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I. THEORY

As discussed in the main text [1], velocity evolu-
tion during relaxation could be described as a multi-
relaxation process (see Eq. 4) with unknown distribution
of the relaxation times F (τ). Two approaches are then
possible, as already discussed in the main text:

• derive a distribution F̂ (τ) fitting data as the sum
of a finite number of exponentials equally spaced
in the log space of relaxation times (from now on
called discrete-log approach);

• make an hypotheses on the functional form of F (τ)
and derive the parameters of the function fitting
data using Eq. 4 (from now on called continuous-
function approach).

The goal of this Section is to provide evidence that the
approach of mixing the two strategies described and used
in the main text is sufficiently robust and reliable.

A. Reliability of the discrete-log approach

Let us first consider that when fitting with a discrete
basis of exponentials equally spaced in the log space of
relaxation times, the dimension N of the basis (i.e. num-
ber of exponentials) is a free parameter (see Eq. 5). In
Fig. 1a its influence on the solution is analysed compar-
ing results for the Alu-C20 sample obtained for B1 = −4,
BN = 5 and different values of N (N = 10 and N = 8).
Provided that empirically the optimal choice is that of
choosing an exponential basis with relaxation times every
decade (N = 10), or differently said choosing ∆B = 1,
still the fact that the solution for the two cases considered
looks significantly different is questioning the reliability
of the approach. Note that the difference in amplitude
could probably be accounted for by properly normalis-
ing the results, but still the peak position is considerably
shifted.

When the correct spectra in the linear space F̂ (τ) are
derived using Eq. 8, the two solutions look more similar
(we recall that the amplitude difference is a partially re-
movable artefact): see Fig. 1b. A significant difference in
the width of the curves is however still present. We can
thus conclude that the procedure is strongly influenced
by the parameters chosen to describe the basis. Similar
results are obtained for other samples and when changing
B1 or BN .
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FIG. 1: Reliability of the discrete-log fit procedure. (a) Com-
parison of resulting spectra G(τ) of relaxation times (see Eq.
5) for sample Alu-C20 obtained fitting data with different di-

mension of the fitting basis; (b) continuous distribution F̂ (τ)
derived from data of subplot (a) using Eq. 7; (c) and (d) the
same for the titanium alloy sample.

An additional issue is affecting the efficiency of the
procedure. When deriving the distribution in the linear
space F̂ (τ), the functionG(τ) is divided by the relaxation
time (see Eq. 8). Given the wide range of variation
of τ , the operation has the consequence of amplifying
significantly small fitting errors for low values of τ and
of loosing details at large values of τ . The result is that
of providing misleading information, as in the case of the
Titanium sample (subplots c and d of Fig. 1). While the
distribution obtained from fitting (G(τ)) looks presenting
two well defined peaks, the one for larger relaxation times
almost disappears when F̂ (τ) is derived (subplot d).

The conclusion of this analysis is two-fold:

• The distribution G(τ), i.e. obtained fitting with a
discrete number of exponentials in the log space of
relaxation times (subplots a and b of Fig. 1) is not
fully reliable. As discussed in the main text it could
be used to convey the main hypothesis about the
distribution function to be used to define a suitable
F (τ);

• The distribution G(τ) must be corrected using Eq.
7. However the procedure intrinsically smooths out
the details of the distribution. As a consequence,
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details of the function F̂ (τ) lose most of their mean-
ing and the solution can be reasonably approxi-
mated in all cases as a 1/τ distribution bounded in
a given interval of allowed τ values, as in [2]. This
approach is however not working for the titanium
sample.

B. Continuous-function approach

The function G(τ) obtained with the previous ap-
proach still provides a qualitatively useful suggestion for
imposing constraints on the definition of the relaxation
times spectrum. As discussed in the main text, the so-
lution of the problem is a peaked and asymmetric distri-
bution. Thus, a choice for the functional dependence of
F (τ) could be adopted and fitting in the linear space
could then be performed, thus avoiding the problems
raised when pursuing the first discrete-log approach as
discussed above.

The problem still remains ill-posed, since different solu-
tions are possible. Besides the Weibull distribution used
in our analysis (see Eq. 9), other functions could be used
for fitting data, with equivalently good results. As an
example, a possible alternative choice for the relaxation
spectrum could be in the form:

Φ(τ) =
a1
τa2

1

e−a3/τ − 1
(1)

This is a possible function sharing the same asymme-
try characteristics of the Weibull distribution, inspired
by the black body radiation spectrum, which could thus
be linked to the expected redistribution of stored elastic
energy during relaxation.

FIG. 2: Uniqueness of the relaxation spectrum solution. Sam-
ple is Alu-C20. (a) Relaxation spectra obtained using differ-
ent functional dependencies for the distribution function. (b)

Comparison of resulting spectra F (τ) and F̂ (τ) obtained from
continuous function and discrete-log approaches.

Data for the Alu-C20 sample were fitted using the two
functional forms for the distributions and the obtained
relaxation spectra F (τ) and Φ(τ) are shown in Fig. 2(a).
The quality of the fits obtained with the two choices is
comparable, with very slight differences which do not al-
low to establish one of the two distributions as the best

fitting one. Of course, the distributions obtained look
different but still they share some of the main features.
In particular the peak position is the same in the two
cases. Furthermore, the level of asymmetry, the width
at half height and the area are comparable. Similar re-
sults were obtained for other samples and amplitudes of
conditioning as well.

Another issue arises concerning the uniqueness of the
solution. The distributions F (τ) and F̂ (τ) derived with
the continuous-function and the discrete-log approaches
do not coincide. Besides being evident for the Titanium
sample (two peaks distributions, compare Fig.s 6 and 5
in the main text), this is also the case for all materials:
see Fig. 2b, where the two distributions obtained for
sample Alu-C20 (red and cyan symbols) are compared.
However, the shift in the peak position is resulting from
the weakness of the discrete-log approach (perhaps due
to the non centred position of the basis elements with
respect to the interval ∆B if it is considered in the linear
space, as mentioned in the main text). To prove it, the
following analysis was performed:

• experimental data for sample Alu-C20 are fit using
the discrete-log approach and the relaxation spec-
trum F̂ (τ) derived. The solution is labelled as FA
in Fig. 2b.;

• the same data set was fit with the continuum func-
tion approach and the distribution F (τ) derived.
The solution was used to generate a synthetic data
set using Eq. 4. The solution is labelled as FB in
Fig. 2b.;

• the synthetic data set obtained from FB was anal-
ysed using the discrete-log approach and the corre-
sponding function F̂S(τ) derived. The solution is
labelled as FC in Fig. 2b.

Results, shown in Fig. 2b confirm our conclusions.
The fit of syntethic data using the discrete-log approach
(yellow symbols) differs from what theoretically expected
and is well superimposed with the original fit of experi-
mental data in the log-space.

Finally, for sake of completeness we present here a few
results obtained on a Berea sample using data from lit-
erature [3], to prove the robustness of the approach. In
Fig. 3a, we have analysed the full dataset available (i.e.
including very early times in the evolution) and a reduced
dataset (i.e. assuming early times were not detected). In
the inset, the continuous function represent the full data-
set while circles denote the reduced one. For both cases,
fitting of the data was excellent without appreciable dif-
ferences among the fitting curves (which are also shown
in the inset but barely visible). The obtained relaxation
spectra are very similar, thus confirming that determi-
nation of the peak position and width are very robust.
Again amplitude of the distribution is not a reliable pa-
rameter.

Furthermore, a damaged Berea sample was also mea-
sured by us in different experimental configurations (not
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discussed here for brevity). The derived relaxation spec-
trum was proven to be configuration independent (see
subplot b in Fig. 3).
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FIG. 3: Robustness of the procedure. (a) Comparison of
resulting spectra of relaxation times for Berea obtained fitting
data with a complete or incomplete dataset. (b) Robustness
verified comparing the relaxation times spectra obtained for
Berea using data measured performing experiments on the
same sample in different conditions.

II. RESULTS

In this Section, a few additional results are reported to
support the conclusions in the main text.
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FIG. 4: Fitting of experimental data using a continuous
Weibull distribution of relaxation times for different samples.
(a) linear scale; (b) log time scale.

First, in Fig. 4, the quality of the fitting procedure
adopted is analysed. Experimental data for different
samples have been fit using a continuous Weibull dis-
tributions of relaxation times using Eq. 9. The quality

of the fitting function (continuous line) in describing the
experimental behavior (dots) is evident, with good agree-
ment also for the early stages of the evolution (see sub-
plot (b) where a log time scale is used). In all cases, also
the intermediate times logarithmic recovery is obtained.
In the case of the Titanium alloy sample (black curve)
the need to fit the data using the superposition of two
Weibull distributions is particularly evident in subplot
(b), where, after a first logarithmic in time phase and a
bending at early times (arising from the ”saturation” of
the first distribution), at about 10 seconds velocity starts
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FIG. 5: Distribution of relaxation times obtained fitting data
in the log space. Comparison of results for the intact and
cracked Alu-C20 sample.

evolving rapidly again with a second logarithmic in time
phase.

Finally, in the main text we have discussed the differ-
ences in the behavior of the intact and cracked Alu-C20
sample. As mentioned in the main text, the fit of ex-
perimental data using a log time basis gives distributions
G(τ) which have a significantly different behavior. While
for the intact specimen a one peak distributions is found
(see red symbols in Fig. 5), evidences of a two peak
distribution are obtained for the cracked sample (cyan
symbols). The similarity of the distribution to that of
Titanium (see Fig. 5 in the main text) is evident. The
result thus supports the choice of fitting data in the con-
tinuous space with the superposition of two integrals, as
done in the main text.

[1] Equations numbering refers to numbering in the main
text.

[2] R. Snieder, C. Sens-Schnfelder, and R. Wu, The Time
Dependence of Rock Healing as a Universal Relaxation
Process, a Tutorial, Geophys. J. Int. 208, 1 (2017).

[3] P. Shokouhi, J. Riviere, R. A. Guyer, and P. A. Johnson,
Slow Dynamics of Consolidated Granular Systems: Multi-
Scale Relaxation, Appl. Phys. Lett. 111, 251604 (2017).


