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Abstract: Biofiltration is a promising wastewater treatment green technology employed to remove
various types of pollutants. The efficiency of biofiltration relies on biofilm, and its performance is
significantly influenced by various factors such as dissolved oxygen concentration, organic loading
rate, hydraulic retention time, temperature, and filter media selection. The existing biofilters utilize
conventional media such as gravel, sand, anthracite, and many other composite materials. The
material cost of these conventional filter materials is usually higher compared to using organic
waste materials as the filter media. However, the utilization of organic materials as biofilter media
has not been fully explored and their potential in terms of physicochemical properties to promote
biofilm growth is lacking in the literature. Therefore, this review critically discusses the potential of
shifting conventional filter media to that of organic in biofiltration wastewater treatment, focusing
on filtration efficiency-influenced factors, their comparative filtration performance, advantages, and
disadvantages, as well as challenges and prospective areas of organic biofilter development.
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1. Introduction

Lately, the presence of excess nitrogen in wastewater receives attention as it promotes
the advancement of eutrophication and other hazardous effects on bodies of water [1].
Likewise, the continually diminishing freshwater resources worldwide coupled with de-
pleting accessibility to clean water has inflicted water scarcity issues in both developed and
developing countries [2,3]. To prevent further supply deterioration of this necessity, various
techniques to remedy wastewater have been introduced either via physicochemical or
biological treatments. Conventional physicochemical treatments include aeration, chemical
oxidation, coagulation-flocculation, filtration, and ion exchange while biological methods
are comprised of activated sludge with various modifications [4–6], aerobic digestion,
lagoons, and biofiltration. Despite their wide variety, these physical-chemical treatments
have many drawbacks, such as chemical consumption, higher sludge production, higher
investment, and capital cost, as well as a high energy requirement [7]. Therefore, studies
that investigate the use of biological processes in water and wastewater treatment are
conducted due to their advantages such as energy-saving, operation flexibility, lower cost,
environmentally friendly, and higher retention capacity [7–17].
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Amongst the existing biological treatments, the process using biofiltration has been
broadly favored by various researchers in the past few years due to its promising potential.
This system is normally used as a tertiary treatment process in the removal of nutrients,
toxins, and recalcitrant compounds [18]. Biofiltration, which is an attached growth system,
is different from the suspended treatment process as there is a clear separation between the
treated effluent and the microbial biomass present in the biofilm. The microbial biomass
present in the biofilter is immobilized to the filter bed while the effluent flows through
the filter media, the event of which creates a separation between the microbial biomass
and the effluent [19]. Biofilters are widely applied in the treatment of nitrogenous and
organic pollutants in municipal wastewater treatment plants due to their great efficiency
in handling various kinds of water, for instance, oil and gas produced water [20], river
water [21], raw sewage [22], groundwater [23], and domestic wastewater [24,25]. Studies
have also been focused on operating biofilters under different conditions such as filter
media, temperatures, backwash regimes, and dissolved oxygen concentrations to achieve
remarkable pollutant removal performance [26–28]. Even so, the cleaning mechanism
of the biofilter is somewhat complex, thereby requiring further investigation before an
optimally advanced biofiltration system can be developed.

Other than that, there exists an increasing interest in exploring suitable alternative
filter materials such as wood chips, wheat straws, and natural fibers [29–31] to replace con-
ventional filter media such as sand, gravel, and anthracite in order to reduce the operational
and investment costs of the biofiltration treatment system. This is further motivated by the
local availability of these proposed organic materials and their similar physicochemical
properties compared to the conventional synthetic media such as polystyrene.

Although there are review papers [32–35] discussing some aspects of biofilters, a
comprehensive review on the challenges and prospects from the perspective of shifting the
use of conventional filter media to that of organic is missing. Therefore, this review paper
fills the intellectual gap by addressing the factors affecting the biofiltration process, the
potential use of organic material such as from those of agro-waste as the filtration media,
and the prospects of wastewater treatment by biofilters.

2. Factors Affecting the Efficiency of Biofiltration

Biofiltration is a biological treatment process that involves a series of complex cleaning
mechanisms and operating conditions. The performance of biofiltration is largely influ-
enced by various factors such as dissolved oxygen concentration, organic loading rate,
hydraulic retention time, temperature, and filter media (Figure 1). Therefore, it is important
to capture the influence of these factors in the development of efficient biofilters.
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Maintaining enough dissolved oxygen concentration is important in the establishment
of biological activity to promote biodegradation in a biofilter. The amount of dissolved
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oxygen largely affects the growth of the microbial community in the biofilm and the
overall efficiency of the biological process. For example, aerobic microorganisms need
sufficient dissolved oxygen from an electron acceptor to promote the growth of a biofilm
and biodegradation of the pollutant [36]. Hasan et al. [37] observed that adequate oxygen
of 2–3 mg/L promotes the growth of nitrifying biofilms and the removal of ammonia in
a biological aerated filter. In contrast, a study by Kalkan et al. [38] reported that a low
dissolved oxygen concentration (<0.9 mg/L) leads to a lower nitrification efficiency but
higher denitrification performance, thus promoting higher total nitrogen (TN) removal.
This is because the denitrification process in the biofilter is carried out by heterotrophic
denitrifies, where high organic carbon sources and low oxygen concentration favor the
growth of this bacteria [39].

Increasing the organic loading rate (OLR) enhances the growth of a biofilm and water
holding capacity. This can be explained by the stimulation of microorganisms to promote
biological activity under sufficient flux of organic matter to the biofilm [40]. Lee et al. [41]
reported the biofilm formation, biomass concentration, and denitrification process all
increase with the OLR. However, the nitrification efficiency decreases with an increase in
the OLR from 1.0 to 4.0 kg COD/m3 per day. Lefebvre et al. [42] also reported that the
treated wastewater effluent meets almost all the discharge regulations under low OLR
while increasing the OLR causes foaming issues, which results in an unstable removal
performance. As a result of extremely high organic loads that restrict the movement of
the substrate into the interior of the biofilm due to the formation of a dense biofilm, the
microbial community structure in the biofilm is disrupted [40,43]. Moreover, high dissolved
organic matter tends to compete for the adsorption sites with the bacteria in the biofilm,
therefore reducing the overall number of available adsorption sites [44].

Hydraulic retention time (HRT) is also one of the important operation factors in
preserving the long-term performance of the biofilter. An optimum hydraulic retention
time affects the efficiency of the biofilter in terms of cost, as it is directly related to the
capacity of the substrate that can be handled per unit time and to the effective contact
between the substrate and the microorganism [45,46]. According to Nogueira et al. [47], a
fast-growing heterotroph tends to grow in the suspension, so the formation of a biofilm
by slow-growing nitrifiers would occur under a comparatively longer HRT. A longer HRT
minimizes the competition of dissolved oxygen between the heterotroph and nitrifiers;
however, a longer HRT shows disadvantages such as longer treatment time and cost
consumption in maintaining the long HRT operational conditions [48].

Besides that, temperature plays a crucial role in controlling and regulating the per-
formance of the biofilter by affecting the growth of the microorganisms in the biofilm. A
lower temperature tends to reduce the overall biological process due to lower microbial
metabolism and nutrient utilization [49]. Zhang et al. [50] stated that temperature impacts
the nitrification and denitrification rate since the growth rate, metabolism, and community
structure of nitrifiers, denitrifiers, and the dissolved oxygen level are also affected. A lower
temperature lessens the biological treatment efficacy as some bacteria are not suited to
survive under low temperatures [51]. It was observed that a low temperature causes a
longer acclimation period for the biofilter, such that extra contact time is needed for the
less biodegradable compound to meet the specific effluent targets [52]. Zhang et al. [50]
reported that the temperature should be set above 18◦C to create an ideal environment for
nitrifying and denitrifying performance.

Based on the up-to-date review, identification of the optimum factors during the
treatment process is crucial in the improvement and development of biofilters, since previ-
ous studies are inconsistent in reporting the effects of various factors on the performance
of biofilters. This may be attributed to the different types of treated water, operating
conditions, and filter media being used in the investigations. Therefore, more studies
are recommended to investigate and capture the effects of these factors in achieving the
maximum potential of biofilters in the treatment process.
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3. Filter Media Selection on the Efficiency of Biofiltration

Filter media selection plays an important role in the biofilter as it is one of the main
components besides the backwash system and aeration process. Moreover, the oxygen-
substrate transfer rate and hydraulic characteristics are affected by the filter media selec-
tion [32]. Granular activated carbon (GAC) [53], quartz sand [54], and anthracite [55] are
the frequently used conventional filter media in biofilter systems. In recent years, there is a
rising interest among researchers in developing and utilizing organic or waste materials
as the filter media in the biofiltration treatment process. According to Garzón-Zúñiga
et al. [56], several countries, such as the United States and Canada, have applied organic
materials in a real-scale decentralized biofiltration treatment system due to several advan-
tages including low operational and construction costs, low maintenance, and does not
require a highly-skilled operator to operate the system. Moreover, the utilization of agricul-
tural waste materials as biofilter media will also reduce solid waste residues throughout
the world.

3.1. Characteristics of Organic Filter Media Compared to Conventional Filter Media

Tejedor et al. [57] stated that organic filter materials should contain favorable charac-
teristics such as larger surface area, higher porosity, physiochemically stable (presence of
hemicellulose/lignin content), non-toxic, higher adsorption ability, and contain functional
groups (i.e., phenolic hydroxyls, carboxylic or methoxyl). Recently, plant-based wastes are
widely utilized by various researchers as support materials for biofilm formation due to
advantages such as cost-effectiveness, environmentally friendly, higher specific surface
area, higher void fraction, lower bulk density, higher microbial population density, and
higher resistance towards biodegradation due to their cellulose, hemicelluloses, and lignin
contents [31,58]. Some successful applications of organic materials as biofilm supporting
media include Brewer’s spent grains, peanut shells, wood chips, wheat straws, rice straws,
coconut husk, Loofah, Agave fibers, and Arundo donax [30,31,57,59–62]

Most of the organic biofilm supporting materials are characterized by their cellulose,
hemicellulose, and lignin contents. Low et al. [63] identified that high cellulosic and lignin
contents increase the strength, durability, and toughness of the plant fibers, which in
turn provides the organic media with physicochemical stability, as the structural units of
oxyphenylpropanol present in the lignin polymer are relatively hard to be hydrolyzed.
Furthermore, these lignocellulose compounds contain polar functional groups such as
phenol and carboxyl groups, which tend to increase the adsorption ability, thus promoting
the attachment of the biofilm to the organic filter media. The presence of a hydrophilic
group on the filter media aids in increasing the water adsorption which enhances the
attachment and growth of the biofilm [64]. These chemical properties are similar to those
of GAC, which is one of the efficient filter media that contains several functional groups
such as carboxylic, alcoholic, and ether groups [65]. Other than that, it was observed
that efficient organic filter media commonly show high porosity, i.e., between 74.0 and
84.0% [29,31,57]. The porosity of the organic media is higher compared to that of the
conventional media such as anthracite (52.9%) and activated carbon (66.7%) [66]. Higher
porosity helps in the prevention of the compaction of the support material in the bioreactor,
increases the spaces for fluid circulation, and at the same time, the presence of pores and
micropores favorably enhances the conditions of the attachment site for the biofilm [29,31].

Another important parameter of a potential organic media is the surface area of the
organic materials. Low et al. [63] demonstrated that the specific surface area of coconut fiber
is up to 5.63 m2/g while that of oil palm fibers is up to 2.68 m2/g. These values are higher
compared to the specific surface area of anthracite (1.68 m2/g) but lower compared to
activated carbon (122.75 m2/g) as reported by Zhang et al. [66]. The superior performance
of GAC compared to other media is due to its larger specific surface area in providing
more space for the development of a microbial community, which enhances the biofilm
formation and improves the biodegradation process [67]. Other than that, the cost of the
filter materials is also one of the important parameters influencing the investment and
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operational cost of biofilters. Most of the organic filter materials are characterized by their
low cost as these organic materials are usually waste or agricultural by-products. It was
reported by Saliling et al. [30] that the cost of wood chips and wheat straws are 2.37 US$/m3

and 2.5 US$/m3, respectively, which is much lower compared to the cost of anthracite and
GAC at approximately 9.46 US$/m3 and 43.35–47.29 US$/m3 [68], respectively. Vigueras-
Cortés et al. [31] reported that the only expenditure for organic agave fibers filter media is
the transportation cost, as most of the agave fibers are available in the form of solid waste.

3.2. Conventional vs. Organic Filter Media Biofiltration Systems

Table 1 summarizes the performance of conventional and organic media biofiltration
systems. It is well-conceived that biofiltration with conventional filter materials shows
remarkable performance in treating various kinds of pollutants such as heavy metals,
nitrogenous contaminants, organic compounds, and pharmaceutically active compounds.
Conventional biofilter media include sand, anthracite, GAC, zeolite, expanded clay, and
plastic media. Among all the conventional filter materials, GAC, sand, and anthracite are
the most popular materials. Lately, successful applications of organic waste materials,
including peanut shells, coconut fibers, woodchips, rice straws, date palm fibers, and Agave
fibers as the biofilter media have been reported.

Table 1. Performance of conventional and organic media biofiltration system.

Conventional Media (Natural)

Type of Filter Media Operating Condition Removal Efficiency Remark Reference

Gravel

Temperature: 20 ◦C
pH: 7.0–8.3

Airflow rate: 10 L/min
DO: 8 mg/L

Mn: 98.0%

Iron should be removed before
ammonia and manganese

oxidation
Start-up: 6 months

Treatment of potable water

[69]

Sand Hydraulic flow rate:
0.35–1.56 m3/m2h

pH: 6.8–7.2
Temperature: 12–15 ◦C

DO: 3 mg/L

COD: 75.0%
SS: 97.0%

TKN: 62.0%

Natural zeolite shows better
nitrogen removal due to the ion
exchange capacity with NH4-N.
Treatment of textile wastewater

[70]Zeolite (Lab scale)
COD: 88.0%

SS: 97.0%
TKN: 80.0%

Zeolite (Pilot scale)

Hydraulic load: 1.83,
2.3 m3/m2h

Temperature: 4–10,
10–18 ◦C

DO: above 2 mg/L

BOD: 99%
COD: 92%

SS: 74%
TN: 92%

Sand

Filtration rate:
0.015–0.06 m/h

Nitrogen loading rate:
8.6–34.3 gN/m3day
Surface loading rate:
8.1–32.5 gN/m2day

NO3–N: 94.0% Start-up period: 1 month
Treatment of drinking water [71]

Sand

Iron:arsenic ratio:
10:1, 20:1, 30:1, 40:1

Filtration rate:
0.212 m3/m2/h

Removal of arsenic
below 5 µg/L Treatment of drinking water [72]

Anthracite
Filtration velocity: 0.12.

0.25 m/h
pH: 7.5

Turbidity: 50–60%
DOC: 21%
TN: 50%
TP: 36%

Treatment of raw stormwater [55]

Sand ECBT: 20 min NH4-N: 46.6–48.5% Treatment of potable water [73]
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Table 1. Cont.

Conventional Media (Natural)

Type of Filter Media Operating Condition Removal Efficiency Remark Reference

Quartz Sand Filtration rate:
3–5 m/h

Iron: 96.2%
Manganese: 97.7%

Arsenic: 98.2%
Treatment of groundwater [74]

Quartz sand

Filtration rate: 7–9 m/h
HRT: 8 min

Ammonia: 73.8%
DON: 25.2% Start-up period: 38 days

Treatment of river water
(Pre-treated with coagulation

and sedimentation)

[66]Anthracite Ammonia: 87.9%
DON: 3.4%

Ceramsite Ammonia: 76.5%
DON: 49.0%

Combination of
anthracite and

manganese sand

Temperature: 8 ◦C
pH: 7

Ammonia: 90.8%
Iron: 95.5%

Manganese: 95.9%

Start-up period: 81 days
Treatment of real groundwater [75]

Sand HRT: 2 h
Total Organic: 78.0%
Ammonium: 82.0%

TSS: 91.0%

Start-up period: 1 month
Treatment of river water [54]

Sand
Temperature: 20–25 ◦C

Hydraulic load:
1.0 m/d

NH4-N: 60.0%
COD: 80.0%

NO2-N accumulation rate: 95.0%
Treatment of synthetic

wastewater
[76]

Quartz Sand
Temperature: 18–23 ◦C

pH: 7.3–7.8
DO: 6–8 mg/L

Fe: near 100%
Effluent Mn less than

0.1 mg/L
High removal of

ammonia

56 days to achieve the required
standard for Fe, Mn, and

ammonia
Treatment of groundwater

[77]

Quartz Sand HRT: 2 h NO3-N: 90.0%
COD: 75.0%

Start-up period: 20 days
Treatment of secondary effluent [78]

Quartz Sand

C/N: 3.7
Temperature: 12 ± 4 ◦C

Filtration rate:
47.1 L/h

HRT: 24 min

NO3-N: 74.8%
TN: 71.1%

PO4-P: 91.2%

Start-up period: 40 days
Treatment of synthetic

wastewater
[79]

Zeolite
Air/water ratio: 1:1

HRT: 3 h
Temperature: 10 ◦C

NH4-N: 95.1%
PO4-P: 62.7%

Start-up period: 2 weeks
Treatment of micro polluted

water
[80]Volcanic Rock NH4-N: 94.2%

PO4-P: 81.7%

Ceramsite NH4-N: 95.9%
PO4-P: 69.6%

Conventional Filter Media (Synthetic)

Type of Filter Media Operating Condition Removal Efficiency Additional Remark Reference

Expanded Clay
Temperature: 15 ◦C
Hydraulic Loading:

91 m3/m2

TAN nitrification: 100%
Nitrification rate was between
0.1 and 0.2 g TAN/m2 per day

Treatment of ordinary tap water
[26]

Kaldnes Ring TAN nitrification: 80%

Norton Rings TAN nitrification: 60%

Finturf Artificial Grass TAN nitrification: 36%

Polystyrene

Water velocity:
1.5–6 m/h

C/N ratio: 2–9
DO: 0.5–3 mgO2/L

Temperature: 15–20 ◦C

TN: 60.0–70.0%
Ammonia: nearly 100%

NH4-N Nitrification: 97.0%
NO3-N Denitrification: 71.0%

Treatment of municipal
wastewater

[81]
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Table 1. Cont.

Conventional Filter Media (Synthetic)

Type of Filter Media Operating Condition Removal Efficiency Additional Remark Reference

GAC-sand dual-media
biofilter

Filtration velocity:
8 m/h

NH4-N: 70–74%
Steady removal of
NH4-N (2.7 mg/L)

Treatment of effluent from the
sedimentation tank [82]

GAC (open
superstructure)

EBCT: 18 min
Hydraulic Loading

Rate: 1.67 m/h
Temperature: 25 ◦C

Near-complete removal
of NH4-N in both types

of GAC
Ammonium: >97.0%

Treatment of raw water [83]
GAC (close

superstructure)

GAC
Filtration velocity:

0.12–0.25 m/h
pH: 7.5

Turbidity: 75.0%
DOC: 100%

TN: 37%
TP: 74%

Color: 95%

Treatment of raw stormwater
Higher heavy metal removal by

GAC compared to anthracite
[55]

Polypropylene

Flow rate:
0.3 L/min

Airflow rate:
0.3 L/min
HRT: 7.5 h

NH4-N: 93.2%
Mn: 79.6%

Treatment of contaminated
drinking water [84]

GAC pH: 7.5–8.5
DO: 6.5, 7.5 mgO2/L

DOC: 31.2–34.3%
AOC: 51.2–60.6%

Start-up period: 6 months
Treatment of pre-treated lake

water
[85]

Expanded Clay

DO: 4.5 mg/L
Temperature: 15–25 ◦C

Flow rate:
1021.6 m3/d

SS: 92.0%
NH4-N: 91.0–93.0%

Treatment of municipal
wastewater [86]

GAC Filtration rate: 7–9 m/h
HRT: 8 min

Ammonia: 76.5%
DON: 54.5%

Start-up period: 38 days
Treatment of river water

(Pre-treated with coagulation
and sedimentation)

[66]

Expanded Clay

C/N ratio: 2.9–3.1
DO: 7.0–7.2 mg/L
Filtration Velocity:

1.5–3.9 mg/L

NO3-N: 80.0%
TN: 50.0%

Treatment of synthetic
wastewater [87]

GAC
ECBT: 50 min

Influent flow rate:
48 m3/day

Ciprofloxacin: 22.0%
Bezafibrate: 25.0%
Ofloxacin: 30.0%

Azithromycin: 32.0%
Sulfamethoxazole:

35.0%

Treatment of secondary effluent [53]

Light Expanded Clay
Aggregate

Hydraulic Loading:
5 dm3/m2 per day

HRT: 4 days
Temperature:
0, 4, 8, 25 ◦C
C/N ratio:

0.5, 2.5, 5.0 gC/gN

Total Nitrogen: 53.7%
Organic Compound:

79.7%

Ammonium nitrogen
nitrification efficiency: 50.9%

Nitrates and nitrites
denitrification efficiency: 99.2%
Treatment of wastewater from

de-icing airport runway

[88]

Polyurethane

C/N ratio: 3–5.6
HRT: 1.8 h, 2.7 h, 3.5 h,

4.2 h
DO: 0.3–0.8 mg/L

Temperature: 25–28 ◦C

Total nitrogen:
67–96.5%

Low effluent total nitrogen
concentration (0.68 mg/L)

Treatment of micro-polluted
water

[89]



Appl. Sci. 2021, 11, 8650 8 of 17

Table 1. Cont.

Organic Media

Organic Material Operating Condition Removal Efficiency Additional Remark Reference

Wheat Straw Temperature: 11 ◦C
Influent rate: 2.7 L/day

TSS: 89.0%
Oil & Grease: 76.0%

COD: 37.0%
NH4-N: 20.0%
TKN: 15.0%

Treatment of dairy wastewater [49]

Fibrous Peat
Hydraulic Loading

Rate:
180 L/m2d

BOD5: 96.0%
CODt: 84.0%
TSS: 94.0%

Treatment of domestic strength
wastewater [90]

Wood chips Influent flow rate:
15 mL/min

Volumetric loading rate:
340–1380 gN/m3d

Nitrate: 99.0% Treatment of aquaculture
wastewater

[30]

Wheat Straw

Mix of peat and wood
chips

Aeration rate:
3.4–34 m3/m2/h
Filtration Velocity

<0.5 m3/m2d

TSS: 98.0%
BOD5: 99.0% Treatment of piggery wastewater [91]

Mixture of endemic
tropical woodchips and

natural fibers

Hydraulic rate:
0.3 m3/m2d

Aeration rate:
0.68 m3 air/m2/h

BOD5: 98.7%
COD: 84.0%

Faecal Coliform: 99.9%
Total Coliform: 99.9%
Helminth eggs: 96.4%

Treatment of municipal
wastewater [56]

Wild Thorn Superficial Flow Rate:
15 m3/m2d

Temperature: 36–40 ◦C

BOD5: 76.0%
Treatment of municipal

wastewater
[92]Arum Plant BOD5: 71.0%

Date Palm Bark BOD5: 62.0%

Pruning waste of
Caesalpina pulcherrim

and Jacaranda
mimosifolia

Hydraulic Loading
Rate:

0.078 m3/m2/d
Aeration Rate:
10 m3/m2/h

Temperature: 22 ◦C

BOD5: 97.0%
COD: 71.0%
TKN: 93.0%
TSS: 95.0%
VSS: 96.0%

Helminth eggs: 100%
Fecal Coliform: 4 log

unit

Start-up period: 15 days
Treatment of school wastewater [93]

Brewer’s Spent Grains

HRT: 100 min
Influent nitrate loading:

200 mg/L
pH: 7.5–7.9

NO-3N level was
always below the
acceptable limit

Start-up period: 1 month
Treatment of groundwater [59]

Agave waste fibers

Aeration rate:
0.62 m3/m2/h

Hydraulic loading rate:
0.27–1.34 m3/m2/d

BOD: 92.0%
COD: 79.7%

Helminth eggs: 99.9%
Fecal coliforms: 99.9%

TSS: 91.9%

Start-up period: 3 months
Treatment of municipal

wastewater
[31]
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Table 1. Cont.

Organic Media

Organic Material Operating Condition Removal Efficiency Additional Remark Reference

Rice straw

Hydraulic rate:
4.8–12 m3/d

BOD5: 81.5%
COD: 79.7%
TSS: 82.4%
TN: 50.2%
TP: 41.9%

Start-up period: 2 weeks
Treatment of raw sewage [62]Wood chips of orange

tree

BOD5: 66.7%
COD: 64.6%
TSS: 68.3%
TN: 45.0%
TP: 32.5%

Date palm fiber

BOD5: 88.3%
COD: 88.3%
TSS: 86.6%
TN: 55.0%
TP: 50.5%

Mesquite wood chips

Hydraulic Loading
Rate:

1.07 m3/m2/d
Aeration rate:

0.62 m3 air/m2/h

BOD5: 92.0%
COD: 78.0%
TSS: 95.0%

Fecal Coliform: 4 units

Start-up period: 60 days
Treatment of municipal

wastewater
[29]

Fibrous Carrier and
biological ball

Hydraulic Retention
Time: 24 h

TN: 37.0–44.0%.
COD: 70.4–80.2%

P: 22.3–60.5%

Treatment of heavily polluted
river water [94]

Ficus
benjamina wood chips

Hydraulic loading:
0.18–0.37 m3/m2d.

COD: 91.0%
Metformin: 94.0%

Ciprofloxacin: 81.0%
NH3-N: 81.0%

Start-up period: 80 days
Treatment of domestic

wastewater
[18]

Wood Chips Hydraulic rates:
0.5–1.5 m3/m2/d

COD: 80.0%
Volatile solids:

40.0–63.0%

Treatment of domestic
wastewater

[57]
Peanut shells

Arundo donax

Air-water ratio: 4:1
Nitrate Recycling Ratio:

150%
Temperature: 18–25 ◦C

Filtration rates:
1.35 m/d, 3.34 m/d

NH4-N: 99.0%
TN: 68.8%

Start-up period: 17 days
Treatment of rural domestic

sewage
[61]

Quartz sand and anthracite have been widely utilized as the biofilter media in water
and wastewater treatment due to their advantages such as cost-effectiveness and easy
availability [32]. Suprihatin et al. [54] found that the stable properties and smaller size
of sand promote the effective contact between the pollutants and the biofilm. Aslan
and Cakici [71] examined the use of sand as filter media in the biological denitrification
of drinking water and obtained an average of 94.0% NO3-N removal efficiency while
Yang et al. [74] removed 96.2% of iron, 97.7% of manganese, and 98.2% of arsenic in the
treatment of groundwater. A few studies have compared the performance of using sand
and anthracite filter media to other alternative media such as GAC and zeolite in the past
few years [55,70]. Chang et al. [70] investigated the application of zeolite and sand as
filter media in a lab-scale biological aerated filter in the treatment of textile wastewater.
It was observed that zeolite media shows better performance in terms of COD, SS, and
TKN removal. The superior performance of zeolite is due to the NH4-N ion exchange
ability, which favors the growth of autotrophic nitrifiers, thus promoting the TKN removal.
Mohammed et al. [55] demonstrated the treatment of raw stormwater by using GAC and
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anthracite as the filter media under pH 7.5 and a filtration velocity of 0.12–0.25 m/h. The
GAC filters show remarkable removal performance in terms of turbidity, DOC, TN, TP,
and color with a higher removal efficiency in terms of organic matter and heavy metal
compared to anthracite. The superior performance of GAC compared to other alternative
media is largely due to the higher specific surface area, adsorption capacity, porosity,
and surface roughness that support a denser microbial population compared to sand and
anthracite [20,53].

Other than GAC, sand, and anthracite, materials such as expanded clay, polystyrene,
polypropylene, and polyurethane also show good treatment performance as biofiltration
media. Additionally, some researchers also investigated the use of multi-media by com-
bining different materials as supporting media for a biofilter. Cheng et al. [75] conducted
a pilot-scale experiment by using a combination of manganese, sand, and anthracite as
the filter media operating under a temperature of 8 ◦C and pH 7 for the removal of iron,
manganese, and ammonia from groundwater. The removal efficiencies of 90.8% of am-
monia, 95.5% of iron, and 95.9% of manganese were achieved in their study. Yu et al. [82]
also reported on full-scale biofiltration for drinking water treatment using GAC and sand
dual media in achieving a steady removal of NH4-N. In their finding, 57.0% of NH4-N
is removed through complete nitrification while 21.5% of NH4-N is partially nitrified to
NO2-N.

With organic materials, Ghazy et al. [62] utilized agricultural waste materials such
as rice straws, date palm fibers, and wood chips of an orange tree as the biofilter media
in the municipal wastewater treatment operated under a hydraulic rate of 4.8–12 m3/d.
All of the materials show remarkable removal efficiency ranging from approximately
32.0% to 89.0% in terms of BOD5, COD, TSS, TN, and TP. Vigueras-Cortés et al. [31] also
noticed the good performance of Agave fibers as a filter media operating under a consistent
aeration rate of 0.62 m3/m2/h in treating municipal wastewater with removal efficiencies
of 92.0%, 79.7%, 91.9%, 98.0%, and 99.9% for BOD, COD, TSS, helminth eggs, and fecal
coliforms, respectively. Moreover, Zhao et al. [61], utilizing Arundo donax as the filter
media and an external carbon source in the anoxic/oxic biofilter, witnessed that the carbon
releasing characteristics of the organic materials tend to exist as an external carbon source
in the biofiltration system, thus promoting the denitrification process. The biofilter was
operated under a temperature of 18–25 ◦C, an air water ratio of 4:1, and filtration rates
of 1.35 m/d for the oxic column and 3.34 m/d for the anoxic column. From their study,
the biofilter successfully removed 99.0% of NH4-N and 68.8% of TN from low C/N rural
domestic sewage. Based on our review, biofiltration with organic media shows better
performance in terms of the start-up period, denitrification efficiency, and organic matter
removal compared to the conventional media biofilter. The start-up period or the biofilm
formation on the conventional filter media takes around 20 days to 6 months while organic
filter material requires a shorter period, i.e., ranging from 15 days to 3 months. The better
start-up performance is believed to be attributed to the characteristics of organic media
that provide sufficient surface for the attachment of a microbial community. Some of the
organic materials comprise similar properties to GAC, such as large specific surface area,
high porosity, and good adsorption ability due to the presence of functional groups, which
promote the attachment of a biofilm [18].

Furthermore, the presence of cellulose, hemicellulose, and lignin in some of the organic
materials offers a sustainably slow release of carbon sources and structure that supports
the growth of denitrifiers and biofilm [95]. Moreover, the denitrification process is usually
facilitated by the presence of a sufficient organic matter concentration in the treatment
system; however, most of the treated water does not exhibit a sufficient C/N ratio and
organic matter for the denitrification process. Therefore, an additional carbon source is
needed to maintain the appropriate C/N ratio and organic substrate in the treatment
system [59]. According to Zhao et al. [61], the carbon releasing ability of organic materials
acts as a carbon source to promote the growth of denitrifiers, which then enhances the
denitrification process and total nitrogen removal. This observation is supported by the
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study by Chang et al. [94] which reported on the greater relative abundance of denitrifiers
found in organic media compared to inorganic media. Other than that, the presence of
chemical functional groups in organic materials facilitates chemical binding and improves
the adsorption capacity of organic contaminants [57].

3.3. Drawbacks of a Conventional Media Compared to an Organic Media Biofiltration System

The conventional filter materials widely utilized by several researchers throughout
the past few years include gravel, sand, anthracite, GAC, expanded clay, and plastic
media [26,55,69]. Although conventional media biofilters show remarkable performance
in various water and wastewater treatments, there are numerous notable drawbacks and
limitations worthwhile for consideration in further investigation. Figure 2 illustrates the
main drawbacks of conventional media compared to organic media biofiltration systems.
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Tejedor et al. [57] acknowledged that the cost of conventional filter materials such as
gravel could reach up to 50% of the total investment cost of the biofiltration system, and is
100 times higher compared to organic waste materials. Sharma et al. [68] reported that the
costs of conventional filter materials such as ceramic, anthracite, and GAC are 10.7 C$/m3

(≈8.44 US$/m3), 12 C$/m3 (≈9.46 US$/m3), and 55–60 C$/m3 (≈43.35–47.29 US$/m3),
respectively, which are much more expensive compared to organic waste materials that
are abundantly available as agricultural by-products. For example, coconut fibers as
an organic filter media are natural agricultural by-products that are widely available in
Southeast Asian countries such as Malaysia [63]. Utilizing these organic waste materials
as an alternative to the conventional filter media not only reduces the operational and
investment costs but also cuts down the natural solid waste generated throughout the
world.

In addition, the accumulation of biomass in conventional filter media creates several
downsides such as clogging, large flow resistance, and poor permeability of the biofilm,
which result in a decline in the removal performance of biofilter [96]. As an alternative,
according to few reports [18,93], utilizing organic materials as the filter media tends to
reduce the clogging problem due to the achievement of a balance between degradation
of the microorganisms and the retention of solids in the filter bed under lower organic
loading. This observation is supported by Chang et al. [94] stating that organic media,
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which have higher porosity for high loading rates and sufficient surface for the growth of
the biofilm, show better potential to reduce the clogging problems compared to inorganic
filter media.

A conventional biofiltration system is further associated with the issue of a longer start-
up period during the operation process. The natural biofilm present in the biofilter system
comprises several mechanisms, which cause the biofilm to grow at a slower rate and result
in a longer start-up period [97]. This limitation is supported by various researchers, as the
maturation and acclimatization of biofilm varies, ranging from one month to half a year
depending on the operational parameters [23]. Furthermore, biological nitrogen removal
in a conventional biofiltration process involves heterotrophic denitrification which requires
external carbon sources for electron supply; this includes methanol, acetate, glucose, and
ethanol especially in treating sewage with a low pollutant concentration and a low C/N
ratio. The accuracy of the additional quantities of external carbon sources remains one
of the operational challenges as insufficient organic matter during the treatment process
can reduce denitrification efficiencies, leading to the discharge of excessive nitrogenous
compounds into the river, while the overdosing of external carbon sources causes an
increase in the COD level in the treated effluent [98]. As a solution, organic media are
suitable for the solid-phase denitrification process as the main components of plant-based
organic materials such as cellulose and hemicellulose, which can be hydrolyzed to form
organic acids, acting as a natural carbon source to promote the denitrification process and
the growth of denitrifying organisms [61]. Compared to a conventional denitrification
biofilter, a solid-phase denitrification biofilter does not involve a costly and complex control
system and at the same time minimizes the risks such as under and overdosing of external
carbon sources [98].

4. Challenges of Using Organic Filter Media

Based on our review, organic materials show promising characteristics as biofilter
media in terms of treatment performance; however, not all organic materials are suitable
for biofiltration. Zhao et al. [61] commented that plant-based wastes such as peanut shells
contain smooth surfaces and smaller specific surface areas, which are relatively difficult
for the attachment of biofilm, while organic materials such as rice straws tend to release
carbon at a faster rate, causing the prolongation of the denitrification process.

A study conducted by Muliyadi et al. [99] stated that although banana stem media
can filter out the excess solid particles from domestic wastewater, the inherent organic
properties cause the development of bacteria and the occurrence of natural decay with the
increase of exposure time to the water. The degradation rate of the organic media limits
the operational lifespan and the sustainability of the organic biofilter. Saliling et al. [30]
discovered that the expected lifetimes of wood chips and wheat straws organic media are
1.2 and 0.5 years, respectively, which are much lower compared to the conventional filter
media. Extra steps and additional costs are needed in replacing the filter media once they
reach their operating lifespan.

Other than that, the degradation of organic materials can cause the leaching of humic
acids which increases the concentration of certain contaminants in the treated water such
as color, phosphorus, and COD [93]. Bash AlMaliky and Qahtan ElKhayat [92] witnessed
the clogging problem and the existence of flies surrounding the organic filters, which
are unfavorable in the treatment process. Moreover, there are also relatively few organic
filter materials that have been investigated and accessed, which restrict their full-scale
applications in many areas and regions such as semi-arid and arid zones [29]. Hence, it
can be concluded that the lifespan, decay, and degradation properties of organic materials
may also influence the performance of biofiltration. Therefore, future studies should focus
on investigating different types of organic filter media that show good and long-term
operation performances.
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5. Research Prospects

Based on this review, many intensive studies are needed to overcome the limitations
or drawbacks of biofilters. Unlike conventional filter material that could reach up to 50%
of the operational cost, utilizing organic materials or plant-based wastes as the alternative
filter media should be focused on in the future due to their advantages such as cost-
effectiveness and environmental friendliness. The characterization of organic material in
terms of physicochemical and morphological properties and their respective potential as
biofilter media is notably important to provide structural stability in the cleaning process.
The physicochemical and morphological characterization of established organic media
can be a significant reference for researchers when selecting suitable alternative organic
filter media. Another limitation of the biofilter is the time-consuming acclimatization of a
biofilm on the new filter medium, which results in a longer start-up period; thus, further
studies should be focused on identifying a suitable method to reduce the start-up period
and enhance the biofilm formation on the filter media.

Further investigation in the future on the optimum operating conditions for simultane-
ous nitrification and denitrification (SND) in a single biofilter reactor will also be relevant as
the operating conditions for the SND process are difficult to obtain and maintain through-
out the treatment process. Identification of these suitable environmental conditions that
promote the coexistence of nitrifiers and denitrifiers is important to ensure the microbial
stratification and feasibility of the SND process. Moreover, there is a lack of studies that
apply an organic material as a carbon source in the SND biofiltration system. Therefore,
studies should focus more on investigating alternative types of organic materials that
are suitable as biodegradable media, which have carbon releasing ability, that ensure the
sufficient supply of donor electrons for the denitrifying organisms in the biofiltration
system.

Studies also need to be conducted on the cold-water temperature effects on the re-
moval performance of biofilters. Currently, there is a lack of novel methods to overcome
the limitation in terms of the decrease in bacteria growth rate due to the cold-water temper-
atures. Moreover, the assessment of the kinetic analysis of organic media biofilter removal
performance is an aspect that is least considered. Extensive analysis is needed on the
development and modeling of the kinetics analysis for the treatment process in an organic
media biofilter, which serves to clarify the removal mechanism of the organic media biofil-
tration treatment system. Further characterization of the microbial community present
in an organic media biofilm concerning their role in pollutant removal is needed as the
microbial species is highly related to the biofilter removal performance. Up to date studies
regarding the microbial community present on the organic media and their relationship
with the operational conditions of the biofilters are still rare.

6. Conclusions

Biofiltration systems show great potential in water and wastewater treatment due
to their remarkable performance in treating various types of pollutants in comparison
to physical and chemical techniques. However, there are limitations and drawbacks to
operating biofilters. Factors such as dissolved oxygen concentration, organic loading
rate, hydraulic retention time, temperature, and filter media all affect the dynamics and
mechanisms of biological activity, impacting the overall removal performance of biofilters.
Based on our review, organic materials show promising potential as an alternative biofilter
media due to advantages such as larger surface area, higher porosity, physiochemical
stability, non-toxic, higher adsorption ability, lower cost, and environmentally friendly.
Furthermore, utilizing organic materials as the supporting media and external carbon
source promotes the start-up and denitrification performance. The suitability and the
biodegradability of the organic filter media should be considered in biofiltration design as
this will affect the lifespan and the resulting performance of the organic biofilter media.
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