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Abstract: Society’s energy consumption has shot up in recent years, making the prediction of
its demand a current challenge to ensure an efficient and responsible use. Artificial intelligence
techniques have proven to be potential tools in handling tedious tasks and making sense of large-scale
data to make better business decisions in different areas of knowledge. In this article, the use of
random forests algorithms in a Big Data environment is proposed for household energy demand
forecasting. The predictions are based on the use of information from different sources, confirming a
fundamental role of socioeconomic data in consumer’s behaviours. On the other hand, the use of Big
Data architectures is proposed to perform horizontal and vertical scaling of the solution to be used in
real environments. Finally, a tool for high-resolution predictions with great efficiency is introduced,
which enables energy management in a very accurate way.

Keywords: big data architecture; artificial intelligence; random forest; energy demand forecasting

1. Introduction

In recent years, population increase, together with the demands of comfort and the
emergence of new technological devices, have been reflected in a rapid intensification in
energy consumption. This amount to 39% and 40% of total energy demand and 38% and
36% of carbon dioxide (CO2) emissions in the United States and Europe, respectively [1].
That is why forecasting of energy demands in residential buildings is necessary to maximize
energy planing, management and resources conservation [2].

Digital progress has also been redesigned in the electrical system through the so-called
Smart Grid, which are emerging with the purpose of achieving a more reliable, efficient,
safe and sustainable electricity supply, with greater interaction by the consumer [3,4]. This
intelligent system allows data exchange between electricity distribution companies, new
service providers and users, by combining information and communication technologies
with automation and control, through a more flexible distributed network structure [5].
In addition, cloud computing systems, mobile platforms and sensors of various kinds
have made it possible to carry out large scale data analysis and offer real time information,
including smart electricity meters to control energy flow [5,6]. This knowledge related to
the energy behavior of users has a double advantage: it offers greater flexibility, business
control and personalized marketing strategies to producers and suppliers, while users can
adjust and optimize their consumption and reduce costs.

The large amounts of data generated by these systems have large storage and analysis
requirements. Big Data architectures allows to solve this issue through parallel com-
puting, either in cloud systems or distributed computing. These complex architectures
provide powerful tools for companies data storage and management, including high
availability (data available at all times), scalability (adjustable resources to ingestion and
processing processes), redundancy (to prevent data loss) and partitioning (to increase
system performance).
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These Big Data technologies are combined with artificial intelligence approaches, to
maximize knowledge provided by huge amount of data collected, with the purpose of
gaining a deeper understanding of household energy consumption and foretell customer’s
future behaviours. In this regard, the most recent studies related to energy consumption
using Machine Learning and artificial intelligence, Amasyali and El-Gohary [1] found
a lack of studies related to residential buildings (only a 19%) which besides had low
precision (only 12% used “sub-hourly” data). Chen et al. [7] found the highest spatio-
temporal resolution when using daily data (cumulative daily consumption and average
temperature), although the increase of data spatial resolution improved accuracy. In
addition, they reviewed the resolution and type of 24 models recently applied to explain
the temperature vs. energy consumption, finding 12 applying linear regression, 4 using non-
linear regression, and three employing mixed models. From them, only 9 used hourly and
one sub-hourly data (which included resolutions at device level for individual households),
while only 1 considered data at “sub-city” level and 9 at city level.

Regarding the methodology used for energy demand forecasting, artificial neural net-
works (ANNs) are becoming very popular, especially for energy planning [8–11], although
many other nonlinear models simpler than ANNs are being used, including decision trees
and Random Forest (RF) [10,12–15], finding both as viable and accurate alternatives Tso
and Yau [16]. For instance, Yu et al. [15] developed a model for energy demand prediction
in 80 Japanese buildings using a decision tree with an accuracy of 93% for training data
and 92% for test data.

With reference to variables governing household energy consumption, climate is
one of the most important, although prediction still remains a challenge due to the va-
riety of additional factors that affect, such as the diverse nature of the residential sector,
physical properties of the building, installed equipment, energy prices, demographic and
socioeconomic factors [17,18], and the type of energy used [7,19–22]. Furthermore, spatio-
temporal variations in electricity consumption is higher compared to other sectors (such as
commercial or industry), which adds uncertainty in the prediction [23,24].

The proposal of this paper is to combine meteorological and socioeconomical data
with the power of available energy smart meters from The Low Carbon London (LCL)
trial project [25] to address the challenge of predicting energy consumption in households,
using the tools provided by artificial intelligence in a distributed environment.

Two studies have already analysed these data with two different approaches. Mingyang
Sun et al. [17] used a metric widely used in the UK’ planning guidelines called after-
diversity maximum demand (ADMD), which determines coincident peak energy demand
for a large number of customers [26–28]. Their findings were based on ACORN classi-
fication using only 2013 data, and considering the number of household occupants as
additional variable to determine general household demands for distribution planning
practices. In this study, the importance of socioeconomic factors in energy demand is
confirmed, as the need of further studies taking into consideration calendar seasons, days
and hours, as the work in this paper.

On the other hand, Dong et al. [18] studied the accuracy and computational times of
RF for hourly energy prediction using Apache Spark in AWS S3 as scalable distributed
storage infrastructure and MongoDB as database. They confirmed, as it has been done
in this paper, the need of a distributed architecture to improve computational times and
predictive accuracy for large-scale datasets.

With the evidence of the precious studies in analyzing demands at different levels of
resolutions and the proposal of Big Data technologies for large-scale datasets, the novelty
of this paper lies in the use of artificial intelligence approaches to analysis data with high
temporal resolution (hourly), including socioeconomic variables that allow to break up the
data-set in groups, increasing resolution of the results. Finally, the use of non-linear models
allows more flexibility in contrast to the stiffness of mostly used linear models [16,29].

To ensure the scalability and availability of the generated solution for a real application
with larger data flows, a Spark distributed Cluster allocated in Cloudera platform is
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presented as the big data architecture for the querying and data processing, using the
native Machine Learning module of Spark (MLlib).

2. Methodology

This section includes a description of the proposed methodology, summarized in the
graphical abstract of Figure 1. It is divided in three steps summarizing the main workflow,
which will be further developed in the next subsections. The first step, data acquisition,
characterization and preprocessing, consists of collection of household energy consumption
data and associated variables, including socio-economical factors for clients categorization
and meteorological and calendar information to characterize the energy demands. Step 2,
energy efficiency model, covers the process for developing the prediction models based on
decision trees and the data collected in Step 1. Finally, Step 3, validation and visualization of
results, comprises the statistical variables applied to determine models performance and
their comparison with existing studies using the same data. Besides, the architecture in
which the previous steps are deployed is explained in Section 2.4.

Figure 1. Main workflow proposed: Data acquisition and preprocessing, Energy eddiciency model and Validation of results.

2.1. Step 1: Data Acquisition, Characterization and Preprocessing

Development of a consistent prediction model includes four main steps as part of a
Knowledge Data Discovery (KDD) process: data acquisition, preprocessing, model training
and validation.

Regarding data acquisition, home electricity consumption for 4404 households with
fix tariffs (not subject to dynamic time of use) were acquired from the Low Carbon London
project led by UK Power Networks [25]. The dataset includes smart meter readings (Landis
y Gyr (L + G) E470) taken at half hourly intervals for a period between November 2011 and
February 2014. All selected households depended solely on electricity, excluding those
with gas, prepaid consumption, micro-generation and in vulnerable situations [30].

The customers in the trial were recruited as a balanced sample representative of the
Greater London population, based on their CACI Acorn group [31]. Acorn is a segmen-
tation tool that categorizes UK population in 17 groups (A to Q from higher to lower
social status) based on post code and demographic variables (life stiles, behaviours and
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other socio-economic variables obtained from public and private sources) and statistical
algorithms, created to help the public and private sector to develop business strategies.

The meteorological data were collected at hourly basis from a local weather station
through website Dark-Sky [32], including the following parameters: temperature (◦C);
dew point (◦C); humidity (0–1 decimal percentage); UV index; wind speed (mph); type of
precipitation (rain or snow) and summary of the weather in text format (partially/mostly
cloudy/cloudy, foggy, windy, clear, and all possible combinations).

Finally, school calendar, bank holidays, time of day and day type, variables commonly
used for their relation to occupancy [33–35], were also considered to enhance the perfor-
mance in the predictions. Furthermore, as the number of costumers during the study is not
constant, either because of problems with the smart meters functioning or their staggered
entry in the project, an additional variable related to the number of active smart meters
was included to correct the predictions.

Data preprocessing consisted of a simple transformation of text and calendar variables
into categorical classes to fit into the models and a pre-selection of the attributes based on
their co-correlation, because the selected models, explained in the following subsection,
have no need for elimination of outliers or additional data transformation [36]. Half hourly
energy consumption data were grouped to hourly level to meet meteorological registers.
Data rejection and transformation has been kept to minimal to provide the models with the
most information possible, but number of active smart-meters was introduced as additional
variable to diminish the potential bias associated to the number of connected clients at
each moment.

2.2. Step 2: Energy Efficiency Model

An approach based on Random Forest (RF) algorithm was used for predictions. This
machine learning algorithm, based on the combination of decision trees, consists of obtain-
ing a segmentation of data by empirical means, applying a consecutive series of simple
rules (tree). RF does not require excessive computational capacity while it is able to fit
complex nonlinear relationships [12,16,36].

RF, developed by Breiman [37], has been highly successfully applied in general prob-
lems both as a regression and classification method, being versatile enough to be applied
to problems Large scale and easily adapt to various ad hoc learning tasks [38]. This
approach combines several random decision trees using perturbation and combination
techniques [39] that consist of creating a set of diverse classifiers introducing randomness
in the process of construction of said classifiers. The prediction of the considered set is
obtained by using the average prediction of the individual classifiers [40].

In this study, the dataset was firstly tested as a whole and in a second experiment split
into 18 groups based on the socioeconomical variables, the ACORN categories, as it was
understood that they behave differently.

The available data were divided in a 75:25 test:training ratio based on energy sequen-
tial observations for each ACORN group (see top left boxes in Figure 2). Thus, the first
613 days of a total of 818 observations of each group were considered for training and the
last 205 days for testing. This selection gives a better approximation for a real application,
forecasting the energy demand in the next N days after a giving date and under certain
conditions, allowing the study of possible deviations that the forecast could suffer over
time and the implications this could have in the range of algorithms applicability.

In RF, the more trees assembled, the greater the precision and accuracy, although the
results cease to improve significantly beyond a critical number of trees, causing over-fitting.
To prevent this phenomenon and ensure the optimal maximum depth of trees, a cross-
validation technique was implemented before modeling (see phase number 1 in Figure 2
for more detail), using the training set, 10 random folds and 20, 22, 24, 26, 28 and 30 depths,
the maximum number of trees in Spark. With respect to the prediction parameters, the
models themselves are able to select the most appropriate ones based on their correlation
strength with the explanatory variable and avoid those autocorrelated.
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Figure 2. Diagram of Random Forest empirical model development. Firstly, the training set is used
to find the best Random Forest model, applying a cross-validation technique to ensure the optimal
maximum depth of trees. Finally, the performance of the forecast is checked using the testing set.

2.3. Step 3: Validation and Visualization of Results

The accuracy of RF trained models was determined using the testing set (more detailed
in phases 2 and 3 of Figure 2). This technique is used to ensure that the predictions obtained
through the data mining process are independent of the partition between training and
test data, was also implemented. Statistical indicators used to evaluate the prediction
performance of the models: mean square error (RMSE), coefficient of determination (R2)
and normal quantile-quantile (Q-Q) plot. R2 is the most common statistical coefficient used
to explain the percentage of the total variance explained by the model [41]. RMSE indicates
the variation between the actual and predicted values, and has been widely used as a
standard statistical measure of model performance in several fields [42–44], being more ap-
propriated than mean absolute error (MAE) when errors follow a normal distribution [45].
A Q-Q plot is a commonly used graphical method to compare empirical and theoretical
values of the same model (residuals). This graph provides a fast visualization of trends
within the data distribution and can be used to limit the data ranges for which the model
can be applied based on residuals deviations [46,47].

2.4. System Recommendation. Big Data Architecture

In terms of computational capacity needed to deploy the machine learning analysis of
this study, it was firstly evaluated the number of models and combinations of trees and folds
for the cross-validation. In total, 18 models were performed, one for each ACORN group
and the combined one for the entire data set. For each of them, six different maximum
depths of trees were tested and a 10-fold cross-validation was made to ensure the result.
This means 1140 Random Forest Algorithms using a dataset with 167 million rows.

To ensure sufficient computational capacity for this analysis and meet the require-
ments for a real application in an energy production company [48], a Hadoop Big Data
cluster in Cloudera [49,50] was deployed including four nodes of 24 GB each. Apache
Spark [51,52] was considered as a good candidate for analytics engine as it offers high
data analysis and processing speed capabilities, additional tools and libraries for Machine
learning, is designed to easily scale horizontally and can be deployed in numerous Big
Data architectures. Besides, Spark allows parallel computing in vertical and horizontal di-
rections, dividing the processes needed for running the multiple Random Forest algorithms



Appl. Sci. 2021, 11, 8635 6 of 12

in different nodes, including the execution of each algorithm itself, thought map-reduce
process. This is a clear advantage for the subsequent application of the results in a real
environment with thousands of users connected to the network and sending continuous
information. That advantage is used to spread a parallel algorithm for all the cluster
but the distributed process has a higher overload to communicate all the results across
the network.

In this experiment, the entire dataset was loaded in the cluster and transformed to
work in parallel as a Resilient Distributed Dataset (RDD) [53], the basic data type of Spark.
The partial results were saved in The Hadoop Distributed File System
Mackey et al. [54] (HDFS) while the different algorithms are executed. A PySpark [55]
program using Python was executed continuously for two weeks. SparkML [56] was the
package chosen to for machine learning algorithms pipelines across the cluster nodes. The
optimal depth of trees was explored using a 10-fold cross-validation for each ACORN
in a four thread pool, to take full advantage of the cluster’s power. Once this depth was
determined, the dataset was divided for training/test.

3. Results and Discussion

The objective of this section is to demonstrate the benefits of our approach in terms
of short term predictions, daily and especially hourly level, which provides very high
level of detail of what is happening. To do that, we first study the overall group of
customers to evidence the need of desegregation in groups of customers to improve
predictions. Once the data set is divided by ACORN classification, each group is analyzed
to understand what is happening behind the predictions and estimate if RF is able to
model hourly behaviour without loosing precision. The raw data used for the predictions,
together with the results revised in this section are available at the following repository:
https://doi.org/10.5281/zenodo.5483899.

3.1. Importance of Socioeconomic Classification (ACORN)

Table 1 summarizes the performance achieved for each model following the premised
from the previous paragraph.

Table 1. Summary of Random Forest models performance for each Acorn group and ALL data
without previous classification.

ACORN Mean RSME R2

ALL 1782.39 294.6 0.76
A 91.18 16.03 0.77
B 10.07 2.87 0.58
C 57.93 9.79 0.82
D 112.25 21.06 0.79
E 500.33 110.8 0.54
F 200.27 38.04 0.71
G 66.01 12.87 0.74
H 170.04 19.23 0.91
I 15.88 3.14 0.78
J 35.07 10.89 0.26
K 57.05 10.56 0.73
L 108.95 19.17 0.79
M 36.97 7.51 0.68
N 45.61 7.32 0.8
O 27.2 4.93 0.74
P 24.65 8.42 0.65
Q 208.72 33.47 0.73

Mean 104.01 19.77 0.71

https://doi.org/10.5281/zenodo.5483899
https://doi.org/10.5281/zenodo.5483899
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The row under the name ALL corresponds to the accumulated forecast for the studied
population as a whole while the other ones correspond to each ACORN group. Moderate
performance is obtained for model ALL attending to R2, although the value of RMSE is
the highest in the table, indicating the model is not able to predict accurately the energy
demand of certain part of the population. Therefore, the classification in ACORN groups
is seen as an appropriate technique to better cover the consumers’ behaviour. Regarding
R2 values for these ACORN models, those with more than 80% of variance explained are
ACORN C, H and N. Most ACORN groups have acceptable results around 70% (ACORN A,
D, F, G, I, K, L, M, O, P and Q). This technique is not successful for groups E and especially
J, with very low R2 values, although they do not have the highest errors based on RMSE.
Attending to this last parameter, the lowest errors < 10) are registered for Acorns U, B,
C, I, M, N and O while ACORN E has the highest one (110). The other groups register
intermediate RMSE values, around 1–30.

For deeper exploration of results, RF prediction residuals are represented in Figure 3.
It was expected that the more grouped the data (ALL), the better the results, as uncer-
tainties and outliers are masked and the common trend stands out. However, the errors
in ALL are remarkable, especially in the tails and show a clear bias, which reflects the
customers behave differently and a unique model is not suitable for covering the pro-
posed objectives. Therefore, the hypothesis of dividing the customers in groups according
to their socioeconomic characteristics (ACORN classes) appears as a wise alternative to
reduce uncertainty.

Figure 3. Residuals q-q Plot for each ACORN group and all the customers (ALL).

When divided by ACORNs, the previous bias disappears and only a slight deviation
is detected for most groups, the previous bias disappears, residuals are random and follow
a normal distribution and only a slight deviation for extreme data is detected. Therefore,
only these grouped data are considered for further analysis.

This becomes clearer when comparing the histogram of the residuals for all the
customers and the one for the sum of the residuals of each Figure 4 (ACORN), this last
histogram being sharper and with higher values than the first one, indicating the errors are
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closer to zero. Furthermore, a Kolmogorov–Smirnov non-parametric test of the residuals
has been peformed, as the data do not follow a normal distribution, rejecting the null
hypothesis and thus confirming the distribution of errors is different in both forecasts.

Figure 4. Histogram of the residuals for all customers (ALL, left) and the sum of the residuals of each
ACORN individually (right).

3.2. Energy Demand Forecasts

Once the evidence of including socioeconomic variables to improve energy demand
predictions is retrieved, three different approaches were considered: weekly, daily and
hourly forecasts (Figures 5–7).

Figure 5. Energy consumption observations (kWh, black line) across the latest 270 days of data
against RF mean predictions by week of the year (average 24 h and 7 days observations) for each
ACORN group (blue line). Represented observed data are average values. Error bars represent
predictions square deviation of the 24 h and 7 days average observations.
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Figure 6. RF mean predictions by day of the week (average values of 24 h observations) for each
ACORN group across the latest 270 days of data. Error bars represent predictions square deviation
considering average 24 h errors.

Figure 7. RF mean predictions by hour of the day for each ACORN group across the latest 270 days
of data. Error bars represent predictions square deviation.

Considering the errors made in weekly predictions, it is especially significant how
the errors are very low for the first five weeks but they start increasing from then to
the week number ten, when there is no only an error increment but also a remarkable
deviation between the prediction and the real value, indicating the temporal limit of
the algorithms applicability. For both weekly and daily predictions, ACORN E presents
very high deviations from observation, which indicates the model does not perform well.
ACORN F also suffers a slight deviation, especially for the intermediate period during
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validation, while the other groups are very adjusted to expected values. ACORN E and
F are also the ones with higher demands, which could indicate that the groups of high
social status do not have the highest needs as their households are more energetically
sustainable, there are additional variables not considered in this study that could be
influencing consumption for middle class population.

Hourly forecasts follow a different pattern to the previous predictions for all groups,
with a clear variation of consumption along the day, emphasizing daily predictions miss
important information for short term applications. In general terms, errors rise during
the evening (15.00–20.00) coinciding with the hours of maximum energy demand, due to
a more variable behaviour not covered by the meteorological or general socioeconomic
variables studied. Nevertheless, the errors remain low for all groups but again ACORN
E, emphasizing the need of more information to characterize this group. Heterogeneity
of members of ACORN E must be affecting the prediction, which is defined as “Career
Climbers”; young people, single couples, and families with young children who own
mortgages on apartments, flats, or small houses, living normally in urban locations. It is
surprising that in general, energy demand for ACORN E is higher than groups A or B, with
higher socioeconomic status, but considering the model uncertainties and the residuals
bias, this group must be not well characterized and a deeper analysis should be made to
detect undetected subgroups.

4. Conclusions

In this article, Big Data technologies are proposed to predict energy demands in
the household. Specifically, the machine learning algorithm Random Forest is run in a
horizontal and vertical scaling architecture at different levels of resolution (weekly, daily
and hourly forecast), which allows to get the most out of the system in real environments
with high detail level.

To analyze the potential of our proposal, the importance of customer’s socioeconomic
information is analyzed in the first place. In this sense, it is evidenced that even the
quality of the results without using these variables is acceptable in absolute error terms,
it is not able of capturing the behaviours of certain customers with demands far from the
mean. Thus, the usefulness of ACORN socioeconomic segmentation is accepted to refine
the results.

On the other side, the behaviour of the proposal is studied attending to different
levels of resolution, weekly, daily and hourly, showing that Random Forest is able to make
predictions at very high level of resolution without losing quality in the results and very
similar errors. In addition, with this approach it is possible to detect variations in the
energy demands resulting from variables not covered by meteorological or socioeconomic
data. Likewise, it is evident that the prediction at different resolutions is very close to the
real behaviour when the time elapsed between the value to be predicted and the last one
recorded is short. However, the error increases with higher differences in time between the
prediction and the last observation, which shows a time limit in the application of this kind
of algorithm.

With reference to the architecture, a Hadoop Big Data cluster in Cloudera was de-
ployed. Four nodes were needed for the used data load although it is designed to scale ver-
tical and horizontally to improve analysis performance to be applied in real environments.
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