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Abstract: Energy harvesting is becoming more and more essential in the mechanical vibration
application of many devices. Appropriate devices can convert the vibrations into electrical energy,
which can be used as a power supply instead of ordinary ones. This study investigated a dynamical
system that correlates with two devices, namely a piezoelectric device and an electromagnetic
one, to produce two novel models. These devices are connected to a nonlinear damping spring
pendulum with two degrees of freedom. The damping spring pendulum is supported by a point
moving in a circular orbit. Lagrange’s equations of the second kind were utilized to obtain the
equations of motion. The asymptotic solutions of these equations were acquired up to the third
approximation using the approach of multiple scales. The comparison between the approximate
and the numerical solutions reveals high consistency between them. The steady-state solutions were
investigated, and their stabilities were checked. The influences of excitation amplitudes, damping
coefficients, and the different frequencies on energy-harvesting device outputs are examined and
discussed. Finally, the nonlinear stability analysis of the modulation equations is discussed through
the stability and instability ranges of the frequency response curves. The work is significant due
to its real-life applications, such as a power supply of sensors, charging electronic devices, and
medical applications.

Keywords: energy harvesting; nonlinear dynamics; perturbation methods; piezoelectric and electro-
magnetic devices; stability

1. Introduction

Energy harvesting (EH) has been a substantial aspect of research work in the previous
few years. It transforms the surrounding energy presented on Earth into electrical power
to drive autonomous electronic devices or circuits [1,2]. This energy can be harnessed from
solar energy, thermal energy, and the most vital source for harnessing, kinetic energy, espe-
cially from vibrational motion [3]. EH depending on vibration can drive devices like sensors
and wireless electronics as well as monitoring applications [4]. Its mechanism’s models
depend on the uses of electromagnetic, piezoelectric, and hybrid electromagnetic devices.

In [5], Glynne-Jones et al. designed an electromagnetic generator to convert the
environment vibrational energy into an electrical one to power sensor devices. The response
of a harvester of energy is investigated in [6]. In [7], the authors computed the coupling
due to the electromagnetic energy harvesters and deduced the resonant harvesters’ output
voltage. A prototype was designed in [8] to harvest energy from the speed of passing
vehicles and control their speed simultaneously.
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In [9], the authors investigated a self-powered and self-operating tracking system
based on an electromagnetic hybrid friction blue energy-harvesting module, theoretically
and experimentally. The unique spin of the designed gyro enables the system to search
for the energy of low-frequency wave and non-uniform vibration with high efficiency.
A hybrid designed propeller wheel was reported in [10] with a nano-coupled triboelectric
generator and an electromagnetic generator that can harvest the wind’s energy even in
a weak airflow. At the same time, Fan et al. [11] harvested energy from low frequency.
They used a piezoelectric energy harvester (PEH) with stoppers and tuned the device
at monostable mode to avoid problems in a bistable or tristable system. A multi-mode
PEH with analytical modeling is investigated in [12] to produce different close peaks of
the voltage output from the vibrational sources. In [13], theoretical and experimental
broadband PEH studies depend on kinetic energy with a triple well potential generated by
the magnetic field. The mathematical model is examined to show the response of tristable
energy generators.

A comparison between three nonlinear planar springs, namely bi-leg, quad-leg, and
pent-leg designs, is presented in [14] to examine the influence of the interaction of a
vibration mode to extend the operating frequency range of the PEH. In [15], the authors
answered the question: How can the electricity be generated from a mechanical structure
driven by vapor momentum? They investigated a design of an energy harvester that
experimentally depends on vapor-induced vibration for the heat pipe application. The
velocity of the vapor impacted the induced power of the device.

A report on a cost-effective wearable PEH using electrophoresis, conductive fabrics,
and coated with nickel-copper-polyester is presented in [16]. The finite element method
(FEM) was used in [17] to obtain the numerical results of the effectiveness of the piezoelec-
tric layer’s length and thickness on the von Mises stress. The influence of increasing the
seismic mass’s thickness on the cantilever structure’s resonance frequency was studied
in [18], in which the FEM was applied to achieve numerical results. It is observed that
the resonance frequency of the cantilever decreased with increasing size of the seismic
mass. The authors [19] presented the design, manufacture, and testing of an underground
double-axis PEH based on the piezoelectric stack.

A modified numerical method was utilized in [20] to obtain the solutions of second-
order boundary value problems of ordinary differential equations (ODEs) directly for
Dirichlet and mixed cases. In addition, a hybrid single-step implicit block method was
used to solve the nonlinear differential equation of a circular sector oscillator in [21].
Significant success was achieved in solving the stiff ODEs using the hybrid single-step
implicit block method.

A new flexoelectric energy harvester and broadband piezoelectric in the presence of
an applied axial compressive load with an excitation base is investigated in [22], where the
energy harvester operates in either a pre-torsion configuration or a post-configuration, de-
pending on the axial load’s amplitude. Moreover, a converter is used in [23] to transform the
piezoelectric vibration into electricity as a power source for wireless electronics. A simple
piezoelectric spring configuration depending on a standard binder clip structure is studied
in [24]. The harvester consists of a spring’s pendulum that converts the mass’s energy into
an electrical one in the piezoelectric transducer. Two degrees of freedom (DOF) mechanical
model with developed glands was examined in [25] by simulating the impact behavior as
linear stiffness piecewise. A new horizontal asymmetric U-shaped vibration-based PEH is
presented in [26], in which the nonlinearity is combined with multimodality.

Erturk et al. [27] examined the high-energy orbits in the piezo-magneto-elastic energy
harvester theoretically and experimentally over the excitation frequencies area. A compari-
son between an electromagnetic PEH and a PEH with distinct interface circuits is found
in [28]. Furthermore, it is shown in [29] that the effect of the backward electromechanical
coupling on the mechanical vibrations of the energy harvesters can be approximated using
the different values of the excitation frequency and damping coefficient.
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The periodic and quasi-periodic vibration of a dynamical model connected to a piezo-
electric circuit was studied in [30]. The approximate solutions were obtained using the
complexification-averaging method. A special EH designed system was examined asymp-
totically using the harmonic balance method in [31], in which the attained results are
verified numerically and experimentally. In contrast, the author in [32] designed another
nonlinear system that suppressed the vibration and EH at the same time. It is concluded
that the starting area of resonance is the best area for suppression.

The dynamical motion of a damped spring pendulum with two or three DOF in the
presence of excitation forces and moments is investigated in several works, e.g., [33–40].
The damped motion of a spring pendulum, in which its suspended point moves in a
circular trajectory, is investigated in [33]. The authors provided a numerical example for
the model’s physical parameters to study the examined model’s chaotic behavior. The
planar motion of a linear spring-rigid-body pendulum with fixed pivot is studied in [34],
and its generalization is found in [35] and [36] when the fixed point is constrained to
move on an ellipse with a constant angular velocity for a linear and nonlinear spring
stiffness, respectively. The authors provided other motions as additional examples in [36]
for the motion of the fixed point in horizontal and vertical paths. The chaotic motion of an
elastic pendulum is explored in [37], the movement of its suspension point in a circular
route. It is observed that the approximated system has a bifurcation that leads to chaotic
motion via a series of period-doubling bifurcations. The nonlinear motion of a double
pendulum system with 3DOF in the presence of one external force and two moments
is examined in [38]. The effects of absorber motion on the 3DOF dynamical system is
studied in [39]. On the other hand, nonlinear movements of an elastic pendulum under the
influence of two perpendicular excitation forces are investigated in [40]. The pivot points
of the pendulums considered in [38–40] are considered to move in elliptic trajectories. The
asymptotic solutions are obtained up to higher order of approximation using the approach
of multiple scales (AMS). The solvability conditions and the modulation equations (ME)
are achieved in line with the examined resonance cases. The stability and instability areas
of the investigated models in [39,40] are explored and represented graphically for suitably
selected values of the physical parameters of these models.

The present study investigated two novel dynamical models to convert the vibrational
motion of a spring pendulum into electrical energy. Two EH devices, namely piezoelectric
and electromagnetic, were connected with the spring separately as two models. The
main governing system of motion was derived using Lagrange’s equations, by which
the mechanism of the piezoelectric and electromagnetic circuits were used to obtain their
corresponding equations [29]. The asymptotic solutions up to the third approximation
were obtained utilizing the AMS. External resonance cases between the classified resonance
cases were examined. Therefore, ME were obtained to explore the solutions at the steady
state and examine the fixed point stability. The numerical results were compared with
the approximate ones to reveal the accuracy between them. The influence of damping
coefficients and excitation amplitudes on the output voltage, current, and power are
represented graphically. Moreover, the response of the excitation frequency on the output
power of the considered two dynamical systems was obtained from the energy-harvesting
devices. Moreover, the nonlinear stability approach was used to examine the ME through
some plots of stability and instability areas for the frequency response of these equations.
The importance of this work is due to its significant applications in practical life, such as in
a power supply of sensors, charging electronic devices, and various medical applications.

2. Dynamical Modeling

This section is devoted to introducing a complete description of the considered models.
Therefore, let us consider the motion of 2DOF dynamical models consisting of nonlinear
spring pendulums with the same linear and nonlinear stiffness coefficients k1 and k2,
respectively. It is considered that the point of suspensions O moves in a circular path
of radius R, with an angular velocity Ω, in which it is subjected to a harmonic torque
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M(t) = M0 cos Ω2t. The pendulum’s other end Q is excited by an external harmonic force
F(t) = F0 cos Ω1t that drives the mass m along the pendulum length; see Figure 1. Here,
F0, M0, and Ω1, Ω2 are the amplitudes and frequencies of F(t) and M(t). Let C1 and C2

represent the damping coefficients of the viscous force C1
.
x and viscous moment C2

.
θ ,

respectively; l0 is the spring’s normal length and g is the gravitational acceleration.
Now, we consider a connection of two devices (piezoelectric and electromagnetic)

separately with the considered model, in which the resistive loads of the piezoelectric and
electromagnetic circuits are Rp and Rm, respectively. Let cp denote the capacitance of the
piezoelectric, lm the inductance of the coil, and γj (j = 1, 2) the linear coupling coefficients
for the piezoelectric circuit and electromagnetic one.

Based on the portrayed Figure 1, we can write the cartesian coordinates of the point Q
as follows

X = R cos Ωt + (l0 + x) cos θ,
Y = R sin Ωt + (l0 + x) sin θ.

(1)

Figure 1. Two dynamical models: (a) a damped spring with a piezoelectric device, (b) a damped spring with an electromag-
netic device.

Henceforth, the potential and kinetic energies of the dynamical system can be written as

V = 1
2 k1 x2 + 1

4 k2 x4 −m g [R cos Ωt + (l0 + x) cos θ],

T = m
{

1
2 [R

2 Ω2 +
.
x2

+ (l0 + x)2 .
θ

2
]− R Ω

.
x sin(Ωt− θ)

+ R Ω (l0 + x)
.
θ cos(Ωt− θ)

}
,

(2)

where the dot represents the differentiation with respect to time t.
In order to obtain the governing equations of motion (EOM) for the mentioned systems,

the following Lagrange’s equations are used

d
dt (

∂L
∂

.
x
)− ( ∂L

∂x ) = Qx,

d
dt (

∂L
∂

.
θ
)− ( ∂L

∂θ ) = Qθ .
(3)

Here L = T−V is the Lagrangian function, and Q x and Q θ are the generalized forces
corresponding to the generalized standing coordinates x and θ, respectively. Moreover,
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the mechanism’s equations for the piezoelectric circuit and electromagnetic one can be
expressed as follows

cp
.
v + v

Rp
− γ1

.
x = 0

lm
.
q + Rm lm q− γ2

.
x = 0

(4)

where v and q are the voltage and the current of the load resistances Rp and Rm, respectively.
The generalized forces Q x and Q θ have the forms

Qx = F0 cos Ω1t − C1
.
x − PM,

Qθ = M0 cos Ω2t − C2
.
θ ,

where PM represents a coupling term of the two models equals γ1v for the piezoelectric
circuit (model a) or γ2q for the electromagnetic circuit (model b).

Let us consider the following dimensionless parameters

ω2
1 = k1

m , ω2
2 = g

l , W2 =
ω2

2
ω2

1
, r = R

l , p = Ω
ω1

,

p1 = Ω1
ω1

, p2 = Ω2
ω1

, α = k2 l2

ω2
1m

, µ1 = γ1
ω2

1m l
,

µ2 = γ2
ω2

1m l
, PM(= µ1 v , µ2 q ), c1 = C1

ω1m ,

c2 = C2
l2ω1m , f1 = F0

lω2
1m

, f2 = M0
ω2

1m l2 , τ = ω1t,

(5)

where
zr + α z3

r = W2, zr = ζs l, x = z l + zr, l0 = l − zr.

Making use of (2), (5), and (6) into (3) yields the following two dimensionless EOM

..
z + c1

.
z + z + 3 α ζsz( ζs + z) + α z3 − r p2(cos pτ + θ sin pτ)

+ 1
2 W2θ2 + PM− (1 + z)

.
θ

2
= f1 cos p1τ ,

(6)

(1 + z)2 ..
θ + c2

.
θ + (1 + z)[W2(θ − θ3

6 )− r p2(sin pτ − θ cos pτ)]

+2(1 + z)
.
z

.
θ = f2 cos p2τ.

(7)

According to the above procedure, the dimensionless mechanism equations of the
piezoelectric circuit and electromagnetic one can be obtained from the substitution of (6)
into (4) as follows

.
v + v

Rp cp ω1
= l γ1

cp

.
z

.
q + q Rm

lm ω1
= l γ2

lm
.
z

3. The Proposed Method

In the present section, the AMS is applied to achieve the asymptotic solutions of the
above Equations (7)–(9). Therefore, we examine the dynamics of considered systems in a
small neighborhood of their static equilibrium position [41]. Consequently, we express the
amplitudes of all oscillations in terms of a small parameter 0 < ε << 1 as follows

z(τ) = ε x̃(τ; ε), θ(τ) = ε ϕ̃(τ; ε),
v(τ) = ε ṽ(τ; ε) , q(τ) = ε q̃(τ; ε).

(8)

Consider employment of the following variables and parameters

r = ε2 r̃, µ1 = ε2 µ̃1, µ2 = ε2 µ̃2, lm = ε2 l̃m
γ1 = ε2 γ̃1, γ2 = ε2 γ̃2, α = ε2 α̃,
c1 = ε2 c̃1, f1 = ε3 f̃1 , f2 = ε3 f̃2,
Rp = R̃p/ε2 , cp = ε2 c̃p, Rm = ε2R̃m.

We looked for the desired solutions x̃, ϕ̃, ṽ, and q̃ as power series of ε according to
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x̃ = ∑3
k=1 εkxk(τ0, τ1, τ2) + O(ε4),

ϕ̃ = ∑3
k=1 εk ϕk(τ0, τ1, τ2) + O(ε4),

ṽ = ∑3
k=1 εkvk(τ0, τ1, τ2) + O(ε4),

q̃ = ∑3
k=1 εkqk(τ0, τ1, τ2) + O(ε4),

(9)

where τn = εnτ (n = 0, 1 , 2) are different time scales.
The system of Equations (7)–(9) was transformed to a set of partial differential equa-

tions (PDE), i.e., we used the following operators of time derivatives

d
dτ = ∂

∂τ0
+ ε ∂

∂τ1
+ ε2 ∂

∂τ2
,

d2

dτ2 = ∂2

∂τ2
0
+ 2ε ∂2

∂τ0∂τ1
+ ε2( ∂2

∂τ2
1
+ 2 ∂2

∂τ0∂τ2
) + O(ε3).

(10)

Terms of O(ε3) and higher orders in the operators (12) are neglected. Employing a
procedure of splitting with respect to perturbation parameter ε, the following nine linear
PDE are obtained

(i) Order of (ε)
∂2x1

∂τ2
0

+ x1 = 0, (11)

∂2φ1

∂τ2
0

+ W2φ1 = 0, (12)

∂v1
∂τ0

+ v1
ω1 c̃p R̃p

= l γ̃1
c̃p

∂x1
∂τ0

,

∂q1
∂τ0

+ q1 R̃m

ω1 l̃m
= l γ̃2

l̃m
∂x1
∂τ0

.
(13)

(ii) Order of (ε2)

∂2x2

∂τ2
0

+ x2 =
1
2

p2 r̃ei p τ0 − 1
2

W2 ϕ2
1 + (

∂ϕ1

∂τ0
)

2
− 2

∂2x1

∂τ0∂τ1
, (14)

∂2 ϕ2
∂τ2

0
+ W2 ϕ2 = 1

2 i p2 r̃ei p τ0 −W2x1 ϕ1 − 2 ∂x1
∂τ0

∂ϕ1
∂τ0

−2 ∂2 ϕ1
∂τ0τ1

− 2 x1
∂2 ϕ1
∂τ2

0
,

(15)

∂v2
∂τ0

+ v2
ω1 c̃p R̃p

= l γ̃1
c̃p

( ∂x1
∂τ1

+ ∂x2
∂τ0

)− ∂v1
∂τ1

,

∂q2
∂τ0

+ q2 R̃m

ω1 l̃m
= l γ̃2

l̃m
( ∂x1

∂τ1
+ ∂x2

∂τ0
)− ∂q1

∂τ1
.

(16)

(iii) Order of (ε3)

∂2x3
∂τ2

0
+ x3 = 1

2 f̃1ei p1 τ0 − 1
2 i p2 r̃ϕ1ei p τ0 −W2 ϕ1 ϕ2 − ∂2x1

∂τ2
1
− c̃1

∂x1
∂τ0

−2( ∂2x1
∂τ0∂τ2

+ ∂2x2
∂τ0∂τ1

) + 2( ∂ϕ1
∂τ0

∂ϕ1
∂τ1

+ ∂ϕ1
∂τ0

∂ϕ2
∂τ0

)

+ x1(
∂ϕ1
∂τ0

)
2
− µ̃1 v1(or µ̃2 q1 )− 3 α̃ ζs

2x1,

(17)
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∂2 ϕ3
∂τ2

0
+ W2 ϕ3 = 1

2 ( f̃2ei p2 τ0 − i p2 r̃x1ei p τ0 − p2 r̃ϕ1ei p τ0)

−W2(ϕ2x1 + ϕ1x2) + 1
6 W2 ϕ3

1 −
∂2 ϕ1
∂τ2

1
− c̃2

∂ϕ1
∂τ0

−2 ∂x1
∂τ0

( ∂ϕ1
∂τ1

+ ∂ϕ2
∂τ0

)− 2 ∂ϕ1
∂τ0

( ∂x1
∂τ1

+ ∂x2
∂τ0

)

−2x1(
∂x1
∂τ0

∂ϕ1
∂τ0

+ 2 ∂2 ϕ1
∂τ0∂τ1

+ ∂2 ϕ2
∂τ2

0
)− ∂2 ϕ1

∂τ2
0

×(x2
1 + 2x2)− 2( ∂2 ϕ1

∂τ0∂τ2
+ ∂2 ϕ2

∂τ0∂τ1
),

(18)

∂v3
∂τ0

+ v3
ω1 c̃p R̃p

= l γ̃1
c̃p

( ∂x1
∂τ2

+ ∂x2
∂τ1

+ ∂x3
∂τ0

)− ∂v1
∂τ2
− ∂v2

∂τ1
,

∂q3
∂τ0

+ q3 R̃m

ω1 l̃m
= l γ̃2

l̃m
( ∂x1

∂τ2
+ ∂x2

∂τ1
+ ∂x3

∂τ0
)− ∂q1

∂τ2
− ∂q2

∂τ1
.

(19)

These equations can be solved sequentially. Therefore, the solutions of Equations (13)–(15)
are as follows

x1 = A eiτ0 + A e−iτ0 , (20)

φ1 = B eiWτ0 + Be−iWτ0 , (21)

v1 =
R̃pω1 l γ̃1

R̃pω1 c̃p−i
A eiτ0 +

R̃pω1 l γ̃1

R̃pω1 c̃p+i
A e−iτ0 ,

q1 = ω1 l γ̃2
ω1 l̃m−i R̃m

A eiτ0 + ω1 l γ̃2
ω1 l̃m+i R̃m

A e−iτ0 ,
(22)

where A and B represent unknown complex functions of the slow time scales τ1 and τ2,
while A and B denote their counterpoint complex conjugates.

Substitution of the solutions (22)–(24) into the higher-order Equations (16)–(18) yields
secular terms. To eliminate these terms, the following conditions are employed

∂A
∂τ1

= 0,
∂B
∂τ1

= 0. (23)

Therefore, the following second-order solutions are yielded

x2 = W2B B +
3 W2B2e2iWτ0

2(4 W2 − 1)
+

r̃ p2ei pτ0

2(1− p2)
+ CC, (24)

ϕ2 = −W(W+2)A B ei(W+1)τ0

(2 W+1) + W(W−2)A B ei(W−1)τ0

(2 W−1)

+ i r̃ p2ei pτ0

2( p2−W2)
+ CC,

(25)

v2 = − p3 r̃R̃pω1 l γ̃1 ei pτ0

2(p2−1)(R̃p pω1 c̃p−i)
+

3 W3B2R̃p ω1 l γ̃1e2iWτ0

(4 W2−1)(2R̃pWω1 c̃p−i)
+ CC ,

q2 = − p3 r̃ω1 l γ̃2 ei pτ0

2(p2−1)(pω1 l̃m−i R̃m)
+ 3 W3B2ω1 l γ̃2e2iWτ0

(4 W2−1)(2Wω1 l̃m−i R̃m)
+ CC ,

(26)

where CC denotes the conjugates of the previous terms.
As per the previous method, the elimination of the secular terms required that A and

B depended just upon τ2. The solutions for Equations (19) and (20) can be obtained by
elimination of the secular terms, which yields the following equations

i c̃1 A + 2i ∂A
∂τ2

+ 3α̃ζ2
s A +

R̃pω1 l γ̃1 µ̃1 A
(R̃pω1 c̃p−i)

+ 6 W2(W2−1)A B B
(4 W2−1) = 0.

i c̃1 A + 2i ∂A
∂τ2

+ 3α̃ζ2
s A + ω1 l γ̃2 µ̃2 A

(ω1 l̃m−i R̃m)
+ 6 W2(W2−1)AB B

(4 W2−1) = 0.
(27)

iW c̃2B + 2iW
∂B
∂τ2

+
W2(W2 − 1)
2(4 W2 − 1)

B[12 AA− (8W2 + 1)BB] = 0. (28)
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Finally, we obtain the third-order solutions as follows

x3 = f̃1ei p1τ0

2(1−p2
1)
− i p3 r̃

2(p2−W2)

{
(p+2W)B eiτ0(p+W)

[1−(p+W)2]
+ (p−2W)B eiτ0(p−W)

[1−(p−W)2]

}
− 3 WA

4

{
(1+W)B2eiτ0(1+2 W)

(2W+1) − (W−1) B2eiτ0(1−2 W)

(2W−1)

}
+ CC,

(29)

ϕ3 = f̃2ei p2τ0

2(W2−p2
2)
− i p3 r̃

2(p2−W2)

{
(p+2)A eiτ0(p+1)

[W2−(p+1)2]
+ (p−2)Aeiτ0(p−1)

[W2−(p−1)2]

}
+ pA r̃

2(p2−1)

{
eiτ0(p+W)

(p+2W)
(p− 1 + W)(p + 1 + W) + eiτ0(p−W)

(p−2W)

×(p− 1−W)(p + 1−W)}+ WB
4

{
(W2+5W+6) A2eiτ0(W+2)

(2W+1)

+ (W2−5W+6) A2eiτ0(W−2)

(2W−1)

}
− (49 W2−1)B3e3 i Wτ0

48 (4 W2−1) + CC,

(30)

v3 =
i ω1 R̃p l γ̃1 p1 f̃1ei p1τ0

2(1+i ω1 c̃p R̃p p1)(1−p2
1)
− 3 iω1 R̃p l γ̃1 W (W+1)AB2 eiτ0(2W+1)

4[1+i ω1 c̃p R̃p (2W+1)]

− i ω1 R̃p l γ̃1 p3 (p−2W) r̃ Beiτ0(p−W)

2[1+i ω1 c̃p R̃p (p−W)](p−W−1)(p−W+1)(p+W)

− i ω1 R̃p l γ̃1 p3 (p+2W) r̃ B eiτ0(p+W)

2[1+i ω1 c̃p R̃p (p+W)](p+W−1)(p+W+1)(p−W)

− 3 iω1 R̃p l γ̃1 W (W−1)AB2 eiτ0(−2W+1)

4[1+i ω1 c̃p R̃p (−2W+1)]
+ CC,

q3 = i ω1 l γ̃2 p1 f̃1ei p1τ0

2(R̃m+i ω1 l̃m p1)(1−p2
1)
− 3 iω1 l γ̃2 W (W+1)AB2 eiτ0(2W+1)

4[R̃m+i ω1 l̃m (2W+1)]

− i ω1 l γ̃2 p3 (p−2W) r̃ Beiτ0(p−W)

2[R̃m+i ω1 l̃m (p−W)](p−W−1)(p−W+1)(p+W)

− i ω1 l γ̃2 p3 (p+2W) r̃ B eiτ0(p+W)

2[R̃m+i ω1 l̃m (p+W)](p+W−1)(p+W+1)(p−W)

− 3 iω1 l γ̃2 W (W−1)AB2 eiτ0(−2W+1)

4[R̃m+i ω1 l̃m (1−2W)]
+ CC.

(31)

4. Vibrations and Resonance Conditions

This section is introduced to review and classify the resonance cases and to obtain the
ME. It is known that these cases arise when the denominator approaches zero [42]. One
may consider the following cases:

Primary external resonance, at p1 ≈ 1, p2 ≈W,
Internal resonance occurs if W ≈ ±0.5.
If one of the above resonance conditions is satisfied, the behavior of the system

is extremely complex. It is notable that the achieved solutions are still valid when the
oscillations are clear of resonance. Now, we highlight the two cases of primary external
resonance if they occur together, i.e., p1 ≈ 1, p2 ≈W. For this purpose, we introduce the
following detuning parameters σj (j = 1, 2), which express the nearness p1 and p2 to 1 and
W

p1 = 1 + σ1,
p2 = W + σ2,

(32)

where σj = ε2σ̃j.
At that point, the effectiveness of resonance reverberates in secular terms. The pa-

rameters of detuning are viewed as a proportion of separation of the vibrations from
resonance. The conditions of solvability can be acquired as a result of eliminating secular
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terms; therefore, the following equations, which estimate the required conditions, are
satisfied

1
2 f̃1 eiτ2σ̃1 − i c̃1 A− 2i ∂A

∂τ2
− 3α̃ζ2

s A− H̃ − 6 W2(W2−1)A B B
(4 W2−1) = 0,

1
2 f̃2 eiτ2σ̃2 − iW c̃2 B− W2(W2−1)

2(4 W2−1) B[12AA − (8W2 + 1)BB]

−2iW ∂ B
∂τ2

= 0.

(33)

where
H̃ =

R̃pω1 l γ̃1 µ̃1 A
(R̃pω1 c̃p−i)

for model (a) or H̃ = ω1 l γ̃2 µ̃2 A
(ω1 l̃m−i R̃m)

for model (b).

The conditions of solvability (25) and (35) establish a system consisting of four nonlin-
ear PDE in terms of the unknown functions A and B that depend on the slow time scale τ2.
Therefore, we can assume these functions in the polar form as

A = ã(τ2)
2 eiψ̃1τ2 ; a = εã,

B = b̃(τ2)
2 eiψ̃2τ2 ; b = εb̃.

(34)

Since A and B are independent functions of variables τ0 and τ1, then the first-order
derivative operator can be simplified as the form

∂A
∂τ

= ε2 ∂A
∂τ2

;
∂B
∂τ

= ε2 ∂B
∂τ2

. (35)

Based on these conditions, the conditions of solvability (35) can be transformed into
PDE according to the following counterpoint modified phases

θ1(τ1, τ2) = τ1 σ̃1 − ψ1(τ2);
θ2(τ1, τ2) = τ1 σ̃2 − ψ2(τ2).

(36)

Substituting (36)–(38) into (35) and separating the real and imaginary portions, the
following system is obtained

a dθ1
dτ = f1

2 cos θ1 − a
2 [

3W2(W2−1) b2

2(4W2−1) + 3αζ2
s + 2(H1 − σ1)],

da
dτ = f1

2 sin θ1 − a
2 [c1 + 2H2],

b dθ2
dτ = f2

2W cos θ2 + b[σ2 +
W(W2−1)
16(4W2−1) ((8W2 + 1)b2 − 12a2) ],

db
dτ = f2

2W sin θ2 − 1
2 c2b.

(37)

Here, H1 =
R2

pω2
1 µ1 l γ1 cp

2(R2
pω2

1c2
p+1)

and H2 =
Rp ω1 µ1 l γ1

2(R2
pω2

1c2
p+1)

for the model (a) while H1 =

ω2
1 µ2 l γ2 lm

2(ω2
1 l2

m+R2
m)

and H2 = Rm ω1 µ2 l γ2 lm
2(ω2

1 l2
m+R2

m)
for the model (b).

Equation (39) can be solved numerically to obtain the amplitudes a, b and the modified
phases θj (j = 1, 2), through which it is impossible to acquire their solutions analytically.
Therefore, the following initial conditions are considered

a(0) = 0.01, b(0) = 0.02 , θj(0) = 0.

The solutions of these equations are presented in Figures 2 and 3 for the two energy-
harvesting models. Curves of these figures explore the time histories of the amplitudes
and the modified phases, in which its oscillations gradually decrease over time, as shown
in Figure 2I, while the oscillations of Figure 3II behave in a stationary manner after a
period of time. Model (a) was elaborated for the piezoelectric device, while model (b) was
elaborated for the electromagnetic device. These curves take into account the following
fixed parameters
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f1 = 1.67 ∗ 10−6, f2 = 2.22 ∗ 10−6, c1 = 0.0002, c2 = 0.0004,
W = 0.057, p = 0.003, p1 = 0.0016, p2 = 0.0016, r = 0.05,
α = 0.00007, µ1 = µ2 = 0.0125, σ1 = 0.002, σ2 = 0.002.

(38)

Figure 2. The variation of: (I) a with time τ and (II) b with time τ.

Figure 3. The variation of the modified phases: (I) θ1 via time τ and (II) θ2 via time τ.

It is notable that the difference between the two models becomes clear for the ampli-
tude a, the modified phase θ1, and the elongation, x, as shown in parts (I) of Figures 2–4.
The reason is due to the presence of energy-harvesting devices, which is predicted from
the first two equations of (39) and the approximate solution of x. On the other hand, there
is no variation regarding the behaviors of the amplitude b, the modified phase θ2, or the
angle θ, as observed from parts (II) of the same figures, which is expected from the last two
equations of (39) besides the asymptotic solution of the angle θ.

Figure 4. The time histories of the solutions: (I) x(τ) and (II) θ(τ).
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The phase portraits of the obtained solutions x and θ are displayed in parts of Figure 5.
It is noted that the included curves of Figure 5 have closed trajectories, which expresses the
steady behavior of these solutions.

A comparison between the numerical results of the original governing equations and
the asymptotic solutions is represented graphically in Figure 6I for the elongation x and
Figure 6II for the angle θ. A closer look at this figure shows high consistency between both
solutions, which reflects the good accuracy of the obtained approximate solutions.

Figure 5. The phase plane portraits of: (I) x(τ) and (II) θ(τ).

Figure 6. The comparison between the numerical and the approximate solutions for: (I) x(τ) and (II) θ(τ).

5. Steady-State Solutions

In this section, we focus our attention on investigating the solutions at the steady-state
case of the considered dynamical models. This case corresponds to the zero values of
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dθ1
dτ , dθ2

dτ , da
dτ , and db

dτ [43]. Therefore, we can use Equation (39) to obtain the following form
of algebraic equations

f1 cos θ1 − a
2

{
3W2(W2−1) b2

(4W2−1) + 2[3αζ2
s + 2( H1 − σ1)]

}
= 0,

f1 sin θ1 − a (c1 + 2H2) = 0,
f2
W cos θ2 + b

{
2σ2 +

W(W2−1)
8(4W2−1) [(8W2 + 1)b2 − 12a2]

}
= 0,

f2
W sin θ2 − c2b = 0.

(39)

Removing the modified phases θ1 and θ2 from Equation (40) produces the relationships
between both amplitudes and the frequency through the introduced detuning parameters

f 2
1 = a2

{
3W2(W2−1) b2

2(4W2−1) + 3αζ2
s + 2(H1 − σ1)]

2
+ [c1 + 2 H2]

2
}

,

f 2
2 = W2b2

{
[2σ2 +

W(W2−1)
8(4W2−1) ((8W2 + 1)b2 − 12a2) ]

2
+ c2

2

}
.

(40)

Investigation of stability considers one of the fatal parts of the vibrations at a steady
state. The behavior of the system was explored in the neighborhood region to the fixed
points. To fulfil this target, let us assume

a = a10 + a11, b = b10 + b11,
θ1 = θ10 + θ11, θ2 = θ20 + θ21,

(41)

where a10, θ10, b10, and θ20 represent the steady-state solutions, while a11, θ11, b11, and θ21
denote the tiny perturbations comparing with a10, θ10, b10, and θ20.

Substituting (42) into (39), we can obtain the following system of ordinary differential
equations after linearization

a10
dθ11
dτ = − f1

2 sin θ10θ11 − a11
2 [

3W2(W2−1) b2
10

2(4W2−1) + 3αζ2
s + 2 (H1 − σ1)]

− 3W2(W2−1) a10b10 b11
2(4W2−1) ,

da11
dτ = f1

2 cos θ10θ11 − a11
2 [c1 + 2H2],

b10
dθ21
dτ = − f2

2W sin θ20θ21 + b11[σ2 +
3W(W2−1)
16(4W2−1) ((8W2 + 1)b2

10 − 4a2
10) ]

− 3W(W2−1) a10b10 a11
2(4W2−1) ,

db11
dτ = f2

2W cos θ20θ21 − 1
2 c2b11.

(42)

Considering that a11, θ11, b11, and θ21 are the unknown perturbed functions of the linear
system (39), we can express their solutions in the form ks eλτ in which ks (s = 1, 2, 3, 4) are
constants, and λ is the eigenvalue of the unknown perturbation. Consequently, the fixed
points in (43) are asymptotically stable when the real parts of the roots of the following
characteristic equation of (43),

λ4 + Γ1λ3 + Γ2λ2 + Γ3λ + Γ4 = 0, (43)
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are negative, Here Γ1, Γ2, Γ3, and Γ4 take the forms

Γ1 = 1
2 (c1 + c2 + H2 +

f1
a10

sin θ10 +
f2

b10 W sin θ20),

Γ2 = c2
4 (c1 + H2) +

f1 f2 sin θ10 sin θ20
4a10b10W + f1 cos θ10

4a10
[

3W2(W2−1) b2
10

4(4W2−1)

+6αζ2
s − 4(σ1 − H1)] +

f2 cos θ20
64b10W [

3W2(W2−1)(−8a2
10+b2

10(8W2+1))
(4W2−1)

+32σ2] +
f2 sin θ10

4a10
[c1 + c2 + H2] +

f2 H2 sin θ20
4b10W + f2 (c1+c2) sin θ20

4b10W ,

Γ3 = c2 f1 cos θ10
16a10

[
3W2(W2−1) b2

10
(4W2−1) + 6αζ2

s − 4(σ1 − H1)] +
c1 f2 cos θ20

4b10W

+(c1 + H2)[
c1 f2 cos θ20

128b10
[

3(W2−1)(−8a2
10+b2

10(8W2+1))
(4W2−1) ] + c2 f1 sin θ10

8a10
]

+ f1 f2 cos θ20 sin θ10
128a10b10W [

3W(W2−1)(−8a2
10+b2

10(8W2+1))
(4W2−1) + 32σ2]

+ f1 f2 cos θ10 sin θ20
16a10b10W [

3W2(W2−1) b2
10

(4W2−1) + 6αζ2
s − 4(σ1 − H1)]

+ c2 f2 sin θ20
8b10W (c1 + H2) +

f1 f2 H2 sin θ10 sin θ20
8a10b10W (c1 + c2 + H2)

+ f2 H2 cos θ20
4b10W ,

Γ4 = 3 f1 f2 (W2−1) cos θ10 cos θ20
16a10b10(4W2−1) [ 3

4 (W
2 − 1)[3W2a2

10b2
10 +

1
4 (−8a2

10 + b2
10(8W2

+1)) αζ2
s ] + σ1[

1
8 b2

10(8W2 + 1) + a2
10]] +

f1 f2 σ2 cos θ10 cos θ20
8a10b10W (3αζ2

s − 2σ1)

+ 3 f1 f2 b10W(W2−1) cos θ10 cos θ20
16a10(4W2−1) [σ2 +

3W(W2−1)(8W2+1) b2
10

32(4W2−1) ]

+ f1 f2 H1 cos θ10 cos θ20
128a10b10W [

3W(W2−1)(−8a2
10+b2

10(8W2+1))
(4W2−1) + 32σ2]

+ f1 f2 cos θ20 sin θ10
256a10b10W [32σ2(c1 + H2) +

3H2W(W2−1)(−8a2
10+b2

10(8W2+1))
(4W2−1) ]

+ c2 f1 f2 cos θ20 sin θ10
32a10b10W [

3b2
10W(W2−1)
(4W2−1) + 2(3αζ2

s − 2(σ1 − H1))]

+ c2 f1 f2 sin θ10 sin θ20
16a10b10W (c1 + H2).

The appropriate and necessary conditions of the stability for the fixed points, as
indicated by Routh–Hurwitz criteria [44], are

Γ1 > 0, Γ3(Γ1 Γ2 − Γ3)− Γ4 Γ2
1 > 0,

Γ1 Γ2 − Γ3 > 0, Γ4 > 0.
(44)

It is worth mentioning that all possible steady-state solutions can be described on the
plane of coordinates a, b as shown in Figure 7. The solutions of the system of Equation (41)
are represented graphically to have the curves of these figures at selected data of σj (j = 1, 2).
These curves indicate the locus of the roots of these equations, where the intersection points
of both curves represent the fixed points that correspond to the steady-state solutions. If
these points are marked by black dots, then it expresses a stable steady-state case; otherwise,
it is an unstable steady state. The number of possible intersection points depends on the
parameters of the dynamical models. The minimum number of possible amplitudes is one,
as in Figure 7I, while the obtained maximum number equals five according to the used
data of σj (j = 1, 2) as explored in Figure 7V.
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Figure 7. The steady-state solutions with (I) one fixed point when σ1 = −0.003, σ2 = 0.003, l = 1 and m = 0.1, (II) two fixed
points when σ1 = −0.003, σ2 = 0.003, l = 1 and m = 0.2, (III) three fixed points at σ1 = −0.003, σ2 = 0.003, l = 1.2 and
m = 0.2, (IV) three fixed points at σ1 = 0.009, σ2 = 0.002, l = 2.45 and m = 0.1, and (V) five fixed points at σ1 = 0.009,
σ2 = 0.009, l = 1.4 and m = 0.1.

6. Stability Analysis

The investigated models were analyzed using the nonlinear stability approach [45].
Based on the above, the dynamical motion was considered under the influence of external
harmonic force F(t) and moment M(t). The criteria of stability were implemented besides
the simulations of the nonlinear system of Equation (39). It is observed that various param-
eters in the stability criterion, such as the frequency W, coefficients of damping cj (j = 1, 2),
and the detuning parameters σj, play a crucial destabilizing impact. Appropriate policies
with varied system (39) parameters were considered to plot the corresponding diagrams of
the system’s stability.

For distinct parametric regions, time histories of the amplitudes a and b are displayed,
and their attributes are presented through the trajectories of the phase plane. The probably
fixed points were drawn. Figures 8–23 explore the variation of these points with the de-
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tuning parameters σj. In other words, Figure 8 is calculated when σ2 = 0, W = 0.448, and
c2 = 0.011 at various values of c1, in which the stable fixed points are represented by solid
curves while the unstable ones are drawn by the dashed curves. The stability and instability
areas lie in the ranges −0.05 ≤ σ1 < 0.001 and 0.001 ≤ σ1 ≤ 0.05, respectively. Here, one
critical fixed point is observed at the points (0.0014, 0.0157),(0.0014, 0.0236),(0.0014, 0.0414)
and (0.00149, 0.0142),(0.00149, 0.0141), (0.00149, 0.013) for Figure 8I,II, respectively. More-
over, Figures 9 and 10 illustrate the frequency response of both a(σ1) and b(σ1) at σ2 = 0.001
and σ2 = −0.001, respectively. The comparison between Figures 8–10 shows the slight
variation of the critical fixed points as seen in parts (I) of these figures, while the change of
the locus of the corresponding fixed points becomes very clear as observed in parts (II) of
the same figures.

Figure 8. The frequency response at σ2 = 0, W = 0.448, and c2 = 0.011 of: (I) a(σ1) and (II) b(σ1).

Figure 9. The frequency response at σ2 = 0.001, W = 0.448, and c2 = 0.011 of: (I) a(σ1) and (II) b(σ1).

Figure 10. The frequency response at σ2 = −0.001, W = 0.448, and c2 = 0.011 of: (I) a(σ1) and (II) b(σ1).
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Figure 11. The frequency response at σ1 = 0, W = 0.448, and c2 = 0.011 of: a(σ2) when (I) c1 = 0.001, (II) c1 = 0.002, (III)
c1 = 0.003, and (IV) for b(σ2).

Figure 12. The frequency response at σ1 = −0.001, W = 0.448, and c2 = 0.011 of: a(σ2) when (I) c1 = 0.001, (II) c1 = 0.002,
(III) c1 = 0.003, and (IV) for b(σ2).
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Figure 13. The frequency response at σ2 = 0, W = 0.448, and c1 = 0.001 of: (I) a(σ1), (II) b(σ1) when c2 = 0.011, (III) at
c2 = 0.022, and (IV) at c2 = 0.033.

Figure 14. The frequency response of: (I) a(σ2) and (II) b(σ2) when σ1 = 0, W = 0.448, and c1 = 0.001.
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Figure 15. The frequency response at σ2 = 0.001, W = 0.448, and c1 = 0.001 for:a(σ1) as shown in (I), and b(σ1) as it is in
(II–IV) when (c2 = 0.011,c2 = 0.022,c2 = 0.033 ).

Figure 16. The frequency response at σ2 = −0.001, W = 0.448, and c1 = 0.001 for: a(σ1) as shown in (I), and b(σ1) as it is in
(II–IV) when (c2 = 0.011,c2 = 0.022,c2 = 0.033 ).
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Figure 17. The frequency response of: (I) a(σ2) and (II) b(σ2) when σ1 = −0.001, W = 0.448 and c1 = 0.001.

Figure 18. The frequency response at σ2 = 0.001, c1 = 0.001, and c2 = 0.011 of: a(σ1) as seen in (I), and b(σ1) as shown in
(II) at W = 0.1, (III) at W = 0.2, and (IV) at W = 0.3.

Figure 19. The frequency response at σ1 = −0.001, c1 = 0.001, and c2 = 0.011 of: (I) a(σ2) and (II) b(σ2).
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Figure 20. The frequency response at σ2 = 0, c1 = 0.001, and c2 = 0.011 of: a(σ1) as seen in (I), and b(σ1) as shown in (II) at
W = 0.1, (III) at W = 0.2, and (IV) at W = 0.3.

Figure 21. The frequency response at σ2 = −0.001, c1 = 0.001, and c2 = 0.011 of: a(σ1) as seen in (I), and b(σ1) as shown in
(II) at W = 0.1, (III) at W = 0.2, and (IV) at W = 0.3.
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Figure 22. The frequency response of: (I) a(σ2) and (II) b(σ2) when σ1 = 0, c1 = 0.001, and c2 = 0.011.

Figure 23. The resonance curves of: (I)a(σ1) and (II) b(σ1) when W = 0.448, c1 = 0.001, and c2 = 0.011.

Parts of Figure 11 illustrate the variation of c1 values on the behavior of the amplitudes
a and b at σ1 = 0, W = 0.448, and c2 = 0.011. It is shown that the stability and the instability
areas are −0.002 < σ2 ≤ 0.05 and −0.05 ≤ σ2 ≤ −0.002, respectively, with one critical
stable fixed point. Figure 11 is replotted when σ1 = −0.001 to reveal the variation of
σ1 values on the frequency response of each a(σ2) and b(σ2) with the same other data
as shown in Figure 12. On the other hand, according to the used data, Routh–Hurwitz
conditions (45) are not satisfied when σ1 = 0.001. When we compared Figure 11 with
Figure 12, we concluded that the range of a and b axes varied toward decreasing while the
number of critical fixed points remained unchanged.

By changing the damping coefficient, Figures 13 and 14 show at and, respectively. The
influence on the behavior and of the frequency response curves becomes clearer without
sharp peaks than on the behavior of and, which included sharp peaks. The reason goes back
to the system of Equation (39). Only one critical fixed point is observed regardless of the
values of and on the whole used domain. The stability and instability c2 areas in this domain
of the curves of Figure 13 are −0.05 ≤ σ1 < 0.001 and 0.001 ≤ σ1 ≤ 0.05, respectively. The
corresponding regions of Figure 14 are −0.001 < σ2 ≤ 0.05 and −0.05 ≤ σ2 < −0.001.

A closer look at Figures 15 and 16 show that they are calculated at W = 0.448,
c1 = 0.001 when σ2 = 0.001 and σ2 = −0.001, respectively. The comparison between these
figures with Figure 13 shows that the corresponding parts of Figures 15 and 16 have critical
fixed points more than parts of Figure 13. Therefore, the change of the values σ2 has a
significant impact on the stability areas and on the number of critical points. On the other
hand, Figure 14 is regraphed when σ1 = −0.001 with the same other values of Figure
14 to produce Figure 17. It clearly shows that the change σ1 has a good impact on the
behavior of a compared to b as shown in parts (I) and (II) of Figure 17, in which the locus of
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critical points is changed as in part (I). The positive value σ1 = 0.001 produces unfulfilled
conditions of Routh–Hurwitz (45).

The influence of different values of frequency W on the frequency response curves
is shown in Figures 18 and 19 when W = 0.1, c1 = 0.001, c2 = 0.011 at σ2 = 0.001 and
σ1 = −0.001, respectively. The stable fixed points exist in the range −0.05 ≤ σ1 ≤ 0.001,
while the unstable ones occur in the range 0.001 < σ1 ≤ 0.05, as indicated in parts of
Figure 18. It is noted that this figure contains only one sharp peak for each curve directed
upward. Parts of Figure 19 explore the stability and instability regions of a(σ2) and b(σ2),
which lie in the ranges 0.001 < σ2 ≤ 0.05 and −0.05 ≤ σ2 ≤ 0.001, respectively. The entire
domain contains one critical fixed point for each curve that is directed downward for a(σ2)
as seen in Figure 19I, while it takes an upward direction for b(σ2) as shown in Figure 19II.

Figure 18 was redrawn at σ2 = 0 and σ2 = −0.001 when W = 0.1, c1 = 0.001,c2 = 0.011
to obtain Figures 20 and 21, respectively. In contrast, Figure 19 was replotted again at
σ1 = 0 to yield Figure 22 when W = 0.1, c1 = 0.001 and c2 = 0.011. The impact of σ2 values
becomes clear on the modified amplitude b than the modified amplitude a as seen in parts
of Figures 20 and 21, while the variation with respect to the amplitude a becomes more
evident than the change of b as graphed in parts of Figure 22.

Figure 23 shows the frequency response curves of a(σ1) and b(σ1) at σ2 = 0.001,
W = 0.448, c1 = 0.001, and σ2(= 0.001, 0, −0.001) when. Solid and dashed curves describe
the ranges of stable and unstable fixed points, respectively.

We demonstrated the properties of the nonlinear analysis for the nonlinear amplitudes
of the equations of the system (39) and explored their stabilities. Therefore, we considered
the following transformation

A = (ũ1 + i ṽ1)ei σ̃1 τ2 ,
B = (ũ2 + i ṽ2)ei σ̃2 τ2 ,

(45)

where uj = ε ũj , vj = ε ṽj ; (j = 1, 2).
Making use of (39) and (46), the real and the imaginary parts were separated to obtain

du1
dτ = − 3W2(W2−1) v1

4(4W2−1) (u2
2 + v2

2) + v1(σ1 − 3
2 αζ2

s − H1 − H2)

− 1
2 c1 u1,

dv1
dτ = 3W2(W2−1) u1

4(4W2−1) (u2
2 + v2

2) +
u1
2 [3αζ2

s + 2 (H1 + H2 − σ1)]

− 1
4 (2c1 v1 + f1),

du2
dτ = W(W2−1) v2

4(4W2−1) [(8W2 + 1)(u2
2 + v2

2)− 4(u2
1 + v2

1)]

+ 1
2 (2σ2v2 − c2 u2),

dv1
dτ = −W(W2−1) u2

4(4W2−1) [(8W2 + 1)(u2
2 + v2

2)− 4(u2
1 + v2

1)]

− 1
4W [2W(2σ2u2 + c2v2) + f2],

(46)

The amplitudes are confirmed through the examined interval of time in distinct
parametric areas, and the characteristics of the amplitudes are presented in the phase
plane curves as seen in Figures 24–26 for the dynamical system, which is connected to the
piezoelectric device in the model (a) and Figures 27–29 for model (b) when the system is
attached to the electromagnetic device. The following data are used
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f1 = 1.67× 10−6, f2 = 2.22× 10−6, c1 = 0.0002, c2 = 0.0004,
W = 0.057, µ1 = µ2 == 0.0125, ζs = 0.003, α = 7× 10−4,
γ1 = γ2 = 10, σ1 = 0.002, σ2 = 0.002.

Figure 24. The time histories of u1 and v1.

Figure 25. The time histories of u2 and v2.

Figure 26. The projection of the trajectories of the modified amplitudes in the plans u1v1 and u2v2.
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Figure 27. The time histories of u1 and v1.

Figure 28. The time histories of u2 and v2.

Figure 29. The projection of the trajectories of the modified amplitudes in the plans u1v1 and u2v2.

Figures 24 and 25 express the variation of new modified phases u1, v1 and u2, v2 that
is observed in the system of Equation (45) via time τ. Decay curves are sketched over
time until the end of the investigated time interval, as seen in parts of Figure 24, while the
plotted curves in Figure 25 behave in a steady manner as of the second half of the interval
of time. On the other hand, parts of Figure 26 represent the projections of the equations
of modulation trajectories on the planes u1v1 and u2v2 in which circular spiral curves are
drawn. These curves approach one point, which indicates the stationary behavior of the in-
vestigated models. These simulations can be applied to the plotted curves in Figures 27–29.
The difference between the curves included in these figures and the corresponding ones in
Figures 24–26 is very slight because it lacks the considerable influence of energy-harvesting
devices connected with the dynamical systems on its stability.

The trajectory behavior is an intrinsic indicator of a spiral through the other paths. If
these paths appear to be circular, the spiral is stiff. Otherwise, spiral spindles produce a
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Hopf bifurcation in dramatic systems. To modify the spiral tip, one can use any external
constraint or other separated approaches.

7. Energy-Harvesting Device Performance

Based on the mentioned dynamical models, when piezoelectric and electromagnetic
devices are connected with the 2DOF spring pendulum systems, one can expect to obtain
an energy harvester with enhanced power output.

EH devices can employ vibration energy and produce electricity, as we mentioned
before. In our work, we used the considered dynamical system to obtain the necessary
mechanical vibrations to power the two different models (a) and (b). As shown in model (a),
the piezoelectric device is a transducer, which can convert mechanical stress into electricity
using the advantages of piezoelectric materials. The electromagnetic device mechanism in
the model (b) is made up of a magnet that is wrapped in a coil to create a magnetic flux.
When a dynamical system vibrates, it cuts the magnetic flow, resulting in the generation
of electricity.

Moreover, we examined the impact of different selected values of the physical parame-
ters on the system to obtain high performance. The time histories of the output voltages and
output powers of the two models of piezoelectric and electromagnetic devices are plotted
in Figures 30 and 31. It is noticed that the maximum value of voltage, current, and even
the output power decreases with the increase of the damping coefficients (c = c1 = c2).
The increasing excitation amplitude increases the output voltage, current, and power, as
indicated in Figures 32 and 33. The piezoelectric device’s output power is much greater
than the electromagnetic one of the model (b), as shown in Figures 31 and 33.

Figure 30. The time histories for the voltage v from the piezoelectric device and the current q from the electromagnetic
device with different values of damping coefficient.

Figure 31. The time histories of the output power from the studied two energy-harvesting models with different selected
values of damping coefficient.
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Figure 32. The time histories of the output voltage due to the existence of the piezoelectric device and the current from the
electromagnetic device with different chosen values of excitation amplitudes.

Figure 33. The output power from the two models for different values of excitation amplitudes.

The response of the excitation frequencies is represented in the curves of Figures 34
and 35 for different selected values of the damping coefficients. High voltage, current,
and power are generated at a frequency of approximately 10 Hz. It is observed that when
the value of the damping coefficient increases, the generated voltage and power of the
piezoelectric device decrease, as seen in parts (a) of Figures 34 and 35. The current and
power of the electromagnetic device remain unchanged due to the current’s approximate
equations, as seen in parts (b) of Figures 34 and 35.

Figure 34. The output voltage and the current versus excitation frequency with the variation of the damping coefficients.



Appl. Sci. 2021, 11, 8658 27 of 30

Figure 35. The output power versus excitation frequency with varying the damping coefficients.

8. Conclusions

1. A 2DOF nonlinear damped vibrating spring pendulum system moving in a circu-
lar path with a stationary angular velocity, in which it is connected with energy-
harvesting devices, was investigated as a novel model.

2. The governing equations were derived using Lagrange’s equation and solved asymp-
totically using the AMS to obtain results with high accuracy.

3. The solvability conditions were acquired in light of the resonance cases.
4. The achieved ME was solved to obtain two nonlinear algebraic equations in terms of

the amplitudes and the detuning parameters.
5. The time histories of the dynamical motion, the resonance curves responses, and the

solutions at the steady-state cases were graphed to reveal the excellent impact of the
selected values of the model parameters on the motion.

6. The achieved asymptotic solutions were verified compared with the numerical results
that reveal the high solidity between them.

7. The damping coefficients and excitation amplitudes that influence the output voltage,
current, and power were checked. Moreover, the output power of the systems was
reviewed according to the response of excitation frequency.

8. The nonlinear stability of the ME was examined through the stability and instability
areas for the frequency response curves. In addition, the nonlinear analysis for the
nonlinear amplitudes of these equations is presented.

9. Electrical energy was generated from piezoelectric and electromagnetic devices.
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Nomenclature

Symbols and Abbreviations Description
F(t) and M(t) External harmonic force and torque.
C1 and C2 Damping coefficients.
k1 and k2 Linear and nonlinear stiffness coefficients.
l0 Spring’s normal length.
g Gravitational acceleration.
x(t) and θ(t) The elongation and swaying angle of the spring.
v(t) and q(t) Output voltage and current.
R Radius of the circular path.
Ω Angular velocity.
O Suspension point of the dynamical system.
X, Y Axes in the plane.
V, T Potential and kinetic energies.

γj (j = 1, 2)
Linear coupling coefficients for the piezoelectric and
electromagnetic circuits.

Rp and Rm
Resistive loads of the piezoelectric circuit and electromagnetic
one.

cp and lm Capacitance of the piezoelectric and the inductance of the coil.
ε Small parameter.
a, b Amplitudes.
θ1, θ2 Modified phases.
ω1, ω2 and Ω1, Ω2 Frequencies.
f1, f2 Amplitudes of harmonic force and torque.
σ1, σ2 Detuning parameters.
EH Energy harvesting.
PEH Piezoelectric energy harvester.
FEM Finite element method.
DOF Degrees of freedom.
AMS Approach of multiple scales.
EOM Equations of motion.
ODEs Ordinary differential equations.
ME Modulation equations.
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