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Abstract: Improving propulsion efficiency holds the promise of enabling the robotic fish to work for
a long time with a limited battery in its small body. In this paper, for the swimming of a bionic robotic
fish, we present a virtual musculoskeletal control method from the bionic model of the joint driven
by agonist muscle and antagonist muscle. A closed-loop method composed of two loops is proposed
as a rule of thumb for the speed control of the robotic fish. The outer loop adjusts the swimming
speed using the speed deviation; the inner loop regulates the stiffness according to the virtual muscle
spindle feedback to fit the water environment. Compared with the proportion control, the evaluation
results show that the virtual musculoskeletal methodology increases the efficiency by 3.4% in the
steady flow and 7% in the Karman-vortex flow. This algorithm provides a new idea for the joint-space
control of the bionic robots that need to reduce the energy consumption of movements.

Keywords: robotic fish; virtual musculoskeletal; closed-loop control; propulsive efficiency

1. Introduction

Robotic fish, which is usually driven by motors in the joint space, is a kind of bionic
device that imitates the body and the control mechanism of fish in nature. Robotic fish
are widely applied in many fields, such as marine exploration, underwater rescue, fish
breeding, and biotechnology research [1]. As robotic fish has a limited power supply,
long working time in these applications requires it to swim efficiently. Prior works on
the propulsion efficiency of robotic fish mainly focus on two aspects: (1) generating fish-
like swimming patterns by learning the swimming model from the fish in nature and (2)
designing control algorithms according to the characteristics of the robots and the effects of
the flow [2,3].

The swimming model, including the kinematic and the dynamic model, is the basic
challenge for the efficient propulsion of robotic fish. In [4], the multiple-joint kinematic
model is presented to imitate the carangoid. Then, the control of the joints in this model is
learned from the swimming data of the carangoid by the central pattern generator (CPG).
Afterward, the work in [5] discussed the relationship between the CPG-based locomotion
control and the energy consumption of the miniature self-propelled robotic fish, which
provided a reference for improving the energy efficiency and locomotion performance
of the versatile swimming gaits. The work in [6] proposes a function of the relationship
between the head and the whole body to simulate the swimming pattern of the carangoid.
Moreover, the angles of the joints in this function are discretized to form a lookup table,
which achieves cruise and turning patterns in the experiment. Meanwhile, the work in [7]
designs the caudal fin by combining the skeleton and the tail fin. The skeleton moves
relatively while the fin swings to affect the efficiency. Although the experiment shows
how the stiffness, the waveform, and the frequency of the skeleton significantly impact the
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propulsion efficiency, the mathematical model of the parameters is still unclear. Similarly,
Silas Alben uses three-dimensional particle image velocimetry (PIV) to record the flow
generated by different fins. The results indicate that the shape nonlinearly affects the
hydrodynamics, and the length influences the forward speed [8]. The literature emphasizes
the hydrodynamic performance of the wake vortex when robotic fish swims by analogizing
the movement of the caudal fin [9]. In [10], an elaborate model with actuator dynamics was
introduced to demonstrate the swimming behavior of the carangiform locomotion-type
fish robots. However, there are still some uncertainties. Additionally, researchers have
done many simulations and experiments to find out the relationship between typical wake
vortex and propulsive efficiency [11,12].

The control algorithms of high propulsive efficiency are also widely studied recently.
The work in [13] introduced the mainstream robotic fish propulsion mechanism and control
method, and guided the robotic wave fish’s kinematic optimization and motion control.
The work in [14] designed an extremum-seeking method to control the robotic fish to
swim along a predetermined trajectory independently on the model. Moreover, a robotic
fish consisting of a body, pectoral fins, and a caudal fin is controlled by a CPG model
to swim point-to-point with the feedback from the visual system and the gyroscope [15].
In [16], researchers applied two control methods named computed torque method and
feed-forward method on a four-joint, six-degrees-of-freedom robotic fish with a horizontal
caudal fin. The work in [3] addresses an iterative learning control (ILC) method to a
two-link carangiform robotic fish. The P-type ILC algorithm works well for the highly
nonlinear model of the robotic fish and the nonaffine in the input. Chen et al. [17] define
the natural oscillation of a class of flat-body fishes as a free response to the flow field under
the damping compensation. Consequently, nonlinear feedback controllers are proposed to
imitate the natural oscillation of the body, which results in a prescribed average velocity.
The work in [18] introduced a particle swarm optimization (PSO) algorithm to optimize
the characteristic parameters of the CPG model to obtain the maximum average speed and
improve efficiency. In addition, research [19] has been conducted on the control of pectoral
fins to improve propulsion efficiency.

The problem of high-efficient propulsion has been widely studied. However, the
efficiency of the robotic fish is still far from the expectations of the application. Why is
the propulsive efficiency of the robotic fish much lower than that of the fish in nature?
When a fish swims, power is generated by the myotome muscle on either side of the body
to overcome the drag [20]. A wave of muscle activation/contraction passes alternately
down each side of the body from head to tail in an oscillation cycle. A wave of curvature
also travels down the body due to the combined effects of muscle activities, the physical
properties of the skeletal elements, and the interaction between the fish’s body and the
reactive forces from the water in which it moves [21,22]. The muscles of the fish contract to
generate the power for the swimming thrust. In contrast, the motors in the joints of the
robotic fish generate the power for the oscillation to achieve forward propulsion. Therefore,
applying the control mechanism of the fish muscle onto the motors in the joint space may
be a feasible way to improve the efficiency of robotic fish propulsion [23].

In this paper, we aim to derive the high-efficient methodology from the fish in nature
and design a novel closed-loop virtual musculoskeletal control method based on the
dynamic model of the robotic fish and the musculoskeletal model of the biotic system. The
main contributions of this paper are as follows: (1) a virtual musculoskeletal control method
is the first used to raise the propulsion efficiency of robotic fish; (2) a closed-loop control
framework, which improves the propulsive efficiency, is constructed by implementing the
virtual musculoskeletal mechanism on the dynamic model of the robotic fish; and (3) a
series of experiments is conducted to validate the proposed method in various swimming
velocities and different parameters of the algorithm and hydrodynamic environment.

The rest of the paper is organized as follows. The mathematical model of a two-
joint robotic fish and the problem formulation is stated in Section 2. The model of the
musculoskeletal system, the control structure, and the designed strategy are presented in
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Section 3. Experimental results are presented in Section 4, and the paper ends with the
conclusion in Section 5.

2. Modeling of Two-Joint Robotic Fish
2.1. The Kinematic Model

Figure 1a,b shows the prototype of a two-joint robotic fish, which consists of three
parts: the head, body, and tail. The length of the robotic fish is 0.6 m and the front 1/3
part is the head, whose length Lh is 0.2 m. L1 and L2 are the length of the body and
the tail, respectively. They are greater than that of the driving motor. Let Lmotor be 0.1 m,
min(L1, L2) > Lmotor. In Figure 1c, O1 is the gravity center of the body and O2 is the gravity
center of the tail. F0 is the resistance force of the flow to the fish. F1 is the hydrodynamic
force to the body and F2 is the hydrodynamic force to the tail. D1 is the point of the
action of F1 while D2 is the point of the action of F2. The solid straight line stands for the
midline of robotic fish, while the dashed curve represents the midline of the fish modeled
by Lighthill [24]. The f (x) is the position of the robotic fish to the axis and g(x) is the
position of the live fish to the axis.

g(x, t) = (c1x + c2x2)sin(
2π

λ
x + ωt) (1)

where c1 and c2 stand for the first and the second coefficient of wave amplitude envelope,
respectively; λ denotes the wavelength of the body; x is the body axis; and ω is the body
wave frequency.

Figure 1. Model of the two-joint robotic fish: (a) the prototype of the robotic fish, (b) the top view of
the robotic fish, and (c) the geometry parameters of the robotic fish.

Moreover, Sy is the area between f (x) and g(x). We set L1 = 0.24 m and L2 = 0.16 m.
Then, Sy obtains its minimum, which indicates that the swing curve of the robotic fish
is close to the fish in nature to most. Thus, the motion functions of the two joints are as
follows: {

θ10(t) = θ10A × sin(2π f t)
θ21(t) = θ21A × sin(2π f t + φ)

(2)

where θ10(t) is the angle between the body and x-axis; θ10A is the amplitude of θ10(t); θ21(t)
is the angle between the tail and the body, while θ21A is the amplitude of θ21(t); and φ is
the phase difference between the two joints.
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2.2. The Dynamical Model

The dynamical model of the two-joint robotic fish is established with Lagrange–Euler
method shown as follows:

τi =
d
dt
[

∂L
∂q̇i

]− ∂L
∂qi

(3)

where qi is the system variable, q̇i is the first derivative of the system variable, τi is the
generalized force or torque of the system, and i is the number of system variables. As
we set that the robotic fish only swims horizontally, the gravitational potential energy is
constant. Thus, L is the kinetic energy of the system, which is given in the Appendix A.

qi represents the three degrees of freedom in the model: θ10, the angle of the first joint;
θ21, the angle of the second joint; and X0, the x-coordinate of the head.

The τi is expressed as

τ1 =

(
Ld1 sin θ10
Ld1 cos θ10

)
× F1 +

(
L1sin θ10 + Ld2 sin(θ21 + θ10)
L1cos θ10 + Ld2 cos(θ21 + θ10)

)
× F2 + M1

τ2 =

(
Ld2 sin(θ21 + θ10)
Ld2 cos(θ21 + θ10)

)
× F2 + M2

τ3 = F0 ·
(

1
0

)
+ F1 ·

(
1
0

)
+ F2 ·

(
1
0

) , (4)

where τ1, τ2, and τ3 are the non-conservative forces to generalized coordinates θ10, θ21, and
X0, respectively. M1 and M2 are the torques generated by the first and second joint. F0, F1,
and F2 are the hydrodynamic forces on the head, body, and tail, respectively.

Neglecting the force of friction, the resistance force to the head is

F0 =
1
2

ρC0V2
0 A0 · (1, 0)T , (5)

where ρ is the density of the fluid, C0 is the resistance coefficient of the head, V0 is the
velocity of the robotic fish, and A0 is the maximum cross-sectional area of the head.

By simplifying the body as a plane, the hydrodynamic force to the body is

F1 =
1
2

ρC1(Vc1 · n1)
2 A1 · n1, (6)

where C1 is the resistance coefficient of the body and A1 is the area of the body. The velocity
of the body on point O1 is Vc1 = (Ẋ0 − L1sin θ10θ̇10, L1cos θ10θ̇10)

T . The normal vector of
the body is n1 = (sin θ10,− cos θ10)

T .
The hydrodynamic force of the tail is predigested in the same way.

F2 =
1
2

ρC2(Vc2 · n2)
2 A2 · n2 (7)

where C2 is the resistance coefficient of the tail. A2 is the area of the tail. The velocity of
the tail on point O2 is Vc2 = (Ẋ0 − L1sin θ10θ̇10 − Lc2sinθ20θ̇20, L1cosθ10θ̇10 + Lc2cosθ20θ̇20)

T ,
the normal vector of the tail is n2 = (sinθ20,−cosθ20)

T .
Substitute τi and L into Equation (3). The dynamic model of the robotic fish is

D(Q)Q̈ + H(Q, Q̇) + G(Q) = τ (8)

where D(Q) is the inertia matrix, Q is the joint variable, H(Q, Q̇) is the vector of centrifugal
force and the Coriolis force, and G(Q) is the gravity vector. Their details are given in the
Appendix A.
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2.3. The Propulsive Efficiency

The propulsive efficiency is defined as the ratio of the useful work to push the fish
forward and the total work consumed by all components of the robotic fish.

η =
Wuse f ul

Wtotal
(9)

In our model, the components that need to be actuated are the two joints. The total
work in one period is

Wtotal =
∫ T

0
(M1(t)θ̇10(t) + M2(t)θ̇21(t))dt. (10)

As the swing of the joints generates the hydrodynamic force to push the fish forward
in the X direction, the useful work in one period is

Wuse f ul =
∫ T

0
(F1x(t) + F2x(t)) · V0(t)dt. (11)

3. The Virtual Musculoskeletal Methodology
3.1. Modeling the Muscular Skeletal System

The mathematic model of the musculoskeletal system of the fish, shown in Figure 2,
includes three parts: The muscles are actuators to produce torque. The spindles in the
extrafusal muscles are mechanoreceptors to provide dynamic feedback for the closed-loop
control. The central nervous system (CNS) in the spinal cord operates the dynamic motions
of these muscles. The movement is driven by agonist muscles and antagonist muscles
controlled by the CNS’s excitation signals. The excitation signals are produced from two
sources of information: (1) the cerebellum plans the control goal in joint space according
to the movement task and (2) the CNS unifies this goal and the feedback signals from the
spindles to send signals to the muscles. The CNS adjusts the position and speed of the
swing and varies the total stiffness and viscosity over a considerable range. This adjustment
realizes the compliant action to the water environment.

Cerebellum

planning

Spinal Cord

 CNS!

Muscle

model

Joint

dynamics

Intrafusal

fiber

Transducer-

encoder

Spinal

processing

to
rq
ue

po
si
ti
on

st
if
fn
es
s

a

x(t)
Muscle spindle

 (t)r(t)

e(t)

Figure 2. Biology structure of musculoskeletal system.

3.1.1. The Model of the Muscle

The three-element Hill muscle model is a representation of the muscle mechanical
response. The model is constituted by a contractile element (CE) and two nonlinear spring
elements: one in series (SE) and another in parallel (PE). Due to the series connection of the
tendon and the muscle belly, by ignoring the angle between them, the force of the muscle
is equal to the force produced by the parallel units consisting of CE and PE.

The force–length relation of PE is
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FPE

Fmax
= KPE =

 0 if LPE < LPE
slack

kPE
[
( LPE

LPE
slack

)2 − 1
]

if LPE ≥ LPE
slack

, (12)

where FPE is the force generated by PE, LPE is the current length of PE while LPE
slack is the

length when muscle is slack, kPE is a coefficient relating to the property of muscle fibers,
and KPE is the coefficient to describe the rate to the maximum force.

The force–length equation and the force–speed equation illustrate the feature of CE.
In Equations (13) and (14), the force is a quadratic function to the length and a hyperbolic
function to the speed.

FCE
L

Fmax
= KCE

L = 1 −
(

LCE − LCE
0

w

)2

(13)

FCE
v

Fmax
= KCE

v =
Fmaxvmaxβ − αv
Fmax(βvmax + v)

(14)

where LCE is the muscle length, LCE
0 is the length when the muscle achieves maximum

isometric contraction force Fmax, w is used to control the width of the curve, KCE
L is the

force–length coefficient of contraction element, vmax is the maximum speed of muscle
contraction, α and β are coefficients relating to characteristics of muscle fibers, and KCE

v is
the force–speed coefficient.

3.1.2. The Model of the Spindle

The spindle produces the feedback information with three component processes
illustrated in Figure 2. At first, the intrafusal fibers transfer the movement of muscle to
nerve stretch. The fibers mechanically filter muscle length x(t) to a stretch of the sensory
ending µ(t). This component is given by a nonlinear differential equation:

dµ(t)
dt

+ b(
cµ(t)− x(t) + g
x(t)− µ(t)− g

) =
dx(t)

dt
, (15)

where b and c are constants that affect the degree of nonlinearity, and g is a reference
length specifying the lower bound of the position range where the muscle spindle responds
to stimuli.

Then, the transducer encoder converts the nerve stretch into neural signal r(t). The
linear dynamics of the transducer encoder is

r(t) = N(µ(t) + τed
dµ(t)

dt
), (16)

where N represents the small-signal sensitivity of the receptor and τed = 0.1 s is the time
constant of encoder dynamics.

Finally, r(t) is conducted to the spinal cord to process an electromyographic (EMG)
signal e(t) for muscle activation. The reflex pathway through the spinal cord is modeled as
a time delay of 0.03 s.

e(t) = r(t − 0.03) (17)

3.1.3. The Excitation Model of the CNS

The CNS mediates the task command and the reflex from the muscle and then yields
signals to activate the muscles. It incentives the contraction of muscle by EMG that
comprises the information from the cerebellum and the feedback from the spindle. The
information in the EMG is separated into two parts: One is from the cerebellum. Its
strength is represented by a coefficient a(0 < a < 1). The other is from the spindle. The e(t)
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represents the excitation signals related to the spindle information. Thus, adding the EMG
into the muscle model in Equations (12)–(14), the equation of the muscle excited by CNS is

F = (KCE
L KCE

v (a + e(t)) + KPE)Fmax. (18)

3.2. Virtual Musculoskeletal Method

Abstracting the strategy from the bionic model, we design the virtual musculoskeletal
methodology for the activation of the joints.

Equation (18) contains the mechanics of the muscle and the activation of CNS. Suppose
that the agonist and antagonist muscles have the same stiffness, maximum force, and
spindle signal, then the torques generated by both muscles at the joint are

Mag = (KCE
L KCE

v (a + e(t)) + KPE)Mmax, (19)

Man = −(KCE
L KCE

v (a + e(t)) + KPE)Mmax, (20)

where Mmax is the maximum torque of each muscle.
Equation (19) subtracts Equation (20), and therefore the torque of the muscular joint is

M = (2KCE
L KCE

v a + 2KCE
L KCE

v e(t) + 2KPE)Mmax, (21)

In Equation (21), KCE
L and KPE indicate the relationship between the length of the

muscle and the torque, and Mmax is a constant. We set K∆θ to take the place of 2KCE
L Mmax

and 2KPE Mmax. Thus, the torque of the joint is

M = (KKCE
v a + KKCE

v e(t) + K)∆θ, (22)

where ∆θ represents the position of the muscle to the equilibrium.
The torque of the joint includes three parts; parameter K is the stiffness of the joint

and KKCE
v a represents the response of the muscle to the control signal from CNS. As our

goal is to control the robotic fish to follow a given speed, this part could be replaced by
adjusting the speed. The feedback from the spindle e(t) contains the nonlinearity, KKCE

v is
replaced by a coefficient H to adjust the feedback intensity of the spindle. Therefore, the
equation of the torque of the joint is simplified as

M = (Kv(v∗ − v) + He(t) + K)∆θ, (23)

where v∗ is the planned swimming speed of the robotic fish and v is the real swimming
speed of the fish.

Equation (23) shows that the torque of the joint contains three parts of activation:
(1) the adjustment from the CNS which is dependent on the task planning and the real
swimming state, (2) the feedback signal from the muscle spindle, and (3) the stiffness of the
joints set by the task planning. To control the robotic fish, ∆θ represents the deviation of a
given angle and the real angle. Therefore, the virtual musculoskeletal control method is

M =
[
Kv(v∗ − v) + He(θ, θ̇) + K

]
(θ∗ − θ), (24)

where e(θ, θ̇) indicates the spindle-like feedback in the controller and H is the coefficient of
this feedback. The spindle-like feedback is designed as a fuzzy controller, whose inputs are
the angle and the angular velocity. This controller imitates the nonlinearity of the muscle
feedback well [23]. This controller needs three kinds of information from the planning
algorithm: a given swimming speed, a set stiffness, and a given angle of the joint.

As the signals delay in the spinal cord and nerve system, a low-pass filter in Equation (25)
is added after the given signal to the joint.

d(s) =
1

τeds + 1
(25)
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3.3. The Closed-Loop Control Structure

The control algorithm is designed to control the robotic fish compliantly and efficiently.
When swimming, the biological fish changes the feature of muscles to control the body’s
posture and the swing speed to fit the water environment. In the control process, the fish
perceives the flow field of the water. Then, the nervous system mixes this information with
the posture and the swimming speed to decide how to adjust its swimming parameters.
When the neural signals reach the muscles, the muscles contract for the swing of the fish.
Consequently, the fish efficiently swims at an expected speed. In this way, the control
process designed to mimic the fish in nature is shown in Figure 3.

Task

planning

Look up 

table

Stiffness

and

compensation

Kinematic

model

e1H1

K1 Filter

Hydrodynamic

model

v*

A

f
θ10

θ21

M1

Kv1 

v

e2H2

K2 Filter
M2

Kv2 

Dynamic

model

Figure 3. The closed-loop control structure.

The robotic fish is controlled in a closed-loop procedure. At first, the task planning
module sets the swimming velocity and the stiffness of both joints. The lookup table is a
fitting curve function, shown in Figure 4, which outputs the frequency f and the amplitude
A of the wave of the robotic fish (All subsequent curve figures in the paper are drawn using
MATLAB software.). We regulate the input of this table according to the error between the
set velocity and the actual swimming velocity. This negative feedback helps the robotic fish
follow the set velocity from the task planning. Second, Equation (2) transforms the wave to
angles in the joint space. Third, Equation (24) is decomposed into two equations of two
joints. {

M1 = d(s)[Kv1(v∗ − v) + H1e1(θ10, ˙θ10) + K1](θ
∗
10 − θ10)

M2 = d(s)[Kv2(v∗ − v) + H2e2(θ21, ˙θ21) + K2](θ
∗
21 − θ21)

(26)

where M1 and M2 are the torques to drive the joints, Kv1 and Kv2 are the gains for the
velocity deviation, H1 and H2 are the intensive coefficients of the feedback in the joints, e1
and e2 are the virtual spindle functions, K1 and K2 are the stiffness set by the task planning
module, and “*” indicates that the value is the given value.
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Figure 4. Waveform parameters to the swimming speed.

The last part of the procedure is the movement of the robotic fish under the excitation
of M1 and M2. Two models restrain the robotic fish: one is the dynamic model, which is
analyzed by the Lagrange method, the other is the hydrodynamic model, which describes
how the flow generates the force on the parts of the robotic fish. While the fish is swimming,
the swimming velocity and the angles of the joints are fed back to the control algorithm in
real-time.

4. Performance Evaluation

The wavelength of the body is λ = 0.75 m. Therefore, the phase difference is 1.57 rad.
To ensure the endpoints of the body and the tail coincide with the corresponding points on
the midline of the live fish, let θ10A = 0.3144 rad and θ21A = 1.0123 rad. The parameters in
Figure 1 are shown in Table 1. The hydrodynamic parameters and controller parameters
are shown in Table 2.

Table 1. The specific values of the parameters in Figure 1.

Parameters A0 A1 A2 Lc1 Ld1 Lc2 Ld2 m0 m1 m2

Value 0.03 m2 0.05 m2 0.05 m2 0.12 m 0.12 m 0.12 m 0.12 m 0.8 kg 0.4 kg 0.5 kg

Table 2. The specific values of the hydrodynamic and controller parameters.

Parameters C0 C1 C2 ρ K1 K2 H1 H2 Kv1 kv2

Value 0.9 1.54 1.54 1000 kg/m3 5 16 1 9 0.1 0.1

The virtual musculoskeletal methodology in this paper is compared with the pro-
portion control, which is a widely used method in the joint space of the robotic fish. In
the figures of this paper, the subscript “PM” means the proportion method, and “VMM”
means the virtual musculoskeletal method.

We evaluate the performance when the robotic fish is controlled via the virtual Mus-
culoskeletal closed-loop algorithm. The simulation results are obtained from three aspects:
(1) the robotic fish swims in the steady flow field; (2) the robotic fish swims in the Karman
vortex field; (3) how the controller’s parameters affect the efficiency and other indices
of performance.

4.1. In Steady Flow

The robotic fish swims in a steady flow. The given speed is v∗ = 0.4 m/s at the
beginning, and it steps to 0.5 m/s at 15 s. How the feedback of the speed in the control
structure stabilizes the swimming speed is illustrated in Figures 5 and 6. In Figure 4, the
relationships between the forward speed v and the frequency f and the amplitude A of
the oscillation are depicted. When we set the frequency and the amplitude for desired
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swimming speed, such as 0.4 m/s and 0.5 m/s, Figure 5 shows that if the speed feedback
is not added to form the closed-loop control, there will be a deviation between the real
swimming speed v_without feedback and the given speed v∗.

Because the robotic fish model is not exactly the same as the live fish, the function
derived from the data of the fish in nature does not fit the robotic fish perfectly. Additionally,
the speed cannot follow the given value if there is a disturbance in the water.

Figure 6 sketches the speed following when the robotic fish is controlled with speed
feedback. The speed of the PM(v_PM) and the VMM(v_VMM) both follow the given speed.
After the step at 15 s, the response time of the VMM and that of the PM is very close.

time(s)
0 5 10 15 20 25 30

V(
m

/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V*
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Figure 5. The forward speed of robotic fish without speed feedback.
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Figure 6. The forward speed of robotic fish with speed feedback of two methods.

Figure 7 shows the angle of the joint between the head and the body. Both curves of
the two control methods are stable sinusoidal waveforms that follow the given θ10 with a
30◦ delay. This delay is caused by the calculation time, the response time of the dynamic
model, and the hydrodynamic model. The curve of VMM has an offset of the amplitude
because of the VMM complaints to the force from the water. As the hydrodynamic forces
on the robotic fish are not completely symmetrical, the offset of the amplitude is added in
the wave.
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Figure 7. The angle of the first joint.

The angular velocity of the tail relative to the head is illustrated in Figure 8. The
angular velocity of VMM (θ̇21_VMM) changes more smoothly than that of PM (θ̇21_PM). The
virtual spindle model in the VMM adjusts the torque according to the angle and the angular
velocity of the joints. This adjustment mimics how the muscles change the stretching speed
and power to improve the smoothness of the movements.

20 20.5 21 21.5 22 22.5 23

time(s)

-20

-15

-10

-5

0

5

10

15

20

Figure 8. The angular velocity of the tail.

Figure 9 shows the output torque of the motor in the second joint. The magnitude
of M2 of the VMM (M2_VMM) is 0.5 Nm less than that of the PM (M2_PM); M2 of the
VMM also changes more smoothly than the PM. In the closed-loop control, the VMM
leads the flexibility and adaptability of the muscles into the controller in the joint space.
Thus, the joint can adapt to the environment to avoid the output torque changes radically.
Thereby, the smoothness of the torque can reduce energy consumption. Figure 10 depicts
the feedback signal of the virtual spindle model in the VMM. The fuzzy controller e(t)
generates the spindle-like feedback signal to regulate the closed-loop controller to fit the
disturbances in the environment. e1 and e2 are periodic signals transformed from the
angular velocity and the angle of the joints. As the torque and the hydrodynamic force
interact with the movements of the joints, e1 and e2 add the same-frequency virtual spindle
signals onto the sinusoidal motion of the joints. Therefore, the body and the tail fin can
use the hydrodynamic force of the fluid better to reduce energy consumption and improve
propulsive efficiency.
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Figure 9. The output torque of the second joint.
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Figure 10. The feedback of the virtual spindle.

Figure 11 gives the results of how much the VMM increases the propulsive efficiency
of the robotic fish. Before 2.5 s, in the start-up phase, these two methods have the same
efficiency. When the robotic fish reaches the speed of 0.4 m/s, the efficiency of the VMM
(η_VMM) is one percentage point higher than that of the PM (η_PM). The given speed jumps
to 0.5 m/s at 15 s, and both efficiencies decrease with increasing speed. At 0.5 m/s, the
VMM plays a more significant role in improving the propulsive efficiency. The efficiency of
VMM is 32%, which is 3.4 percentage points higher than that of the PM.
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Figure 11. The efficiency of robotic fish in steady flow.
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4.2. In Karman Vortex Flow

Fish often swim in water that is full of disturbances. Therefore, the control strategy
of the robotic fish must adapt to the flow environment. The Karman vortex is a typical
vortex flow field for the environment test of the robotic fish. We extend the analysis of the
algorithm in a steady flow to the Karman vortex flow field. We generate the Karman vortex
shown in Figure 12 in FLUENT and add the vortex to the swimming environment of the
robotic fish.

The speed of the robotic fish swimming in the Karman vortex is depicted in Figure 13.
The VMM follows the given speed faster at the beginning, whose rise time is 0.4 s shorter
than the PM. The overshoot of the VMM, meanwhile, is 18% greater than that of the PM.
The VMM, which has the characteristics of muscles, can use the flow vortex to boost the
speed. Consequently, the robotic fish loses some ability to adjust its speed, leading to a
greater overshoot. At 15 s, the overshoot of the VMM still affects the response of the speed
that the following of the speed is a little slower compared with the PM.

Velocity

ms^-1
0.0e+00

2.5e-02

5.0e-02

7.5e-02

1.0e-01

1.2e-01

1.5e-01

Figure 12. The robotic fish in Karman vortex.
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Figure 13. The speed of the robotic fish in Karman vortex.

The angles of the joints in Figure 14 show that the VMM adjusts the movements of
the robotic fish to adapt to the vortex in the water. As a result, the robotic fish swims with
higher efficiency than controlled via the PM. The actual angle of the first joint has phase
lag and positive deviation. The phase lag of the waveform is 38◦, which is greater than the
lag in the steady water; the offset is 1.5 rad because the vortex affects the hydrodynamic
force on the robotic fish.
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Figure 14. The angle of the first joint in Karman vortex.

In the Karman vortex, the VMM can improve the propulsive efficiency more signif-
icantly than it does in the steady flow. Figure 15 illustrates that the VMM increases the
efficiency about 10% than the PM. When the speed is 0.4 m/s, the η of PM is 36% while
the η of VMM reaches 47%. At 0.5 m/s, the η of PM is 33% and the η of VMM is 40%. The
vortex in the water contains the energy to generate the hydrodynamic force on the robotic
fish. The virtual muscular method takes the compliance into the joints. The compliant
joints can use the energy of vortex street better; thus, the robotic fish consumes less energy
to produce motive force for the forward motion.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

time(s)

η

 

 
η_PM
η_VMM

Figure 15. The efficiency in Karman Vortex.

4.3. The Affection of the Parameters

The closed-loop controller via the VMM includes several parameters, the values of
which are significant to the performance of the robotic fish. This subsection analyzes the
relations between the parameters and the efficiency to provide references for the parameter
setting. The experiment fixes other parameters and changes each parameter to test how it
affects efficiency.

In Figure 16, when K2 = 16, after reaching a maximum value at K1 = 5, the efficiency
of the robotic fish decreases to a minimum at K1 = 25. Therefore, 5 is a good choice for K1.
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Figure 16. The efficiency of the robotic fish to K1 and K2. (a) When K2 = 16, the efficiency varies
with K1. (b) The changing of the efficiency along with the variation of K2.

The results also show the changing of the efficiency along with the variation of K2.
The value of η fluctuates with the change of K2. We found that if the K2 is too large during
the simulation experiments, the curve will show a large overshoot, so we finally chose
K2 = 16.

Figure 17 depicts how the intensity of the feedback of the virtual spindle affects
efficiency. The efficiency increases with the increase of H1. H1 is set to 1 for the intensity
of the virtual spindle in the first joint. The relation between the efficiency and H2 is an
upward convex curve, which gets its maximum at H2 = 9.
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Figure 17. The efficiency of the robotic fish to H1 and H2. (a) The changing of efficiency along with
the variation of H1 when H2 = 9. (b) The changing of efficiency along with the variation of H2 when
H1 = 1.

The virtual spindle model in VMM is the part to percept the force of the flow field
onto the robotic fish and to add the adaptive response into the torques. The values of H1
and H2 have an obvious effect on the efficiency.

In Figure 18, the efficiency curve of the robotic fish fluctuates and decreases with the
increase of Kv1. When Kv1 is less than 0.07, though the efficiency is high, the robotic fish
cannot follow the given speed. The gain is so small that the closed-loop control cannot
eliminate the following deviation of the speed. To balance the swimming efficiency and the
following of the closed-loop control, we chose Kv1 = 0.1. The efficiency to Kv2 is an upward
projecting curve; it rises quickly before Kv2 = 0.1 and declines slowly after this point. At
Kv2 = 0.1, the efficiency reaches its maximum value. Simultaneously, the swimming speed
of the robotic fish is also in good condition.
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Figure 18. The efficiency of the robotic fish to Kv1 and Kv2. (a) The changing of efficiency along with
the variation of Kv1 when Kv2 = 0.1; (b) The changing of efficiency along with the variation of Kv2

when Kv1 = 0.1.

5. Conclusions

In this paper, a novel closed-loop algorithm describing how to control the swimming
efficiency of a robotic fish was proposed. We established the dynamic model and the
hydrodynamic model of a two-joint robot fish. We formulated the problem of raising
the propulsive efficiency as an algorithm designed in the joint space. Moreover, we
characterized the mechanism of how the fish moves under the control and drive of the
nerve and the muscles. Consequently, we abstracted a virtual musculoskeletal methodology
from the nerve and muscle system and applied it in the joint space of the robotic fish. We
evaluated the performance of the robotic fish controlled by two kinds of methods in the
steady flow and Karman vortex. The results showed that the closed-loop control via
virtual musculoskeletal methodology is more energy-efficient than the proportion control
algorithm in both kinds of flow. The insight is that the virtual musculoskeletal methodology
brings compliance to the muscles in the joints. Therefore, the robotic fish can adapt to the
hydrodynamic effects of the water to reduce energy consumption when swimming.

In our future work, we will build up a more general swimming model of the robotic
fish by considering complex flow turbulence to adapt to the real environment. Additionally,
we will take the task planning into the closed-loop control for the applications. Finally, we
will build up a real platform and conduct experiments on it to evaluate the performance of
the proposed algorithm.
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Appendix A

The coefficients in Equations (3) and (8)
The kinetic energy of the head is
L0 = 1

2 m0Ẋ2
0

The kinetic energy of the body is
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L1 =
1
2

m1V2
c1 +

1
2

Jc1θ̇2
10

=
1
2

m1[Ẋ2
0 + (Lc1θ̇10)

2 − 2Ẋ0Lc1θ̇10sinθ10] +
1
2

Jc1θ̇2
10

The kinetic energy of the tail is

L2 =
1
2

m2V2
c2 +

1
2

Jc2θ̇2
20

=
1
2

m2[Ẋ2
0 + (Lc1θ̇10)

2 + (Lc2θ̇20)
2 + 2L1L2θ̇10θ̇20cosθ21

− 2Ẋ0(Lc1θ̇10sinθ10 + Lc2θ̇20sinθ20)] +
1
2

Jc2θ̇2
20

D(Q) =

 D11 D12 D13
D21 D22 D23
D31 D32 D33


Q =

 θ10
θ21
X0


H(Q, Q̇) =

 D111 D122
D211 D222
D311 D322

( θ̇2
10

θ̇2
21

)
+

 D112
D212
D312

( θ̇10θ̇21
)

G(Q) = 0
D11 = Jc1 + Jc2 + m1L2

c1 + m2[L2
1 + L2

c2 + 2L1Lc2 cos θ21]
D12 = D21 = Jc2 + m2[L2

c2 + L1Lc2 cos θ21]
D13 = D31 = −m1Lc1 sin θ10 − m2(L1 sin θ10 + Lc2 sin θ20)

D22 = m2L2
c2 + Jc2

D23 = D32 = −m2Lc2 sin θ20
D33 = m0 + m1 + m2
D111 = D222 = D212 = 0
D122 = −D211 = −m2L1Lc2 sin θ21
D311 = −m1Lc1 cos θ10 − m2(L1 cos θ10 + Lc2 cos θ20)
D322 = −m2Lc2 cos θ20
D112 = −2m2L1Lc2 sin θ21
D312 = −2m2Lc2 cos θ20
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