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Abstract: This paper presents an action recognition approach based on shape and action descriptors
that is aimed at the classification of physical exercises under partial occlusion. Regular physical
activity in adults can be seen as a form of non-communicable diseases prevention, and may be aided
by digital solutions that encourages individuals to increase their activity level. The application
scenario includes workouts in front of the camera, where either the lower or upper part of the
camera’s field of view is occluded. The proposed approach uses various features extracted from
sequences of binary silhouettes, namely centroid trajectory, shape descriptors based on the Minimum
Bounding Rectangle, action representation based on the Fourier transform and leave-one-out cross-
validation for classification. Several experiments combining various parameters and shape features
are performed. Despite the presence of occlusion, it was possible to obtain about 90% accuracy for
several action classes, with the use of elongation values observed over time and centroid trajectory.

Keywords: shape analysis; foreground occlusion; action recognition; exercise classification; silhouette
sequences

1. Introduction

Human action recognition is a very popular topic in a field of computer vision. There is
a large variety of applications associated with action recognition and classification based on
Visual Content Analysis, some examples include surveillance systems [1,2], video retrieval
and annotation [3], human-computer interaction [4,5], and quality-of-live improvement
systems [6,7]. The variety of applications implies different approaches for the selection
and description of action features due to varied action types. In [8], actions are defined as
“’simple motion patterns usually executed by a single person and typically lasting for a
very short duration (order of tens of seconds).” In turn, the author of [9] indicates diverse
characteristics of an action, ranging from very primitive to cyclic body movements. As it
is then stated in [10], actions are primitive movements lasting up to several minutes—an
action is less complicated than an activity and more complex than a single motion (a
gesture). Taking the above into account, an action is a collection of simple movements that
are organized in a short period of time and can have periodic or non-periodic characteristics.
Examples of actions include walking, hand waving and bending, and it is easy to notice
that their basic movements are common to some physical exercises. In this paper, a focus
is put on the recognition of actions that are classified based on exercise types. However,
a problematic aspect is introduced—occlusion—which is a very challenging problem in
computer vision [11,12].

According to the recommendations of the World Health Organization (WHO) [13],
a healthy adult should do at least 150 min of moderate-intensity (or 75 min of vigorous-
intensity) physical activity every week to keep general health and lower the risk of non-
communicable diseases (e.g., cardiovascular disease, hypertension, diabetes, mental health
conditions). A physical activity refers to a variety of exercises, such as jogging, weight
lifting, bike riding, swimming and many more. However, the latest situation in the world
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related to the COVID-19 pandemic has been forcing people to change their daily routines
and lockdowns, in particular, have been limiting physical activity [14,15]. There are some
studies from all over the world researching the adverse consequences of the pandemic on
different aspects of life and well-being that indicate the importance of physical activities
for health improvement [16-19]. The WHO proposed some updated general recommenda-
tions on physical activity during pandemic, emphasizing several activity types that can
be done at home, such as online exercise classes, dancing, playing active video games,
jumping rope as well as muscle strength and balance training [20]. A narrative review
in [15] summarises physical activity guidelines from 29 papers and gives some final joint
recommendations. Generally, exercise types should include aerobic activity (e.g., running,
walking), muscle strength activity (e.g., squats, various jumps), flexibility-stretching and
relaxation (e.g., stretching arms, bending, yoga), and balance training. A brief report
presented in [14] provides the results of a survey on the preferred home exercises for digital
programs. Nearly 70% out of 15,261 participants from different countries were willing to
work out at home, and were mostly interested in flexibility, resistance (strength training)
and endurance (e.g., aerobic training) exercises.

In our works, a specific application scenario is assumed in which a person performs
exercises in front of a computer camera, based on the displayed examples. Camera captures
exercises and the system analyses them during recognition process. This can be related
to active video games and exercise classes online. In the examined scenario, a focus is
put on incomplete action data, where a part of a silhouette is occluded as a result of
the improper camera positioning or the person being at the wrong distance from the
camera. Then, usually the upper or lower part of the video frame is occluded and a part
of foreground silhouette is missing (above the shoulders or below the knees). Due to
the fact that each pose can be affected in different manner, an action descriptor should
relay on the pose variability (changes between frames) rather than an exact shape contour
itself. Effective recognition needs robust shape features which can be calculated despite
the lack of a part of a silhouette. This paper addresses the problem by applying shape
generalization and a combination of simple shape features that are analysed over time.
Exercise types are recognised by means of binary silhouette sequences extracted from the
Weizmann database [21] with added occlusions and two-stage classification. Firstly, coarse
classification based on centroid trajectory divides actions into two subgroups—actions
performed in place and actions with changing location of a silhouette. Since all exercises can
be performed with repetitions, periodicity is not taken into account. Then, each silhouette
is represented using selected shape descriptor and all silhouette descriptors of a sequence
compose an action representation. Action representations are transformed using Discrete
Fourier Transform (DFT) and classified using leave-one-sequence-out procedure. The
proposed action recognition algorithm can be applied in a physical activity training system
offering digital programs for home exercises. Types of exercises can be selected according to
personal preferences and age group. For instance, in older adults, recommended exercises
include mobility, balance and flexibility activities that lead to fall prevention [15]. Some
of these exercises can be performed while seating or holding a chair, which can lead to
occlusions. Given that the proposed approach can employ various shape features, its
parameters can be adapted to specific applications.

Using a taxonomy presented in [12], the proposed action representation belongs to
the category of holistic representations that are based on global features of a human body
shape and movements. Body parts are not localised and discriminative information is
extracted from regions of interest. Section 2 covers some examples of holistic approaches
and other related works, as well as describes several action recognition challenges related
to object occlusion in video sequences. Section 3 explains consecutive steps of the proposed
approach together with applied methods and algorithms. Section 4 describes experimental
conditions and presents the results. Section 5 discusses the results and concludes the paper.
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2. Related Works on Action Recognition and the Problem of Object Occlusion

Methods for recognizing human activities are widely applied in various systems and
approaches in order to recognize and classify gestures, actions and behaviours. A multitude
of applications and activity types results in a variety of features that can be used in the
recognition process. However, an exemplary human activity recognition system consists of
several common modules that perform motion segmentation, object classification, human
tracking, action recognition and semantic description [2]. If a holistic representation is
considered, action recognition is then based on the detected objects of interest (foreground
binary masks, usually the shapes of human silhouettes) with known locations (trajectory
or other motion information). Popular solutions include space-time techniques, where
all silhouettes from a single sequence are accumulated and then features are extracted, or
shape-based methods where features are extracted from each shape and combined into
action representation afterwards.

2.1. Selected Related Works

One of the first works on spatio-temporal action recognition is reported in [22]. The
authors propose Motion History Image (MHI) and Motion Energy Image (MEI) templates
that represent how an object is moving and where the motion is present, respectively.
In [23], the variants of MEI and MHI are combined to propose a new representation called
temporal key poses. Instead of using one representation for a whole video sequence, a
temporal template is assigned to each video frame. Then, k-nearest neighbour (KNN) and
majority voting are applied for action classification. MHI is also used in [24] to create
binary patterns. A texture operator, Local Binary Pattern (LBP), extracts the direction
of motion from MHI and then the Histogram of Oriented Gradients (HOG) is used to
represent features from LBP. Classification is performed with a Support Vector Machine
(SVM).

Another solution that uses aggregated silhouettes from the entire sequence is described
in [25]. Each sequence is represented using Average Silhouette Energy Images, where
higher intensity pixels refer to static motion and low intensity values represent changing
movements. Based on these, Edge Distribution of Gradients, Directional Pixels and R-
transform produce feature vectors that are combined in a final action representation.
The authors of [26] investigate several contour and shape based descriptors indicating
superiority of silhouette-based approaches. Again, action features are extracted from
accumulated silhouette images, called ASI. It is indicated that almost perfect accuracy can
be obtained using HOG and KNN with Euclidean distance.

In [27], binary silhouettes are represented separately. Shape contours are converted
into time series and then encoded into short symbolic representation called SAX-Shape.
A set of SAX vectors represent an action, and classification is performed using a random
forest algorithm. A popular concept for data reduction is the selection of key poses [28,29].
The authors of [29] use silhouette contours and divide them into equal radial bins using
centroid location. Then, a summary value of each bin is calculated based on the Euclidean
distances from centroid to every contour point. The proposed feature is used in a learning
algorithm to build a bag of key poses, and sequences of key poses are classified using
Dynamic Time Warping and leave-one-out procedure. The idea of radial scheme is applied
in [30] as well; however, the entire shape area is used (contour with its interior). Firstly,
human silhouette is divided into smaller regions in a radial fashion. Then, each radial
bin is represented using region-based shape descriptors—geometrical and Hu moments.
Obtained feature vectors are fed into multi-class SVM that indicates action classes. Radial
coordinates and centroid location are also related to polar transform, which is proposed for
shape description in [31]. Three polar coordinate systems are employed to represent the
whole human body, and upper and lower parts of the body. For each of these systems, a
histogram is generated based on radial bins. The normalized histograms are concatenated
and represent a human posture. Classification is performed on a predefined number
of frames.
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2.2. Action Recognition under Occlusion

The approaches for action recognition mentioned in Section 2.1 yield high classifi-
cation accuracy on popular benchmark datasets, however, have not been demonstrated
on partially occluded action sequences so far. Occlusion is an important and challenging
problem for vision-based systems, and foreground object occlusion can be perceived as
a loss of data. In a single-camera setup, self-occlusion or inter-object occlusion may be
present [11]. Moreover, the object of interest can remain partially occluded (temporarily or
not) by the edge of the video frame—in other words, a part of the silhouette is outside the
camera’s field of view. Occlusion can coexist with other problems, such as changes in scene
illumination, cluttered background, moving shadows or similar foreground to background,
all of which can contribute to artefacts in images resulting from the background subtraction
process. Artefacts in binary images have a form of extra pixels or a lack of some pixels in a
silhouette area, thus it can be referred to as false data or data loss, respectively.

Occlusions are very problematic in real environments and busy scenes, making it
difficult to detect and track objects. The selection of experimental database depends mainly
on the recognition problem, application and required action types [11,32]. Literature
sources indicate various ways to evaluate the action recognition method in the presence
of occlusion, some of which add the occlusion to existing videos or foreground masks
(e.g., [33-35]). In [33], a method for human action recognition based on sequences of depth
maps is proposed. Each depth map consists of a human silhouette on a black background,
where the area of a silhouette is coloured according to depth information. In order to
avoid joint tracking, temporal dynamics are modelled using expandable graphical model
(action graph) and the postures are represented using a bag of 3D points. A test dataset was
collected by the authors, and include actions such as high arm wave, hand clap, bend, side
kick, jogging or tennis serve, grouped into three subsets. The proposed solution is tested in
each subset under simulated occlusion, where a depth map is divided into quadrants and
one or two various quadrants of a silhouette are occluded. Compared to the experiments
on unoccluded data, the recognition accuracy did not decrease significantly, except the case
where the upper body was under heavy occlusion.

Another action recognition technique for corrupted silhouettes is proposed in [34]. It
extracts normalized regions of interest containing as little background as possible (called
a silhouette block) and represents each region as a binary vector—an image sequence of
frames is transformed into vector sequence. Each silhouette block is partitioned into 12 sub-
parts and partial template matching is applied. The results are integrated using voting
or the sum of distances. During the experiments, two types of regions are superimposed
on image sequences to simulate occlusion. These include horizontal and vertical stripes
of different width and height, which increased the test dataset. The proposed approach
obtained almost perfect accuracy for the original Weizmann database and is quite effective
for horizontal occlusions.

In [35], several local descriptors are tested in the presence of static occlusion, namely
Trajectory, Histogram of Oriented Gradients, Histogram of Orientation Flow and Motion
Boundary Histogram. These methods are tested in combination with a standard bag-
of-features representation and classified using SVM. The experiments were performed
on the KTH benchmark dataset. Silhouette regions of interest were extracted and 10%,
25%, 50% or 75% of an area of each region was occluded. A combination of Trajectory
and Motion Boundary Histogram (MBH) yielded average accuracy of 90% for partially
occluded silhouettes.

3. Proposed Approach for Extraction and Classification of Action Descriptors

In this paper, an approach for action recognition is evaluated in the presence of static
occlusion. A procedure consisting of several processing steps is proposed. It combines
centroid locations that capture motion information, simple shape descriptors that represent
characteristics of silhouettes and the Fourier transform to extract features from action
descriptors. A previous version of the approach was presented in [36], where it was tested
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using more than twenty shape features and three matching measures. The convex hulls of
silhouettes were used as input data in a scenario involving the recognition of eight types
of actions corresponding to home exercises. The aim of the experiments was to indicate
the most accurate shape features for action classification without any occlusions. In turn,
here the evaluation of the approach is carried out in the presence of occlusion for a specific
scenario concerning the recognition of various exercises performed by a single person in
front of a static camera. It is assumed that either the upper or lower part of the silhouette
is occluded because of the camera being positioned incorrectly or a person being not far
enough from the camera. Only foreground masks extracted from the video sequences are
used for recognition, due to the fact that they carry information about an object’s shape,
pose and position in the video frame. A static occlusion is added to every image, which
results in removing a part of a silhouette from a foreground binary mask. It is assumed
that all images are occluded; however, in several cases, a silhouette could temporarily be
out of occlusion. For example, if there is an upper occlusion and a person bends down, a
silhouette is fully visible for several frames. The similar situation may occur for jumping in
place when a person bends the legs. This can be seen as a dynamic occlusion. However,
since static occlusion is added to every frame and whole sequences are analysed, the small
amount of dynamic occlusion is of minor importance and simply results from the intrinsic
characteristics of some action classes. The following subsections explain in more detail
how silhouette sequences are processed and classified. Figure 1 gives an overview of the
proposed approach.

Database preprocessing

A 4 A 4

Calculating shape descriptors

Extracting centroids

A 4

Creating feature vectors

A 4

Normalization

A\ 4
Calculating Discrete Fourier
Transform coefficients

Coarse classification

\ 4 A 4

Final classification in subgroup 1 Final classification in subgroup 2

Figure 1. A block diagram representing subsequent steps of the proposed approach.

3.1. Database and Preprocessing

The experiments on the proposed approach are performed using the Weizmann
database [21] (the results are presented in Section 3). Here, the reasons for data selection
are explained and the preprocessing steps are described. The Weizmann dataset has several
advantages. Actions are captured on a static background and human silhouettes are easily
distinguishable, fully visible and of equal scale. There are ten action types in the database
which correspond to recommended exercises [14,15,37] as follows:
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*  Aerobic exercise, e.g., running, walking, skipping, jumping jack (activities in which
the body’s large muscles move in a rhythmic manner);

*  Balance training, e.g., galloping sideways, jumping in place, jumping forward on two
legs (activities increasing lower body strength);

¢  Flexibility exercise, e.g., one or two-hand waving, bending (activities preserving or
extending motion range around joints).

The database consists of 90 video sequences (144 x 180 px, 50 fps, 1-3 s) and corre-
sponding foreground masks extracted for each video frame, obtained using background
subtraction. Each mask is a binary image containing single human silhouette (white pixels)
on a black background (see Figure 2 for examples). Some silhouettes are incomplete or have
additional pixels (Figure 3)—artefacts resulting from the foreground extraction process.
Depending on the shape descriptor used, artefacts may have insignificant influence on the
classification results. Binary images with background only or in which a silhouette is too
close to the left or right edge of the video frame are removed. The direction of movement
is standardized, so all actors move from left to right.

-n

Figure 2. Exemplary foreground masks from the Weizmann database [21].

Figure 3. Examples depicting various artefacts resulting from the background subtraction.

3.2. Extracting Motion Information and Adding Occlusion

Preprocessed binary images are used to obtain the centroid trajectory. The centroid
coordinates are calculated as the average coordinates of all pixels belonging to the silhou-
ette’s area. The trajectory length (relative to the bottom edge of the video frame) is used
as a condition for dividing the database into two subgroups. This step is referred to as
coarse classification. Actions are often distinguished into periodic and non-periodic ones,
but in case of physical activity all exercises can be repeated periodically. Therefore, here
the database is divided automatically into actions performed in place (a trajectory is short,
e.g., bending) and actions during which a person changes location across the video frame
(a trajectory is long, e.g., walking). For a single video sequence, centroid positions are
calculated for each silhouette and accumulated in a separate image whose size is equal
to the size of a video frame (144 x 180 px). The trajectory length is measured relative to
the bottom edge of the video frame and if it is shorter than 20 pixels an action is classified
as performed in place. Longer trajectories refer to actions with changing location of a
silhouette. Coarse classification allows for the use of different features and parameters for
each subgroup.

The assumed application scenario requires the input data to be occluded in the specific
manner; therefore, the foreground masks from the Weizmann database were modified in
two different ways to occlude the upper and lower parts of the camera’s field of view. This
type of occlusion simulates a situation in which a person is too close to the camera, and
either the person’s legs or head with neck and shoulders do not appear in the video frame.
Foreground silhouettes on the original masks were located in slightly different places
vertically. Therefore, in order to determine the cut-off point, the centroid coordinates of all
silhouettes in the given sequence were averaged. The average value was then decreased
or increased to experimentally indicate the final cut-off point, which translates to the size
of the occlusion. For example, if the averaged centroid row coordinate equals 50 (the
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image matrix origin is in the upper left corner), then it was decreased by 20 for upper
occlusion and increased by 20 for the lower occlusion. The cut-off point differs only
between sequences due to changes in centroid location, but it is constant for all frames
within a given sequence (a simulation of a static camera). Figure 4 depicts several examples
of occluded silhouettes.

LN NN
EEEINEN T

Figure 4. Foreground masks for a jumping-jack action with added occlusions.

3.3. Shape Description

The shape description algorithm enables obtaining a numerical representation of a
shape. It extracts the most distinctive features and reduces two-dimensional image matrix
into a vector with numbers, or a single value in case of simple shape descriptors. Such
simple descriptors are basic shape measurements or shape factors that capture general
characteristics and usually are not used alone [38]. However, when calculated for more
shapes and observed over time, they are more valuable. An appropriate selection of the
representation helps to limit the influence of outliers, and shape generalization can be used
additionally. Here, the Minimum Bounding Rectangle (MBR) is employed.

An MBR defines a smallest rectangular region that contains all points of a shape [38,39].
The algorithm creates a blob-like object that covers a foreground silhouette’s area and is
described by the coordinates of four corner points. The idea of using rectangular blobs
is also known from the object detection and tracking approaches. Based on the corner
coordinates, several characteristics can be calculated and combined into shape ratios. Basic
MBR measurements include its length and width. The length of the rectangle can be
calculated in two different ways. Firstly, as a distance between two fixed corners where
width is a horizontal measurement and length is vertical (in relation to the coordinate axes).
This approach is used to calculate other MBR-based descriptors. However, in the second
method, the length is always the longer side of the rectangle, and width is the shorter
one, no matter which corner points it concerns. These are referred to as ‘shorterMBR” and
‘longerMBR’. Width and height are further used to estimate perimeter, area, eccentricity;,
elongation and rectangularity. Eccentricity is a ratio of width to length of the MBR, while
elongation is a value of eccentricity subtracted from 1. Rectangularity shows the similarity
of an original silhouette to its MBR and is obtained as the ratio of the area of a shape to the
area of its MBR. Ultimately, nine different MBR measurements and ratios are considered as
shape descriptors for the evaluated approach.

In the shape description step, each foreground mask is represented using selected
shape descriptor. As a result, an image is reduced to a single value. The descriptors of all
frames from a given sequence are put into a vector and subjected to the normalization to a
range of 0 to 1. Normalized vector can be plotted as a line graph to observe how shape
descriptors change over time. The number of shape descriptors of a single sequence equals
the number of its video frames; therefore, these vectors are still of different length.

3.4. Action Representation

This step aims to prepare action representations of equal size, based on the normalized
vectors with shape descriptors. To achieve this, the one-dimensional Discrete Fourier
Transform is applied. The number of the resultant Fourier coefficients is predefined and
various options are tested to indicate the smallest and most accurate one. If the number
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of coefficients is smaller than the size of a description vector, the latter one is truncated.
Otherwise, zero-padding is applied; therefore, the descriptor vectors are appended with
zeros. Adding zeros in the time domain is equal to the interpolation in the frequency
domain. Final action representations contain absolute values of the Fourier coefficients.

3.5. Action Classification

The proposed approach employs two-stage classification. A coarse classification that
creates two subgroups—actions performed in place and actions with changing location
of a silhouette—can be performed at the earlier step. This is due to that different shape
descriptors and action representations can be applied. The actual classification is performed
in each subgroup separately based on a standard leave-one-sequence-out cross-validation.
It means that each action representation is matched with the rest of the representations
from the database and a matching measure is calculated. This procedure is repeated
for all instances and the results are accumulated in terms of the percentage of correct
classifications. The closest match indicates probable class of an action under investigation.
If a correlation is used for matching (C1 correlation based on L1-norm [40]), then the most
similar indication is taken. In turn, if a distance is calculated (Euclidean distance [41]), a
nearest neighbour (less dissimilar one) indicates the recognized class.

3.6. List of Processing Steps

Sections 3.1-3.5 provided a detailed description of the proposed approach, including
how to prepare the input data. To summarize the most important elements, here a list of
consecutive processing steps is given, as follows:

1.  The database is preprocessed as explained in Section 3.1, and occlusion is added
based on Section 3.2.

2. Motion and shape features are extracted from all sequences. A sequence is composed
of binary foreground masks BM; = {bmy,bm,, ..., bm,} and represented by a vector
with normalized shape descriptors, SD; = {sdy, sdy, . ..,sd, }, where n is the number
of frames. Shape descriptors are based on the Minimum Bounding Rectangle mea-
surements which are explained in Section 3.3. To collect motion information, centroid
locations are stored as trajectories (Section 3.2). Centroid coordinates are calculated as
an average of coordinates of all points included in the shape area.

3. Each SD vector is transformed into action representation AR using the Discrete
Fourier Transform (Section 3.4). The one-dimensional DFT of an exemplary vector
u(t) oflength t (0 < t < T; T is a period of ¢) is as follows [42]:

1 N-1 (—jant)
= L u)epl ¥/ k=01,. N-1 1)
t=0

Then, a selected number of absolute coefficients is used for classification.

4. Coarse classification is performed based on trajectory length. The database is divided
into two subgroups.

5. Final classification (Section 3.5) is performed in each subgroup separately using the
leave-one-sequence-out procedure and one of the following matching measures—
Euclidean distance df [41] or C1 correlation c; [40]. The respective formulas for two
compared vectors x = x1,X2,..., Xy and vy = y1,Y2,..., Y, are:

de(x,y) = 4 2 (xi —¥i)?, 2)
i=

Llxi — vl

_ 3
(ERT) ©)

ci(xy)=1-
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4. Experimental Conditions and Results

The experiments were carried out with the use of the Weizmann database [21], which
contains ten action classes with two action types: the first type includes actions performed
in place, such as bending (referred to as ‘bend’), jumping jack (‘jack’), jumping in place
(‘pjump’), waving with one hand (‘wavel’) and waving with two hands (‘wave2’), and the
second type refers to actions with changing location of a silhouette, namely walking (‘walk’),
running (‘run’), galloping sideways (‘side’), jumping forward on two legs (‘jump’) and
skipping (‘skip’). Action sequences are divided into subgroups during coarse classification
and the division is made based on the trajectory length; therefore, the subgroups are
referred to as ‘short trajectory’ and ‘long trajectory’, respectively. All foreground images
from 90 sequences were preprocessed in accordance with Section 3.1. Based on Section 3.2,
two versions of the database were prepared by occluding the upper or lower part of the
silhouette, and are referred to as the “‘upper-occlusion” and ‘lower-occlusion’. Each database
is tested separately.

In a single experiment, there are several tests investigating classification accuracy
of the combinations of the shape descriptor, matching measure and the size of action
representation. A sequence of binary silhouettes (less than 150 images per action) is taken
as an input data for a single action. Firstly, all silhouettes are represented using selected
shape descriptor and the results are combined into a vector which is then normalized.
Vectors from all silhouette sequences are transformed into action representations that are
subjected to the classification process. This includes coarse classification into two subgroups
and final classification into action classes using leave-one-sequence-out procedure. A test
representation is matched with the rest of the representations and the most similar one
indicates the probable action class. Two matching measures are compared: Euclidean
distance and C1 correlation. The experiments employed nine shape descriptors and
various action representations based on from 2 to 256 DFT coefficients. The best result
relates to the experiment with the highest accuracy (correct classification rate) and the
smallest representation size. Then, a combination of a shape descriptor and matching
measure that is used during this experiment is considered as the most effective version of
the approach. The top results for each shape descriptor, obtained for occluded data, are
presented in Tables 1 and 2. In turn, Table 3 contains a comparison of the selected results
achieved using both occluded databases and the original Weizmann database.

Table 1 contains the results of the experiments performed on the ‘lower-occlusion’
database. The highest classification accuracy for actions performed in place is 91.11%.
The second best is 88.89%, and the third one is 84.44%. The most accurate experiment
employed elongation for shape description. The accuracy of 91.11% is then achieved either
for Euclidean distance or C1 correlation, and action representations are composed of 57 and
55 coefficients, respectively. For the second group of actions, the maximum recognition
rate is 73.33% and was obtained for two shape descriptors—rectangularity (84 coefficients)
and shorterMBR (71 coefficients). In both experiments, the C1 correlation is applied. The
difference between the highest results in both subgroups is large and equals nearly 20%. In
case of actions with changing location of a silhouette, this should not be surprising since
the lower part of the silhouette is occluded and feet cannot be localised continuously.

The results for the experiments performed with the use of the ‘upper-occlusion
database are not so strongly diversified between the subgroups (Table 2). The highest
classification rate for actions performed in place equals 88.89% and is attributed to the
experiment using elongation, 51 Fourier coefficients and C1 correlation. For the other
subgroup, an accuracy of 84.44% is achieved in three experiments using area, shorterMBR
and rectangularity. However, if rectangularity is employed, the representation size is
smaller (46 coefficients using C1 correlation).

7
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Table 1. Results for the experiments using the ‘lower-occlusion” database. Correct classification rates
are given for coarsely classified actions, nine shape descriptors based on the Minimum Bounding
Rectangle and two matching measures (EU—distance, C1—correlation). The number of the DFT
coefficients is given in brackets.

Shape Descriptor Actions Performed in Place Actions with Changing Location of a Silhouette

EU C1 EU C1

Rectangularity 68.89% 71.11% 68.89% 73.33%
(68) (110) (79) (84)

Elongation 91.11% 91.11% 68.89% 64.44%
(57) (55) (79) (39)

Eccentricity 71.11% 75.56% 64.44% 60.00%
(88) (108) 37) (38)

Width 82.22% 84.44% 55.56% 60.00%
(54) (54) 17) (57)

Length 62.22% 62.22% 64.44% 60.00%
(41) (18) (36) (65)

Area 68.89% 71.11% 62.22% 64.44%
(39) (106) (66) (70)

LongerMBR 68.89% 71.11% 66.67% 66.67%
(41) (41) (68) (89)

ShorterMBR 88.89% 84.44% 71.11% 73.33%
(55) (56) (30) (71)

Perimeter 77.78% 80.00% 66.67% 62.22%
(52) (52) (40) (39)

Table 2. Results for the experiments using the “‘upper-occlusion’ database. Correct classification rates
are given for coarsely classified actions, nine shape descriptors based on the Minimum Bounding
Rectangle and two matching measures (EU—distance, C1—correlation). The number of the DFT
coefficients is given in brackets.

Shape Descriptor Actions Performed in Place Actions with Changing Location of a Silhouette

EU C1 EU C1

Rectangularity 77.78% 75.56% 82.22% 84.44%
(55) (50) (28) (46)

Elongation 82.22% 88.89% 82.22% 80.00%
47) (51) (27) (28)

Eccentricity 68.89% 71.11% 73.33% 77.78%

(32) (34) (41) (168)

Width 73.33% 71.11% 60.00% 60.00%
(53) (81) 39) (18)

Length 55.56% 64.44% 75.56% 75.56%
(38) (42) (40) (68)

Area 68.89% 75.56% 84.44% 77.78%
(38) (83) (70) (38)

LongerMBR 75.56% 80.00% 60.00% 60.00%
(53) (58) 27) (40)

ShorterMBR 80.00% 80.00% 82.22% 84.44%
(124) (65) (18) (69)

Perimeter 68.89% 68.89% 75.56% 75.56%

(99) (56) (93) (75)
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Table 3. Summary of the results obtained using databases with or without occlusions.

Shape Descriptor Actions Performed in Place Actions with Changing Location of a Silhouette

EU C1 EU C1
‘Lower-occlusion”  Elongation  Elongation  ShorterMBR ShorterMBR
database 91.11% (57)  91.11% (55)  71.11% (30) 73.33% (71)
‘Upper-occlusion”  Elongation  Elongation Area Rectangularity
database 82.22% (47)  88.89% (51)  84.44% (70) 84.44% (46)
Database ShorterMBR ~ Perimeter Area Area
without occlusion ~ 86.67% (56)  91.11% (51)  86.67% (31) 84.44% (33)

The proposed approach is also tested using the Weizmann database without any
occlusions. The comparison of the experimental results yielding the highest classification
accuracy is given in Table 3. Some conclusions can be drawn. Firstly, in several cases,
the use of C1 correlation gives better results or the results are equal to the experiments
with Euclidean distance. Secondly, in the subgroup of actions with changing location
of a silhouette, the lower occlusion has stronger influence on the results. It can be con-
cluded that, for action classification purposes, the information about feet positions is more
important than the presence of head and shoulders. It is also confirmed by the results
obtained for the ‘upper-occlusion” database, which were very similar to those achieved on
the unoccluded database. Different conclusions can be drawn from the results obtained for
actions performed in place. Since actors do not move across the camera’s field of view, feet
positions do not influence the results. Furthermore, the same accuracy is achieved for the
‘lower-occlusion’ database and the database without any occlusions. It is also important to
notice that different shape descriptors are used; however, the size of action representation
is similar. In some cases, the number of DFT coefficients is smaller than the number of
images in an input sequence. Therefore, the proposed approach offers data reduction, both
by representing each image by a single value and each action by a selected number of the
absolute spectral domain coefficients.

Figures 5-7 present confusion matrices for selected experiments which yielded the
highest accuracy results. In each subgroup, there are 45 action sequences—five action
classes, nine sequences in each class. Each figure contains two confusion matrices: the
left one refers to “actions performed in place’ and the other one to “actions with changing
location of a silhouette’. Values in matrices correspond to the number of classifications,
where correct classifications are on a grey background, and misclassifications are on a white
background. Among the occluded actions, ‘skip” is most often confused with other classes.
However, when there is no occlusion, this class is recognized correctly, but other action
types are confused with ‘skip’. In the experiment with the ‘lower-occlusion’ database,
besides ‘skip’, jump in place (‘pjump’) was less accurate classified, with 4 false classifi-
cations out of 9 in total. Among actions without occlusion, jumping forward (‘jump’) is
the least distinguishable class. Appendix A contains additional confusion matrices for the
experimental results which are given in Tables 1 and 2.
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bend jack pjump wavel wave2 jump  run side skip walk
bend 9 0 0 0 0 jump 7 0 1 0 1
jack 0 9 0 0 0 run 0 6 0 2 1
pjump 0 2 & 1 1 side 1 0 7 1 0
wave1 0 0 0 9 0 skip 1 0 2 &) 1
wave2 0 0 0 0 9 walk 0 1 0 0 8

Figure 5. Confusion matrices for the best experiment using the ‘lower-occlusion” database. (Left ta-
ble): “actions performed in place’ subgroup, Elongation, C1 correlation, 55 DFT coefficients, accuracy
91.11%. (Right table): ‘actions with changing location of a silhouette’ subgroup, ShorterMBR, C1
correlation, 71 DFT coefficients, accuracy 73.33%.

bend jack pjump wave1l wave2 jump  run side skip walk
bend 9 0 0 0 0 jump 7 1 0 1 0
jack 0 8 1 0 0 run 0 8 0 1 1
pjump 0 0 8 1 0 side 0 0 9 0 0
wave1 0 1 0 7 1 skip 1 1 1 5 1
wave2 0 0 0 1 8 walk 0 0 0 0 9

Figure 6. Confusion matrices for the best experiment using the “upper-occlusion’ database. (Left ta-
ble): ‘actions performed in place’ subgroup, Elongation, C1 correlation, 51 DFT coefficients, accuracy
88.89%. (Right table): ‘actions with changing location of a silhouette” subgroup, Rectangularity, C1
correlation, 46 DFT coefficients, accuracy 84.44%.

bend jack pjump wavel wave2 jump  run side skip walk
bend 9 0 0 0 0 jump 6 0 1 1 1
jack 0 8 0 0 1 run 0 8 0 1 0
pjump 1 0 7 1 0 side 0 0 8 1 0
wave1 0 0 0 8 1 skip 0 0 0 9 0
wave2 0 0 0 0 9 walk 0 0 1 0 8

Figure 7. Confusion matrices for the best experiment using the original database without occlusions.
(Left table): ‘actions performed in place” subgroup, Perimeter, C1 correlation, 51 DFT coefficients,
accuracy 91.11%. (Right table): ‘actions with changing location of a silhouette” subgroup, Area,
Euclidean distance, 31 DFT coefficients, accuracy 86.67%.

5. Discussion and Conclusions

This paper presents an approach for action recognition in the scenario of exercise
classification under partial occlusion. It uses a combination of shape descriptors, trajectory
and spectral domain features to assign silhouette sequences to action classes. General
shape features are tracked; therefore, small disturbances or artefacts in the foreground
masks are of minor importance. The proposed approach has a form of a general procedure
consisting of several processing steps, but some of them are using different methods. It
enables this approach to be adapted to other applications or data. It also made it possible to
test different combinations of shape descriptors, action descriptors and matching measures
in the assumed scenario. In order to improve recognition accuracy, applying other shape
features or classification procedures is considered.

The goal of the experiments was to indicate such combination that would give the
highest accuracy for the recognition of occluded silhouettes. Results differ between sub-
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groups of actions performed in place and actions with changing location of a silhouette. For
the ‘lower-occlusion’ database, the highest accuracy is 91.11% (elongation, 55 coefficients,
C1 correlation) and 73.33% (shorterMBR, 71 coefficients, C1 correlation), for the subgroups,
respectively. In turn, in the ‘upper-occlusion’ database, the highest accuracy in the first
subgroup is 88.89% (elongation, 51 coefficients, C1 correlation) and 84.44% in the second
one (rectangularity, 46 coefficients, C1 correlation). This gives an average accuracy for the
entire ‘upper-occlusion” database equal to 86.65%, while, for the ‘lower-occlusion’ database,
it is 82.22%. Compared to the averaged accuracy in data without occlusions, which is
88.89%, the decrease in classification rate is small. It can also be concluded that classifica-
tion accuracy for actions performed in place is close to 90%, and higher than in the other
subgroup, which makes the results promising, especially under the assumed scenario.

The proposed approach was tested using the datasets modified by the authors; there-
fore, there are no other results in the literature, presented on the same data. However, some
general characteristics of the results can be compared to the conclusions on some other
solutions handling occlusion. The authors of [35] investigated combinations of different
descriptors as well. They experimented with partial occlusion (10% or 25% of the region
of interest is occluded) and heavy occlusion (50% and 75% occluded), and compared the
results with unoccluded data. The percentage results are similar to the results presented in
this paper. For the experiments combining trajectory with MBH or HOG, the difference in
accuracy between partially occluded and unoccluded data amounted to several percent.
The authors of [33] proposed an action recognition approach that uses silhouettes with
depth data, and achieves nearly perfect accuracy for three subgroups of activity classes.
Occlusion is added by removing a quarter or a half of a silhouette. The highest accuracy
decrease is observed when the top part of a silhouette is fully or partially occluded, espe-
cially in the subgroup where the following action classes are included: forward punch,
high throw, hand clap, bend and more. In other cases, the differences were relatively
small. In [34], several horizontal and vertical occlusions were added to the Weizmann
database and tested with the use of the approach based on spatio-temporal blocks and par-
tial template matching. The comparison of the results shows small differences in accuracy
between the experiments performed on databases with horizontal occlusions and without
any occlusion, while vertical occlusions cause larger accuracy decrease.
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Appendix A. Figures Presenting Confusion Matrices for the Experiments the Results
of Which Are Given in Tables 1 and 2

bend jack pjump wavel wave2 jump  run side skip walk
bend 8 0 1 0 0 jump 6 0 0 3 0
jack 1 7 1 0 0 run 0 9 0 0 0
pjump 3 1 5 0 0 side 1 0 5 3 0
wavel 0 0 1 6 2 skip 1 1 2 4 1
wave2 1 0 0 3 5 walk 0 0 0 2 7

Figure A1. Confusion matrices for the experiment using the lower-occlusion” database, rectangular-
ity and Euclidean distance.

bend jack  pjump wavel wave2 jump run side skip walk
bend 9 0 0 0 0 jump 6 0 3 0 0
jack 0 9 0 0 0 run 0 8 0 1 0
pjump 0 2 6 1 0 side 3 0 6 0 0
wavel 0 0 0 9 0 skip 2 1 1 4 1
wave2 0 0 1 0 8 walk 1 0 0 1 7

Figure A2. Confusion matrices for the experiment using the ‘lower-occlusion” database, elongation
and Euclidean distance.

bend jack pjump wavel wave2 jump  run side skip walk
bend 8 1 0 0 0 jump 3 0 1 1 4
jack 1 6 0 0 2 run 1 5 1 1 1
pjump 0 1 6 1 1 side 0 0 9 0 0
wavel 0 1 0 8 0 skip 4 1 0 4 0
wave2 1 1 1 2 4 walk 1 0 0 0 8

Figure A3. Confusion matrices for the experiment using the “lower-occlusion” database, eccentricity
and Euclidean distance.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 8 1 0 0 0 jump 4 2 1 1 1
jack 1 8 0 0 0 run 4 2 0 1 2
pjump 0 0 7 2 0 side 0 0 € 0 0
wavel 0 0 1 8 0 skip 0 0 0 7 2
wave2 0 1 0 2 6 walk 1 2 0 3 3

Figure A4. Confusion matrices for the experiment using the ‘lower-occlusion” database, MBR width
and Euclidean distance.
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bend jack  pjump wavel wave2 jump  run side skip walk
bend 7 0 0 0 2 jump 3 1 2 2 1
jack 0 7 0 0 2 run 1 5 0 1 2
pjump 0 1 6 1 1 side 0 0 € 0 0
wavel 0 0 0 5 4 skip 2 2 0 5 0
wave2 2 1 0 3 3 walk 0 0 0 2 7

Figure A5. Confusion matrices for the experiment using the ‘lower-occlusion” database, MBR length
and Euclidean distance.

bend jack pjump wavel wave2 jump  run side skip walk
bend 7 0 0 1 1 jump 4 0 3 1 1
jack 0 8 1 0 0 run 2 6 0 1 0
pjump 0 1 7 0 1 side 3 0 6 0 0
wavel 2 0 0 5 2 skip 1 0 3 5 0
wave2 2 0 0 3 4 walk 0 0 1 1 7

Figure A6. Confusion matrices for the experiment using the ‘lower-occlusion” database, MBR area
and Euclidean distance.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 8 1 0 0 0 jump 5 0 3 1 0
jack 0 5 1 2 1 run 0 8 0 1 0
pjump 0 2 7 0 0 side 4 0 5 0 0
wavel 0 1 1 6 1 skip 0 2 1 5 1
wave2 0 1 2 1 5 walk 0 0 1 1 7

Figure A7. Confusion matrices for the experiment using the ‘lower-occlusion’ database, longerMBR
and Euclidean distance.

bend  jack pjump wavel wave2 jump  run side skip walk
bend 9 0 0 0 0 jump 6 2 1 0 0
jack 0 8 1 0 0 run 0 6 0 2 1
pjump 0 1 6 2 0 side 1 0 6 0 2
wavel 0 0 1 8 0 skip 1 2 1 5 0
wave2 0 0 0 0 9 walk 0 0 0 0 9

Figure A8. Confusion matrices for the experiment using the ‘lower-occlusion’ database, shorterMBR
and Euclidean distance.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 9 0 0 0 0 jump 8 1 2 1 2
jack 0 8 1 0 0 run 1 7 0 0 1
pjump 1 1 7 0 0 side 1 1 6 1 0
wavel 0 0 1 4 4 skip 0 1 2 6 0
wave2 0 0 0 2 7 walk 1 0 0 0 8

Figure A9. Confusion matrices for the experiment using the ‘lower-occlusion” database, MBR
perimeter and Euclidean distance.
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bend jack  pjump wavel wave2 jump  run side skip walk
bend 8 0 0 1 0 jump 6 0 1 2 0
jack 0 8 1 0 0 run 0 8 0 1 0
pjump 0 1 6 2 0 side 0 0 7 2 0
wavel 0 0 1 6 2 skip 2 0 1 4 2
wave2 0 0 0 5 4 walk 0 0 0 1 8

Figure A10. Confusion matrices for the experiment using the ‘lower-occlusion” database, rectangu-
larity and C1 correlation.

bend  jack pjump wavel wave2 jump  run side skip walk
bend = 9 0 0 0 0 jump 4 0 3 2 0
jack 0 9 0 0 0 run 0 7 1 0 1
pjump 0 2 5 1 1 side 0 0 8 0 1
wavel 0 0 0 €) 0 skip 2 1 2 2 2
wave2 0 0 0 0 9 walk 0 0 0 1 8

Figure A11. Confusion matrices for the experiment using the ‘lower-occlusion” database, elongation
and C1 correlation.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 8 0 0 1 0 jump i 2 1 2 3
jack 1 7 1 0 0 run 0 6 1 1 1
pjump 0 0 6 1 2 side 0 0 8 0 1
wavel 0 1 0 8 0 skip 2 3 0 4 0
wave2 0 1 1 2 5 walk 1 0 0 0 8

Figure A12. Confusion matrices for the experiment using the ‘lower-occlusion” database, eccentricity
and Cl1 correlation.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 8 1 0 0 0 jump 4 1 1 2 1
jack 0 9 0 0 0 run 1 5 0 3 0
pjump 1 0 7 0 1 side 0 0 5 0 0
wavel 0 0 0 7 2 skip 2 5 0 1 1
wave2 0 1 0 1 7 walk 0 0 1 0 8

Figure A13. Confusion matrices for the experiment using the ‘lower-occlusion’ database, MBR width
and C1 correlation.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 9 0 0 0 0 jump 6 0 0 2 1
jack 0 7 0 1 1 run 0 7 1 1 0
pjump 0 0 6 2 1 side 0 0 7 0 2
wavel 1 2 3 2 1 skip 2 4 0 1 2
wave2 1 1 1 2 4 walk 0 0 3 0 6

Figure A14. Confusion matrices for the experiment using the ‘lower-occlusion” database, MBR length
and C1 correlation.
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bend jack  pjump wavel wave2 jump  run side skip walk
bend = 8 0 0 0 1 jump = 5 0 1 3 0
jack 0 8 1 0 0 run 0 8 0 1 0
pjump 0 2 7 0 0 side 2 0 5 2 0
wavel 0 0 1 4 4 skip 2 2 1 3 1
wave2 0 0 0 4 5 walk 0 0 0 1 8

Figure A15. Confusion matrices for the experiment using the ‘lower-occlusion” database, MBR area
and Cl1 correlation.

bend jack  pjump wavel wave2 jump run side skip walk
bend 7 0 0 1 1 jump 5 0 2 1 1
jack 0 5 1 3 0 run 0 8 0 1 0
pjump 0 2 7 0 0 side 3 0 6 0 0
wavel 0 1 0 8 0 skip 1 2 2 4 0
wave2 2 1 1 0 5 walk 0 0 2 0 7

Figure A16. Confusion matrices for the experiment using the ‘lower-occlusion” database, longerMBR
and Cl1 correlation.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 9 0 0 0 0 jump 7 0 1 0 1
jack 0 9 0 0 0 run 0 6 0 2 1
pjump 2 2 5 0 0 side 1 0 7 1 0
wavel 0 0 1 7 1 skip 1 0 2 5 1
wave2 0 0 0 1 8 walk 0 1 0 0 8

Figure A17. Confusion matrices for the experiment using the ‘lower-occlusion’ database, shorterMBR
and Cl1 correlation.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 8 0 1 0 0 jump 4 1 0 0 4
jack 0 8 1 0 0 run 1 6 1 0 1
pjump 0 1 7 0 1 side 0 0 7 2 0
wavel 0 0 1 5 3 skip 1 1 2 4 1
wave2 0 0 0 1 8 walk 0 0 0 2 7

Figure A18. Confusion matrices for the experiment using the ‘lower-occlusion” database, MBR
perimeter and C1 correlation.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 7 1 0 1 0 jump 6 0 0 3 0
jack 0 9 0 0 0 run 0 8 1 0 0
pjump 0 1 7 0 1 side 0 1 7 1 0
wavel 0 0 0 5 4 skip 1 0 1 7 0
wave2 0 0 0 2 7 walk 0 0 0 0 9

Figure A19. Confusion matrices for the experiment using the ‘upper-occlusion” database, rectangu-
larity and Euclidean distance.
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bend jack  pjump wavel wave2 jump run side skip walk
bend 9 0 0 0 0 jump 7 0 1 1 0
jack 0 9 0 0 0 run 0 8 0 1 0
pjump 0 0 7 1 1 side 1 1 6 0 1
wavel 0 1 0 7 1 skip 1 1 0 7 0
wave2 0 0 1 3 5 walk 0 0 0 0 9

Figure A20. Confusion matrices for the experiment using the “‘upper-occlusion” database, elongation
and Euclidean distance.

bend jack  pjump wavel wave2 jump run side skip walk
bend 7 0 0 2 0 jump 5 1 0 2 1
jack 2 7 0 0 0 run 1 8 0 0 0
pjump 2 0 5 1 1 side 0 0 9 0 0
wavel 0 1 0 5 3 skip 5 0 1 8 0
wave2 0 0 1 1 7 walk 0 0 1 0 8

Figure A21. Confusion matrices for the experiment using the “upper-occlusion’ database, eccentricity
and Euclidean distance.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 8 1 0 0 0 jump 4 1 1 3 0
jack 1 8 0 0 0 run 0 5 1 3 0
pjump 1 0 7 1 0 side 0 0 8 0 1
wavel 0 1 0 5 3 skip 4 2 0 2 1
wave2 0 1 0 3 5 walk 0 0 1 0 8

Figure A22. Confusion matrices for the experiment using the ‘upper-occlusion” database, MBR width
and Euclidean distance.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 6 1 0 0 2 jump 5 0 0 2 2
jack 2 5 1 0 1 run 0 9 0 0 0
pjump 1 2 3 1 2 side 0 0 8 0 1
wavel 1 0 2 5 1 skip 4 0 0 5 0
wave2 2 0 0 1 6 walk 1 0 1 0 7

Figure A23. Confusion matrices for the experiment using the “‘upper-occlusion’ database, MBR length
and Euclidean distance.

bend jack  pjump wavel wave2 jump run side skip walk
bend 8 0 0 0 1 jump 5 1 2 1 0
jack 0 9 0 0 0 run 1 8 0 0 0
pjump 0 2 5 2 0 side 0 0 9 0 0
wavel 1 0 1 4 3 skip 0 0 1 8 0
wave2 3 0 0 1 5 walk 0 0 1 0 8

Figure A24. Confusion matrices for the experiment using the “‘upper-occlusion’ database, MBR area
and Euclidean distance.
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bend jack  pjump wavel wave2 jump run side skip walk
bend 9 0 0 0 0 jump 5 0 1 2 1
jack 0 5 0 1 3 run 0 7 1 1 0
pjump 0 0 8 1 0 side 1 1 4 0 3
wavel 0 1 0 6 2 skip 0 0 2 7 0
wave2 0 2 0 1 6 walk 0 1 3 1 4

Figure A25. Confusion matrices for the experiment using the ‘upper-occlusion” database, longerMBR
and Euclidean distance.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 9 0 0 0 0 jump 6 0 0 2 1
jack 0 7 2 0 0 run 0 8 0 1 0
pjump 0 3 6 0 0 side 0 0 8 1 0
wavel 0 0 0 8 1 skip 2 0 0 7 0
wave2 0 0 0 3 6 walk 0 0 1 0 8

Figure A26. Confusion matrices for the experiment using the ‘upper-occlusion’ database, shorterMBR
and Euclidean distance.

bend jack  pjump wavel wave2 jump run side skip walk
bend 8 0 0 0 1 jump 2 0 4 2 1
jack 1 7 0 1 0 run 0 9 0 0 0
pjump 0 1 8 0 0 side 1 0 8 0 0
wavel 0 0 0 6 3 skip 0 1 0 7 1
wave2 1 0 0 6 2 walk 1 0 0 0 8

Figure A27. Confusion matrices for the experiment using the “upper-occlusion” database, MBR
perimeter and Euclidean distance.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 7 0 0 2 0 jump 7 1 0 1 0
jack 0 8 1 0 0 run 0 8 0 1 0
pjump 0 1 8 0 0 side 0 0 9 0 0
wavel 1 0 0 3 5 skip 1 1 1 5 1
wave2 0 0 0 1 8 walk 0 0 0 0 9

Figure A28. Confusion matrices for the experiment using the ‘upper-occlusion” database, rectangu-
larity and C1 correlation.

bend jack pjump wavel wave2 jump  run side skip walk
bend 9 0 0 0 0 jump 5 0 2 2 0
jack 0 8 1 0 0 run 0 8 0 1 0
pjump 0 0 8 1 0 side 1 1 6 1 0
wavel 0 1 0 7 1 skip 0 1 0 8 0
wave2 0 0 0 1 8 walk 0 0 0 0 9

Figure A29. Confusion matrices for the experiment using the “‘upper-occlusion” database, elongation
and C1 correlation.



Appl. Sci. 2021, 11, 8633 20 of 23

bend  jack pjump wavel wave2 jump  run side skip walk
bend 6 1 0 1 1 jump 4 0 1 3 1
jack 2 7 0 0 0 run 1 8 0 0 0
pjump 2 0 6 0 1 side 0 0 8 0 1
wavel 0 1 0 7 1 skip 4 0 0 5 0
wave2 1 0 1 1 6 walk 0 0 0 0 9

Figure A30. Confusion matrices for the experiment using the “upper-occlusion’ database, eccentricity
and Cl1 correlation.

bend  jack pjump wavel wave2 jump  run side skip walk
bend = 7 2 0 0 0 jump = 3 1 2 2 1
jack 2 5 1 0 1 run 1 6 0 1 1
pjump 0 0 8 1 0 side 1 0 7 0 1
wavel 0 0 0 5 4 skip 1 3 0 5 0
wave2 0 0 0 2 7 walk 1 1 1 0 6

Figure A31. Confusion matrices for the experiment using the ‘upper-occlusion” database, MBR width
and Cl1 correlation.

bend jack  pjump wavel wave2 jump run side skip walk
bend 7 1 1 0 0 jump 5 1 0 2 1
jack 2 7 0 0 0 run 0 9 0 0 0
pjump 0 0 6 1 2 side 0 0 8 0 1
wavel 1 1 1 5 1 skip 2 2 1 4 0
wave2 4 0 1 0 4 walk 0 0 1 0 8

Figure A32. Confusion matrices for the experiment using the “‘upper-occlusion’ database, MBR length
and Cl1 correlation.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 9 0 0 0 0 jump 6 0 0 2 1
jack 0 7 1 0 1 run 1 7 0 0 1
pjump 0 4 5 0 0 side 0 0 8 0 1
wavel 0 0 1 6 2 skip 2 1 1 5 0
wave2 0 0 0 2 7 walk 0 0 0 0 9

Figure A33. Confusion matrices for the experiment using the “‘upper-occlusion’ database, MBR area
and Cl1 correlation.

bend jack  pjump wavel wave2 jump run side skip walk
bend 9 0 0 0 0 jump 6 0 0 3 0
jack 0 8 0 0 1 run 0 6 0 3 0
pjump 0 0 8 1 0 side 0 1 5 2 1
wavel 1 0 2 5 1 skip 2 2 1 4 0
wave2 0 2 0 1 6 walk 0 1 2 0 6

Figure A34. Confusion matrices for the experiment using the ‘upper-occlusion” database, longerMBR
and Cl1 correlation.
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bend jack pjump wavel wave2 jump  run side skip walk
bend 9 0 0 0 0 jump = 6 0 2 1 0
jack 0 8 1 0 0 run 0 9 0 0 0
pjump 0 1 7 1 0 side 1 0 8 0 0
wavel 0 0 0 7 2 skip 1 0 1 7 0
wave2 0 0 0 4 5 walk 0 0 1 0 8

Figure A35. Confusion matrices for the experiment using the “‘upper-occlusion’ database, shorterMBR
and C1 correlation.

bend jack  pjump wavel wave2 jump  run side skip walk
bend 5 0 0 3 1 jump 3 0 2 2 2
jack 0 e 0 0 0 run 1 7 0 1 0
pjump 0 0 9 0 0 side 0 0 8 0 1
wavel 1 1 0 3 4 skip 0 1 0 7 1
wave2 1 0 0 3 5 walk 0 0 0 0 9

Figure A36. Confusion matrices for the experiment using the “upper-occlusion” database, MBR
perimeter and C1 correlation.
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