
IPC 6 6 6 6 6 6 6 6 6

Table 3. Performance of different Form Switch thresholds (AVE Form threshold: 2000, WC Form
threshold: 10,000).

Dataset 1000 2000 3000 4000 5000 6000 7000 8000

ACL 5 5 5 5 5 5 5 5
FW 7 7 7 7 7 7 7 7
IPC 6 6 8 8 8 8 8 8

The simulation used three types of rulesets, which contain 10 k rules. The results show
thatthe numbers of tries generated for the rulesets change when the thresholds change.
For different types of rulesets, the trend of trie number changing is different. Considering
all the datasets, we finally choose the value of AVE Form as 2000. Because 2000 is the best
threshold for IPC datasets and a better threshold for FW datasets and ACL datasets. For
other thresholds, things are similar. We choose the WC Form threshold as 10,000 and the
Form switch threshold as 2000, respectively.

Then, we demonstrated the effectiveness of the trie choosing optimization of ITOC.
We got the average update latency and average lookup time of the methods with and
without optimization using three types of IPv4 5-tuple rulesets in three sizes generated by
ClassBench-ng. We added the rule into the table and calculated the average update latency.
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Then, we tested the lookup interface using the test packets data. The test packets data are
generated from the rulesets, and in the data, every rule in the rulesets could find a packet
matching itself. The results are shown in Figure 5.

Figure 5. Performance of online trie-based method with and without optimization.

According to the results, we can find that the trie choosing optimization reduced
the average update latency, especially in the FW and IPC datasets. For ACL datasets,
the performance of the optimization is not as good as it for the other datasets. The larger
trie number led to a longer lookup time in some experimental results. We suppose that the
performance of the trie choosing optimization is related to the content of rulesets. In ACL
datasets, wildcards mostly exist in source port field, and most rules in ACL datasets have an
exact match source IP field. Although, in FW and IPC datasets, there are many wildcards in
both IP match fields. In FW datasets, over half of the rules have IP match fields of which all
mask bytes are 0x00. The differences between the datasets result in different performance
of the optimization.

Then we compare the lookup performances of ITOC and some recent algorithmic
approaches, represented by PartitionSort, TupleMerge, and TSS. The results are shown in
Figure 6.

Compared to other algorithms, ITOC achieves the shortest average lookup time or the
second shortest average lookup time in most datasets. Considering ITOC could process
multiple lookup requests at once while the other algorithms could not, we believe ITOC
will have more advantages in actual work scenes.

Finally, we compared the performance of ITOC with the DPDK ACL library using the
IPv4 ruleset datasets. We measured memory footprint, lookup time, and update latency
of ITOC and DPDK ACL. After comparing the basic performances, we simulated and
compared the overall performances of the two algorithms in online work scenes. In brief,
ITOC had a bigger memory footprint, the same level lookup speed, and much shorter
update latency comparing with DPDK ACL. So in online work scenes, ITOC has a better
overall performance than DPDK ACL algorithm.
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Figure 6. Lookup performance comparison.

The memory footprint comparison is as following. As the trie structures are the main
reason for the memory usage, we counted the nodes in tries. The implementations of ITOC
and DPDK ACL use huge page memory provided by DPDK to achieve faster memory
access. So we can compare the memory footprints using the APIs. The results are shown in
Figure 7.

Figure 7. Node number and memory comparison.

As shown in Figure 7, ITOC has a larger memory footprint and more trie nodes.
In most cases, ITOC only consumed 2 to 5 times more memory. Only in special cases,
the memory footprints are bigger. ITOC consumes more memory due to the more nodes in
the tries. Fortunately, since the memory is not the bottleneck of the implementation of our
algorithm, the memory usage will not affect our algorithm.

The lookup performance comparison is shown in Figure 8. As both DPDK ACL and
ITOC provide two lookup interfaces, we compared four interfaces in the experiment.
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Figure 8. Average lookup time comparison.

Figure 8 shows that the batch lookup interface of DPDK ACL is the fastest lookup
interface. Our online method, ITOC, has the same level of lookup speed. In some cases,
the single lookup interface of ITOC is faster than DPDK ACL. Meanwhile, for batch
interface, the batch lookup interface of ITOC performs poorer than DPDK ACL in most of
the datasets. Briefly, In some datasets, the batch interface performance of ITOC is close to or
equivalent to DPDK ACL. Considering the online work scenes, we think the performance
gap from the batch interface in the other datasets is acceptable.

Then we compared the update latency of the two methods. The rules were added into
tables in the same order. The results are shown in Figure 9.

Figure 9. Average update latency comparison.
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As we know, the update process of ITOC, trie updating, is much simpler than the
update process of DPDK ACL, trie rebuilding. The optimization which we designed for
ITOC avoided huge update latency during the update process. So in the average update
latency comparison, the performance of ITOC is much better than DPDK ACL. In the best
case, the update latency of ITOC is only 6.85% of DPDK ACL. The result reveals attractive
advantage of ITOC on update performance over DPDK ACL.

At last, we designed a simulation to compare the overall lookup performances. In the
simulation, the mixed input consists of lookup requests and update requests, which is
similar to the actual online work scenes. We compared the processing time taken by each
algorithm. The mixed inputs contain 10,000 requests, and the ratio of lookup requests to
update requests in the inputs was set into three values: 1000:1, 100:1, and 10:1.

As shown in Figure 10, the processing time of DPDK ACL is much longer than ITOC.
With the ratio of the update requests in the mixed input increasing, the processing time
difference became larger. The results show that, the small sacrifice in lookup speed is
acceptable as it brings considerable better lookup update performance improvement and
eventually provides better overall lookup performance in online work scenes.

Figure 10. The mixed input processing time of ITOC and DPDK ACL(s).

5. Conclusions

Our paper is based on the contribution of DPDK ACL library and aimed to improve
the performance of trie-based packet classification algorithms in online problems. In this
paper, we provide the following contributions. Firstly, we design an algorithm to predict
update latency for the online trie-based algorithm, and with the prediction algorithm, we
could get the latency level before the update process. Secondly, based on the update latency
prediction, we provide a trie choosing function to avoid update latency exploding. Finally,
we implement our method and compare it with the DPDK ACL method and some recent
well-known methods. In the experiment, the update latency of ITOC is only 6.85% of DPDK
ACL library in the best case. Meanwhile, the lookup time of the methods is at the same level.
In online work scenes simulations, ITOC achieves a better overall lookup performance
than DPDK ACL. The results show that ITOC is more suitable for the SDN environment
than other methods. Our future work will focus on trie update latency predictions and trie
building optimization for online packet classification. Because we think there is still room
for us to improve our method.
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