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Abstract

:

This paper conducts a coupled vibration analysis of a two-stage bladed disk rotor system. According to the finite element method, the bladed disk rotor system is established. The substructure modal synthesis super-element method (SMSM) with a fixed interface and free interface is presented to obtain the vibration behaviors of the rotor system. Then, the free vibration results are compared with the ones calculated by the cyclic symmetry analysis method to validate the analysis in this paper. The results show that the modes of the two-stage bladed disk not only include the modes of the first- and second-stage bladed disk, but also the coupled modes of the two-stage bladed disk.
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1. Introduction


An aero-engine is a kind of high-speed rotating machinery with a complex structure. The rotating blades and the fixed bladed disk are the important key parts of the aero-engine. In an aero-engine, multi-stage bladed disks are assembled together, and the study of the coupling interaction between the multi-stage bladed disks is particularly important for understanding the dynamics characteristics of the whole engine. In the vibration analysis of the bladed disk, the vibration coupling form between the blade and disk is usually analyzed. However, the interstage coupled effect is usually ignored. For the multi-stage bladed disk system, the coupling between stages is an important factor affecting the energy propagation between the disks. The multi-stage rotor has a specific type of mode and response mode that extends a multi-stage bladed disk structure. Therefore, it is very important to analyze the interstage coupled vibration of the multi-stage bladed disk, which is also the basis for further study of the interstage coupled vibration caused by the mistuned single-stage bladed disk.



In recent years, scholars have carried out theoretical, numerical simulation, and experimental studies on the dynamic characteristics of the bladed disk. In view of the actual structure in engineering, the finite element method is usually used to model and analyze the complex bladed disk. For the multi-stage and multi-component integral bladed disk assemblies, potential topics have been proposed in [1]; for instance, building a more effective and applicative model with higher precision. Based on the Timoshenko beam theory and Kirchhoff plate theory, Laxalde et al. [2] propose a new method that combines the cyclic modelling of each stage with a realistic inter-stage coupling. Study cases are presented to evaluate the efficiency of the method. Joannin et al. [3] introduces a novel reduced-order modelling technique well-suited to the study of nonlinear vibrations in large finite element models. The performance of the method is appraised on a nonlinear finite element model of the bladed disk in the presence of structural mistuning. HS et al. [4] proposed an improved shaft–disk–blade coupling model to study the influence of disk position and flexibility on critical speed and natural frequency in the coupling-disk-blade unit. Zhao et al. [5] established the finite element model of the fully flexible shaft-disk-sleeve system with tip rub fault by using the Lagrange multiplier method, and proposed an improved disk-blade interface coupling method. Ma et al. [6] established a rotor-blade system dynamics model. With the increase in the number of blades, complex coupling modes, such as the vane-blade coupling mode, rotor lateral vibration and blade bending coupling mode, and rotor torsional vibration and blade bending coupling mode, have also appeared. Zhao et al. [7] established the coupled model of spinning shaft-disk assemblies under sliding bearing supports. For the multi-stage assembly of cyclic structures, Wang et al. [8] simulated and analyzed the vibration characteristics of ceramic matrix composite monolayers and found that the blade had a great influence on the vibration mode of the entire blade disc. On the basis of previous studies, Tang et al. [9] further established a vane-disk-shaft coupling model and explained the influence of tuning/detuning on the coupling modal characteristics. Al Bedoor B.O. [10] established a mathematical model of reduced order and studied the natural frequencies of shaft-torsion and blade-bending coupling. Huang et al. [11] studied axial-torsional, disk-lateral, and blade-bending coupled vibrations in a shaft–disk–blade unit. Chiu et al. [12] investigated the influence on the coupling vibrations among shaft-torsion and blade-bending coupling vibrations of a multi-disk rotor system. Chiu et al. [13] studied the influence of shaft torsion, blade bending, and wire-drawing coupling vibration on the coupled vibration of a multi-disk rotor system with group blades. Ma et al. [14] analyzed the effects of blade stagger angles on the blade rubbing-induced responses of a rotational shaft–disk–blade system. Wang et al. [15] analyzed the nonlinear dynamic behavior of a rotor-bearing system with interaction between the blades and rotor. Luo et al. [16] investigated the natural frequency of the free transverse vibration of blades in rotating disks to examine the relationship of the natural frequencies, blade stiffness, and nodal diameters, to study how neighboring blades react upon each other and affect the blade’s natural frequency. Rzadkowski et al. [17] adopted the forced vibration analysis method and considered the influence of multistage coupling on the dynamic characteristics of an octave-disc rotor on a solid shaft. The results show that multi-level coupling must be considered in the design of rotor blades and discs to avoid the resonance caused by low-frequency flow excitation. Bladh et al. [18] studied the influence of interstage coupling on the dynamic performance of harmonic and detuned multistage blade-disk structures and pointed out that the dynamic performance of a single-stage rotor depends on the selection of the interstage coupled boundary conditions. Based on sector mistuning, Vargiu et al. [19] established a reduced order model for the dynamic analysis of mistuned bladed disks. Sector frequency mistuning is preferable to capture blade-to-disk irregularities. Petrov et al. [20] proposed an efficient method for analysis of nonlinear vibrations of mistuned bladed disk assemblies. For a practical high-pressure bladed turbine disk, considering several types of nonlinear forced response, the analysis of nonlinear forced response for simplified and realistic models of mistuned bladed disks has been performed. Rzadkowski et al. [21] studied the forced vibration of eight detuned blade discs on a solid shaft and found that when the blade disc was on the shaft, detuning had little influence on the blade stress. Chaofeng Li et al. [22] studied the coupling vibration characteristics of a flexible shaft–disk–blade system with detuning characteristics. Due to the detuning characteristics, the natural frequency and coupling mode types will change accordingly. Huang et al. [23] used a disk comprising of periodically shrouded blades to simulate the weakly coupled periodic structure. The effects of Coriolis force and the magnitude of disorder on the localization phenomenon of a rotating blade-disk system were investigated numerically. Zhao et al. [24,25,26,27,28,29,30,31,32,33,34] studied the vibration characteristics of a graphene nanoplatelet (GPL)-reinforced blade-disk rotor system by the experimental method and the finite element (FE) method, and studied the parallel intelligent algorithm based on a computed unified device architecture. The genetic particle swarm optimization algorithm is used for optimization arrangement on mistuned blades. The above works are mainly based on the finite element method to study the coupled modes and responses of the shaft–disk–blades system under the tuned and mistuned bladed disk. The coupled modes of the multi-stage blade-disc system have not been studied, and the coupled model is greatly simplified compared with the actual structure.



In this paper, respectively using the substructure modal synthesis super-element method and the cyclic symmetry analysis method, two kinds of accurate finite element model for two-stage bladed disk were established. The accuracy of the substructure modal synthesis super-element method was verified by the cyclic symmetry analysis method. The interstage coupled vibration of the two-stage bladed disk was analyzed. This research fills in the blanks regarding the interstage coupled vibration of a complex bladed disk and lays a foundation for further research on the effect of a mistuned bladed disk on interstage coupled vibration.




2. Materials and Methods


Using the fixed interface prestress-free interface substructure modal synthesis super-element method, based on the finite element analysis software ANSYS, the dynamic frequency analysis of the first-stage bladed disk system of the compressor was carried out. The finite element model of the basic sector is shown in Figure 1. The parameters of the blade tenon and tenon grooves are respectively as follows: elastic modulus    E 0  = 1.135 ×   10   11     Pa  , Poisson’s ratio    μ 0  = 0.3  , and density    ρ 0  = 4380 kg /  m 3   . The material parameters of the disk are as follows: elastic modulus    E 1  = 1.15 ×   10   11   Pa  , Poisson’s ratio    μ 1  = 0.3  , density    ρ 1  = 4640 kg /  m 3   , and the contact form of the blade tenon and tenon grooves adopts a standard contact.



The analysis process of the substructure modal synthesis super-element method is shown in Figure 2. For the modal synthesis super-element method, for the fixed interface prestressed and free interface substructures, the basic idea is that the finite element model of the basic sector of the bladed disk is established by using the substructure analysis method from bottom to top. The two side outlet degrees of freedom (master degrees of freedom) of the basic sectors of the bladed disk are fixed and the working speed is applied to perform the prestressed contact analysis (bladed binding, bladed contact) for each basic sector of the detuned bladed disk. One opens the prestress setting and releases the fixed constraints of the two side exit degrees of freedom (master degrees of freedom) of the basic sector of the bladed disk, and then conducts the modal synthesis generation part analysis of the substructure of the free interface. One then generates a supercell and use supercell nesting technology to generate a multilevel supercell to complete the generation part. Secondly, the superunits are connected to analyze the overall bladed disk system (modal, dynamic response), and the use part is completed. Finally, the condensed solution of the dynamic response of the supercell master degree of freedom is extended to all the degrees of freedom in the supercell, so as to obtain the complete solution of the dynamic response of all the degrees of freedom in the bladed disk system, completing the extension part.



2.1. Super-Element Power Reduction


The motion equation of the superunit with interfacial force is


   [       m  i i        m  i j          m  j i        m  j j        ]   {        x ¨  i          x ¨  j       }  +  [       k  i i        k  i j          k  j i        k  j j        ]   {       x i         x j       }  =  {       f i       0     }   



(1)




where    x i    is the displacement of interface nodes, which is also the coordinate of main degrees of freedom;    x j    is the displacement of internal nodes, namely, the coordinate of deputy degrees of freedom; and    f i    is the interface strength.



Assuming that    { x }  =  e  j w t    { x }    and    {   f i   }  =  e  j w t    {   F i   }    and    ω 2  = λ  , then, it can be obtained by Equation (1).


   [       k  i i        k  i j          k  j i        k  j j        ]   {       x i         x j       }  − λ  [       m  i i        m  i j          m  j i        m  j j        ]   {       x i         x j       }  =  {       F i       0     }   



(2)




assuming that   λ =  ω 2   , it can be obtained from Equation (2).


   {   x j   }  =  [ β ]   [   x i   ]   



(3)




where    [ β ]  = −    [   k  j j   −  ω 2   m  i j    ]    − 1    [   k  i j   −  ω 2   m  j i    ]   , then


   { x }  =  {       x i         x j       }  =  [     I     β     ]   {   x i   }  =  [   β 1   ]   [   x i   ]   



(4)







Substitute this equation into Equation (2).


   [  k ¯  ]   {   x i   }  − λ  [  m ¯  ]   {   x i   }  =  {    F ¯  i   }   



(5)




where


   {     [  k ¯  ]  =   [   β 1   ]  T   [       k  i i        k  i j          k  j i        k  j j        ]   [   β 1   ]       [  m ¯  ]  =   [   β 1   ]  T   [       m  i i        m  i j          m  j i        m  j j        ]   [   β 1   ]       F ¯  =   [   β 1   ]  T   [   F i   ]       











To constrain the degree of freedom of the interface, namely    {   x j   }  = 0  , can be obtained from the second equation in Equation (2).


   [   k  j j    ]   {   x j   }  − λ  [   m  j j    ]   {   x j   }  = 0  



(6)




by this formula, the main mode    [ Φ ]    of the fixed interface is obtained and regularized, and then


   {      [ Φ ]  T   [   m  j j    ]   [ Φ ]  =  [ I ]        [ Φ ]  T   [   k  j j    ]   [ Φ ]  =  [   Λ j   ]       



(7)




where    [   Λ j   ]  = d i a g  [   p 1 2  , ⋯  p k 2  , ⋯  p m 2   ]    and    p k  ( k = 1 , 2 , ⋯ , m )   is the natural frequency under the condition that the super-element has a fixed interface. M is the degree of freedom inside the super-element. It can be obtained from Equation (7).


   {     [   m  j j    ]  =   [ Φ ]   − T     [ Φ ]   − 1         [   k  j j    ]   − 1   =  [ Φ ]   [   Λ j   ]    [ Φ ]  T        [   Λ j   ]   − 1   = d i a g  [   1   p 1 2    , ⋯ ,  1   p r 2    , ⋯ ,  1   p m 2     ]       



(8)




calculate the matrix in Equation (3) from the above equation      [   k  j j   −  ω 2   m  j j    ]    − 1    .


      [   k  j j   −  ω 2   m  j j    ]   − 1       =   [   k  j j   −  ω 2   m  j j    k  j j   − 1    k  j j    ]   − 1       =   [   k  j j    ]   − 1     [  I −  ω 2   Φ  − T    Φ  − 1   Φ  Λ j   Φ T   ]   − 1       =   [   k  j j    ]   − 1     [  I −  ω 2   Φ  − T    Λ j   Φ T   ]   − 1       =   [   k  j j    ]   − 1     [ Φ ]   − 1    [ T ]    [ Φ ]   − T       =   [   k  j j    ]   − 1    [  I +  T 1   ]     



(9)




where


   {     [ T ]  = d i a g  [     p 1 2     p 1 2  −  ω 2    , ⋯ ,    p k 2     p k 2  −  ω 2    , ⋯ ,    p m 2     p m 2  −  ω 2     ]       [   T 1   ]  =   [ Φ ]   − 1    [ Λ ]    [ Φ ]  T       [ Λ ]  = d i a g  [     W 2     p 1 2  −  ω 2    , ⋯ ,    W 2     p k 2  −  ω 2    , ⋯ ,    W 2     p m 2  −  ω 2     ]       








in Equation (3),    [ β ]    can be written as


   [ β ]  = −    [   k  j j    ]    − 1    [  I +  T 1   ]   [   K  j i   −  ω 2   m  j i    ]   



(10)




and substituting this equation into Equations (4) and (5) we obtain


   {     [  m ¯  ]  =  [   m 0   ]  + 2  [  A Λ  A T   ]  +  [  A Λ Λ  A T   ]       [  k ¯  ]  =  [   k 0   ]  +  [  A Λ  Λ j  Λ  A T   ]       



(11)




where


   {     [   m 0   ]  =  [   m  i i   −  m  i j    k  j j   − 1    k  j i   −  k  i j    k  j j   − 1    m  j i   +  k  i j    k  j j   − 1    m  j j    k  j j   − 1    k  j i    ]       [   k 0   ]  =  [   k  i i   =  k  i j    k  j j   − 1    k  j i    ]       [ A ]  =  [   m  i i   Φ −  k  i j   Φ  Λ j  − 1    ]       










   [   K 0  −  ω 2  M ( ω )  ]   {   x i   }  =  {    F ¯  i   }   



(12)




where


   {     [   K 0   ]  =  [   k 0   ]       [  M ( ω )  ]  =  [   m 0  + A Λ  A T   ]       











The above derivation uses precise power reduction. Compared with static shrinkage, dynamic shrinkage introduces the inertia correction term   A Λ  A T    on the basis of the static shrinkage term    [   k 0   ]    and    [   m 0   ]   . The modified inertia term    [  M ( ω )  ]    is different from the static reduction value, while the elastic term is unchanged.



It should be noted that the above derivation does not introduce approximation. In practical applications, the higher order modes of the main modes of the fixed interface are generally omitted, and only some of the lower order modes are taken, thus greatly reducing the scale of analysis and calculation.




2.2. Substructure Modal Synthesis


The reduced super-element group is integrated into the motion equation of the whole system by using the conditions of interface displacement coordination and interface force balance.


   [  K ¯  ]   {  x ¯  }  −  ω 2   [   M ¯  ( ω )  ]   {  x ¯  }  =  {  F ¯  }   



(13)







The difference between this equation and the equations of motion of the whole system obtained by other substructure synthesis techniques is that the mass matrix is a function of frequency. Equation (13) corresponds to the nonlinear eigenvalue problem. This kind of eigenvalue problem can adopt the dichotomy method or other methods to solve the nonlinear eigenvalue problem.





3. Results and Discussion


3.1. Dynamic Frequency Calculation and Precision Check


Firstly, the analysis accuracy of the modal synthesis super-element method for prestressed and free interfacial substructures with fixed interfaces was verified. The dynamic frequency of the standard contact bladed disk system under the working speed was analyzed by using the cyclic symmetry analysis method and the modal synthesis super-element method of fixed interface prestressed and free interface substructures, respectively. In Table 1, the dimensionless dynamic frequency and relative error of the homophonic standard contact bladed disk system was calculated by two methods, and the working speeds are given. Figure 3 shows the dynamic frequency curve of the harmonized standard contact bladed disk system calculated by the two methods under the working speed. It can be seen that compared with the cyclic symmetry analysis method, the maximum relative error of the dimensionless dynamic frequency of the modal synthesis super-element method of the prestressed free interface substructure with a fixed interface is 5.68%. Since the number of modes intercepted by the substructures is the same, and the same finite element mesh model is used, the errors of the two methods at each frequency are relatively consistent.




3.2. Static Frequency Analysis of Blades


Since the natural vibration characteristics of the blades have a direct impact on the coupled vibration of the bladed disk system, the blades of the first and second stage of the bladed disk system were taken as the research objects, and the static frequency analysis of the two stages was carried out to obtain the inherent vibration characteristics. The three-dimensional solid model of the first- and second-stage bladed disk system and the finite element model of the two-stage blade after meshing are shown in Figure 4 and Figure 5.



The first 10 order natural frequencies and mode shapes of the first- and second-stage blades were obtained by modal analysis after the tenon position of the first- and second-stage blades were all constrained.



The first 10 natural frequencies are shown in Table 2.



The first four natural frequencies and mode shapes are shown in Table 3:



Specific mode shapes are shown in Figure 6 and Figure 7.



Through the analysis of the modes and vibration shapes of the first- and second-stage blades, it can be seen that the low-order mode shapes of the blades are bending and torsional vibration, and the frequency of the corresponding mode shapes of the second stage blades is slightly higher than that of the first-stage blades.




3.3. Modal Analysis of a Single-Stage Bladed Disk System


3.3.1. Modal Analysis of the First-Stage Bladed Disk System


The first-stage bladed disk system model was taken as the object of analysis, and its modal analysis was carried out. Figure 8 shows the three-dimensional solid model of the first-stage bladed disk system, and Figure 9 shows the finite element model of the first-stage bladed disk system. Through modal analysis, the first 150 order natural frequencies and mode shapes of the first-stage blading disk system were calculated and solved. The specific values of natural frequencies of each order are shown in Table 4 and Table 5.



The first 150th order mode shapes of the bladed disk system of the first stage are shown in Table 5:



The mode diagram of the typical order of the first-stage bladed disk system is as follows (Figure 10):



Through analysis, it can be seen that the low order mode shape of the first-stage bladed disk system is the first order bending vibration of the blade according to the pitch diameter. With the increase in mode order, the vibration of the disk is excited, and the coupled vibration of the blade and the disk appears. As the modal order continues to increase, the blade begins to transform from a bending vibration to twisting vibration. In addition, it can be found that due to the coupled action of the blade and the wheel, the first-order bending frequency of the blade is increased.




3.3.2. Modal Analysis of the Second-Stage Bladed Disk System


The second-stage bladed disk system model is taken as the analysis object, and its modal analysis is carried out. Figure 11 shows the three-dimensional solid model of the second-stage bladed disk system, and Figure 12 shows the finite element model of the second-stage bladed disk system. Through modal analysis, the first 150 order natural frequencies and mode shapes of the second-stage blading disk system were calculated and solved. The specific values of natural frequencies of each order are shown in Table 6 and Table 7.



The first 150th order mode shapes of the second stage bladed disk system are shown in Table 7:



Figure 13 shows the mode diagram of the typical order of the second-stage bladed disk system.



According to the analysis, the vibration law of the second-stage bladed disk system is similar to that of the first-stage bladed disk system. With the increase in the modal order, the first-order bending vibration of the blade is presented, and then the vibration of the disk is excited, resulting in the coupled vibration of the blade and disk. As the modal order continues to increase, the blade begins to transform from a bending vibration to twisting vibration. At the same time, due to the coupling of the blade and the disk, the first-order bending frequency of the blade is increased.





3.4. Modal Analysis of the Two-Stage Bladed Disk Coupled System


For the interstage coupled vibration analysis of multi-stage bladed disk system, the two-stage bladed disk system composed of the first- and second-stage bladed disk systems is selected firstly, and the overall model of the two-stage bladed disk system is taken as the analysis object. Figure 14a shows the overall three-dimensional solid model of the two-stage bladed disk system. Figure 14b shows the overall finite element model of a two-stage bladed disk system with meshing and boundary conditions considered. Through modal analysis, the first 195th order natural frequencies and vibration shapes of the two-stage bladed disk system were calculated and solved, as shown in Table 8 and Table 9.



The first 160th order mode shapes of the two-stage bladed disk coupled system are shown in Table 9:



The mode diagram of the typical order of the two-stage bladed disk coupled system is as follows:




	(1)

	
As shown in Figure 15, Figure 16, Figure 17, Figure 18 and Figure 19, coupled mode shape when the first-stage bladed disk vibration is dominant.




	(2)

	
As shown in Figure 20, Figure 21, Figure 22, Figure 23 and Figure 24, coupled mode shapes of the second-stage bladed disk when the vibration is dominant.




	(3)

	
As shown in Figure 25, Figure 26, Figure 27, Figure 28 and Figure 29, coupled mode of two stages of the bladed disk with the same vibration amplitude.









According to the modal and mode shape analysis of the two-stage bladed disk coupled system, in the low-order mode, the first-order bending vibration of the first-order blade and the second-order blade is firstly manifested. With the increase in the modal order, the coupled vibration of the blade and the wheel, the twisted vibration of the blade, and the coupled vibration between the two stages of the bladed disk appear. In addition, it can be found that the vibration of the two-stage bladed disk will appear at the same frequency with the same pitch diameter. However, in most two-stage coupled bladed disks, the mode pattern cannot be seen directly. This is because the vibration of the first-stage bladed disk is dominant, while the vibration of the other stage is relatively small.



For the order with obvious inter-stage coupled vibration of the two-stage bladed disk system, the maximum vibration displacements of the first-stage bladed disk system and the second-stage bladed disk system are shown in Table 10. Figure 30, Figure 31, Figure 32, Figure 33, Figure 34 and Figure 35 show the inter-stage coupled modes.




3.5. Comparison of the Results between the Two-Stage and Single-Stage Systems


Table 11 shows a comparison of the natural frequencies and mode shapes of the two-stage bladed disk system with the first- and second-stage bladed disk systems.



According to the comparison of the natural frequencies and modes of the two-stage bladed disk system and the single-stage bladed disk system in Table 11, it can be seen that the vibration of the bladed disk system has a certain order: the blade vibration is first, followed by the coupled vibration of the bladed disk. At the intersection of the two stages, the interstage coupled vibration of the bladed disk will occur. It can be seen that the natural frequencies and mode shapes of the two-stage bladed disk coupled system not only include the natural frequencies and mode shapes of the first- and second-stage bladed disk, respectively, but also have the coupled modes of the two-stage bladed disk. Therefore, the two-stage bladed disk system model should be chosen to calculate the coupled vibration modes of the two-stage bladed disk system. For the dominant vibration mode of a single-stage disk, a single-stage bladed disk calculation model should be selected.





4. Conclusions


The whole coupled vibration mode of a two-stage bladed disk system was analyzed. Firstly, the modal analysis of the first- and second-stage bladed disks was carried out, and then the modes and configurations of the first- and second-stage bladed disks were solved, respectively. Finally, the modal analysis of the two-stage bladed disk coupled system was carried out, and the coupled vibration forms of the two-stage bladed disk were analyzed. The following conclusions were drawn.



(1) For the single-stage bladed disk system, the low-order mode shape is the first-order bending vibration of the blade according to the pitch diameter. With an increase in the mode order, the vibration of the disk is excited, resulting in the coupled vibration of the blade and the disk. As the modal order continues to increase, the blade begins to transform from a bending vibration to twisting vibration. At the same time, due to the coupling of the blade and the disk, the first-order bending frequency of the blade is increased.



(2) For the two-stage bladed disk coupled system, the vibration of the bladed disk has a certain order: the blade vibration is first, followed by the coupled vibration of the bladed disk. For the intersecting position of the two-stage bladed disk frequencies, the interstage coupled vibration of the bladed disk will occur, and the number of pitch diameters or pitch circles of the vibration would be the same. The natural frequencies and mode shapes of the two-stage bladed disk coupled system not only include the natural frequencies and mode shapes of the first- and second-stage bladed disks, respectively, but also have the coupled modes of the two-stage bladed disk, so the multistage bladed disk model is more accurate to analyze.
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Figure 1. Finite element model of the basic sector. 






Figure 1. Finite element model of the basic sector.
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Figure 2. Analysis process of SMSM. 






Figure 2. Analysis process of SMSM.
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Figure 3. First-order dynamic frequency of the substructure method and cyclic commutation method. 
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Figure 4. Single-blade model of Stage 1. 
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Figure 5. Single-blade model of Stage 2. 
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Figure 6. The first four modes of the first stage blade. 
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Figure 7. The first four modes of the second stage blade. 
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Figure 8. Three-dimensional solid model of the first-stage leaf disk. 
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Figure 9. Finite element model of the first-stage bladed disk. 






Figure 9. Finite element model of the first-stage bladed disk.



[image: Applsci 11 08600 g009]







[image: Applsci 11 08600 g010 550] 





Figure 10. Mode pattern of a typical order of the first-stage bladed disk system. 
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Figure 11. 3D solid model of the second-stage leaf disk. 
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Figure 12. Finite element model of the second-stage bladed disk. 
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Figure 13. Mode pattern of a typical order of the second-stage bladed disk system. 
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Figure 14. Two-stage bladed disk system model. 
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Figure 15. One-pitch coupled vibration of the blade and disk. 
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Figure 16. One-pitch coupled vibration of the blade and disk. 
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Figure 17. Two-pitch coupled vibration of the blade and disk. 
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Figure 18. Coupled vibration of the blade and disk in three segments. 
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Figure 19. Four-pitch coupled vibration of the blade and disk. 
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Figure 20. Coupled vibration of the blade and disk with a 0 pitch diameter. 






Figure 20. Coupled vibration of the blade and disk with a 0 pitch diameter.



[image: Applsci 11 08600 g020]







[image: Applsci 11 08600 g021 550] 





Figure 21. One-pitch coupled vibration of the blade and disk. 
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Figure 22. Coupled vibration of the blade and disk with a two-pitch diameter. 
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Figure 23. Coupled vibration of the blade and disk in three segments. 
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Figure 24. Four-pitch coupled vibration of the blade and disk. 
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Figure 25. Coupled vibration at a natural frequency of 656.78 Hz. 
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Figure 26. Coupled vibration at a 674.13 Hz natural frequency. 
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Figure 27. Coupled vibration at a natural frequency of 1548.55 Hz. 
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Figure 28. Coupled vibration at a natural frequency of 1700.81 Hz. 
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Figure 29. Coupled vibration at a natural frequency of 1730.44 Hz. 
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Figure 30. Mode 99 × 10−5 × 10−4 × 10−3. 
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Figure 31. Mode 104. 
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Figure 32. Mode 105. 
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Figure 33. Mode 106. 
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Figure 34. Mode 115. 
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Figure 35. Mode 116. 
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Table 1. Accuracy verification of the modal synthesis super-element method for the prestressed and free interfacial substructures with fixed interfaces.
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Methods and Errors

	
Cyclic Symmetric Structure Analysis Is Used to Harmonize the Dimensionless Dynamic Frequency of Standard Contact Bladed Disk System

	
Modal Synthesis Super-element Method of Fixed Interface Prestressed Free Interface Substructure Harmonizes the Dimensionless Dynamic Frequency of Standard Contact Bladed Disk System

	
Method Error




	
Number of Knuckle Diameter

	






	
0

	
1.0478

	
0.9889

	
5.62%




	
1

	
1.0492

	
0.9903

	
5.61%




	
2

	
1.0522

	
0.9936

	
5.57%




	
3

	
1.0559

	
0.9975

	
5.54%




	
4

	
1.0596

	
1.0011

	
5.52%




	
5

	
1.0629

	
1.0042

	
5.52%




	
6

	
1.0659

	
1.0069

	
5.54%




	
7

	
1.0686

	
1.0091

	
5.56%




	
8

	
1.0707

	
1.0109

	
5.59%




	
9

	
1.0725

	
1.0122

	
5.61%




	
10

	
1.0738

	
1.0133

	
5.63%




	
11

	
1.0747

	
1.0141

	
5.64%




	
12

	
1.0755

	
1.0146

	
5.65%




	
13

	
1.0760

	
1.0151

	
5.66%




	
14

	
1.0764

	
1.0154

	
5.67%




	
15

	
1.0766

	
1.0156

	
5.67%




	
16

	
1.0768

	
1.0157

	
5.67%




	
17

	
1.0769

	
1.0158

	
5.68%




	
18

	
1.0770

	
1.0159

	
5.68%




	
19

	
1.0770

	
1.0159

	
5.68%











[image: Table] 





Table 2. Natural frequencies of the first 10 orders of the Stage 1 and Stage 2 blades.
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Stage 1 Blade

	
Stage 2 Blade




	
Order Number

	
Natural Frequency/Hz

	
Order Number

	
Natural Frequency/Hz






	
1

	
602.0

	
1

	
632.0




	
2

	
1842.6

	
2

	
2273.2




	
3

	
2310.6

	
3

	
3043.1




	
4

	
4243.0

	
4

	
5590.8




	
5

	
4754.5

	
5

	
6616.9




	
6

	
5760.7

	
6

	
7898.7




	
7

	
6231.1

	
7

	
8803.8




	
8

	
6756.8

	
8

	
10,457.0




	
9

	
9294.0

	
9

	
12,714.0




	
10

	
9540.4

	
10

	
13,367.0
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Table 3. First four order natural frequencies and mode shapes of the Stage 1 and Stage 2 blades.
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Order Number

	
Stage 1 Blade

	
Stage 2 Blade




	
Natural Frequency/Hz

	
Vibration Mode

	
Natural Frequency/Hz

	
Vibration Mode






	
1

	
602.0

	
The first-order bending

	
632.0

	
The first-order bending




	
2

	
1842.6

	
The first-order distortion

	
2273.2

	
The first-order distortion




	
3

	
2310.6

	
The second-order bending

	
3043.1

	
The second-order bending




	
4

	
4243.0

	
The second-order distortion

	
5590.8

	
The second-order distortion
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Table 4. Natural frequencies of the first 150 orders of the first-stage blading disk system.
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	Order Number
	Natural Frequency
	Order Number
	Natural Frequency
	Order Number
	Natural Frequency
	Order Number
	Natural Frequency
	Order Number
	Natural Frequency





	1
	667.68
	31
	695.3
	61
	1813.10
	91
	1855.90
	121
	2189.90



	2
	668.27
	32
	695.33
	62
	1813.50
	92
	1870.10
	122
	2196.70



	3
	669.53
	33
	695.37
	63
	1814.10
	93
	1905.80
	123
	2198.40



	4
	671.51
	34
	695.40
	64
	1814.40
	94
	1914.30
	124
	2216.40



	5
	673.57
	35
	695.43
	65
	1814.70
	95
	1942.30
	125
	2218.50



	6
	677.21
	36
	695.45
	66
	1815.00
	96
	1948.30
	126
	2255.50



	7
	678.36
	37
	695.46
	67
	1815.20
	97
	1963.70
	127
	2255.80



	8
	682.41
	38
	695.48
	68
	1815.40
	98
	1968.80
	128
	2277.60



	9
	683.19
	39
	1064.10
	69
	1815.60
	99
	1976.30
	129
	2316.50



	10
	686.42
	40
	1208.30
	70
	1815.70
	100
	1980.80
	130
	2317.80



	11
	687.08
	41
	1217.00
	71
	1815.80
	101
	1984.20
	131
	2331.20



	12
	689.28
	42
	1317.70
	72
	1815.90
	102
	1988.00
	132
	2334.40



	13
	689.90
	43
	1331.70
	73
	1816.00
	103
	1989.40
	133
	2396.50



	14
	691.25
	44
	1455.40
	74
	1816.10
	104
	1992.50
	134
	2398.80



	15
	691.85
	45
	1456.30
	75
	1816.20
	105
	1993.20
	135
	2479.40



	16
	692.55
	46
	1460.20
	76
	1816.30
	106
	1995.30
	136
	2481.80



	17
	693.13
	47
	1573.40
	77
	1816.30
	107
	1996.00
	137
	2551.80



	18
	693.41
	48
	1584.50
	78
	1816.30
	108
	1997.20
	138
	2553.80



	19
	693.94
	49
	1687.90
	79
	1816.40
	109
	1997.90
	139
	2609.60



	20
	694.00
	50
	1693.00
	80
	1823.50
	110
	1998.60
	140
	2611.20



	21
	694.37
	51
	1703.60
	81
	1823.90
	111
	1999.20
	141
	2653.90



	22
	694.50
	52
	1767.90
	82
	1824.20
	112
	1999.70
	142
	2655.40



	23
	694.65
	53
	1774.70
	83
	1824.70
	113
	2000.20
	143
	2687.30



	24
	694.82
	54
	1784.70
	84
	1825.60
	114
	2000.70
	144
	2688.90



	25
	694.89
	55
	1797.20
	85
	1826.20
	115
	2001.00
	145
	2712.60



	26
	695.01
	56
	1806.20
	86
	1828.30
	116
	2001.20
	146
	2713.90



	27
	695.08
	57
	1806.40
	87
	1830.50
	117
	2001.40
	147
	2731.60



	28
	695.15
	58
	1810.20
	88
	1831.20
	118
	2143.70
	148
	2732.40



	29
	695.21
	59
	1811.20
	89
	1832.60
	119
	2159.80
	149
	2745.50



	30
	695.25
	60
	1812.30
	90
	1842.60
	120
	2186.90
	150
	2746.00
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Table 5. The first 150 order natural frequencies and mode shapes of the first-stage bladed disk system.
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	Order Number
	Natural Frequency/Hz
	Vibration Mode





	1–38
	667.68–695.48
	Blade first-order bending vibration



	39–54
	1064.10–1784.70
	The blade and the wheel vibrate together



	55–92
	1797.20–1870.10
	First-order torsional vibration of blades



	93–117
	1905.80–2001.40
	Blade bending-torsion coupled vibration



	118–150
	2143.70–2746.00
	Second-order bending vibration of blade
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Table 6. Natural frequencies of the first 150 orders of the second-stage blading disk system.
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	Order Number
	Natural Frequency
	Order Number
	Natural Frequency
	Order Number
	Natural Frequency
	Order Number
	Natural Frequency
	Order Number
	Natural Frequency





	1
	650.63
	31
	748.66
	61
	1561.70
	91
	2123.10
	121
	2249.80



	2
	706.22
	32
	748.73
	62
	1564.70
	92
	2123.80
	122
	2254.00



	3
	725.06
	33
	748.80
	63
	1610.80
	93
	2125.60
	123
	2255.50



	4
	725.58
	34
	748.85
	64
	1618.40
	94
	2126.30
	124
	2264.80



	5
	730.03
	35
	748.95
	65
	1657.50
	95
	2127.60
	125
	2267.70



	6
	733.46
	36
	748.98
	66
	1714.00
	96
	2128.30
	126
	2290.40



	7
	734.18
	37
	749.00
	67
	1718.80
	97
	2129.30
	127
	2293.50



	8
	737.91
	38
	749.07
	68
	1833.40
	98
	2129.90
	128
	2324.40



	9
	738.53
	39
	749.10
	69
	1838.50
	99
	2130.70
	129
	2327.60



	10
	740.91
	40
	749.12
	70
	1850.40
	100
	2131.20
	130
	2361.80



	11
	741.53
	41
	749.17
	71
	1930.90
	101
	2131.90
	131
	2364.90



	12
	742.98
	42
	749.19
	72
	1934.90
	102
	2132.20
	132
	2396.30



	13
	743.63
	43
	749.24
	73
	1971.90
	103
	2132.80
	133
	2399.50



	14
	744.48
	44
	749.26
	74
	2001.70
	104
	2133.10
	134
	2425.20



	15
	745.14
	45
	749.28
	75
	2004.30
	105
	2133.50
	135
	2428.40



	16
	745.57
	46
	749.29
	76
	2013.30
	106
	2133.70
	136
	2448.10



	17
	746.21
	47
	749.33
	77
	2047.30
	107
	2134.00
	137
	2451.30



	18
	746.35
	48
	749.37
	78
	2048.40
	108
	2134.30
	138
	2466.00



	19
	746.92
	49
	749.40
	79
	2075.10
	109
	2134.70
	139
	2469.10



	20
	746.99
	50
	749.42
	80
	2075.30
	110
	2135.00
	140
	2480.10



	21
	747.39
	51
	749.43
	81
	2091.90
	111
	2135.00
	141
	2483.00



	22
	747.52
	52
	749.46
	82
	2092.40
	112
	2135.40
	142
	2491.20



	23
	747.75
	53
	749.50
	83
	2102.90
	113
	2135.40
	143
	2493.90



	24
	747.92
	54
	797.09
	84
	2103.50
	114
	2135.50
	144
	2500.10



	25
	748.02
	55
	835.36
	85
	2110.40
	115
	2230.70
	145
	2502.50



	26
	748.21
	56
	999.34
	86
	2111.20
	116
	2232.80
	146
	2507.30



	27
	748.27
	57
	1002.60
	87
	2115.80
	117
	2233.00
	147
	2509.30



	28
	748.42
	58
	1305.60
	88
	2116.60
	118
	2235.90
	148
	2513.10



	29
	748.46
	59
	1306.80
	89
	2119.90
	119
	2238.20
	149
	2514.90



	30
	748.55
	60
	1500.20
	90
	2120.70
	120
	2247.20
	150
	2517.80
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Table 7. First 150 order natural frequencies and mode shapes of stage 2 blading disk systems.
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	Order Number
	Natural Frequency/Hz
	Vibration Mode





	1
	650.63
	The vibration of the blade and the wheel is coupled with 0 pitch diameter



	2–53
	706.22–749.50
	Blade first-order bending vibration



	54–78
	797.09–2048.40
	The blade and the wheel vibrate together



	79–131
	2075.10–2364.90
	First-order torsional vibration of blades



	132–150
	2396.30–2517.80
	Blade bending-torsion coupled vibration
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Table 8. First 195 order natural frequencies of a two-stage bladed disk coupled system.






Table 8. First 195 order natural frequencies of a two-stage bladed disk coupled system.





	Order Number
	Natural Frequency
	Order Number
	Natural Frequency
	Order Number
	Natural Frequency
	Order Number
	Natural Frequency
	Order Number
	Natural Frequency





	1
	656.78
	40
	720.99
	79
	748.96
	118
	1763.90
	157
	1852.60



	2
	664.55
	41
	722.37
	80
	748.98
	119
	1766.50
	158
	1866.90



	3
	666.86
	42
	728.61
	81
	749.03
	120
	1781.10
	159
	1870.70



	4
	666.99
	43
	729.35
	82
	749.05
	121
	1795.60
	160
	1874.00



	5
	668.81
	44
	735.55
	83
	749.07
	122
	1805.10
	161
	1875.30



	6
	674.13
	45
	736.26
	84
	749.09
	123
	1805.60
	162
	1894.80



	7
	675.66
	46
	739.31
	85
	749.12
	124
	1809.70
	163
	1900.60



	8
	676.78
	47
	739.91
	86
	749.17
	125
	1810.60
	164
	1909.50



	9
	681.73
	48
	741.74
	87
	749.2
	126
	1811.90
	165
	1937.20



	10
	682.5
	49
	742.33
	88
	749.21
	127
	1812.70
	166
	1937.30



	11
	686.01
	50
	743.44
	89
	749.23
	128
	1813.20
	167
	1943.40



	12
	686.67
	51
	744.06
	90
	749.25
	129
	1813.80
	168
	1952.80



	13
	688.97
	52
	744.68
	91
	749.30
	130
	1814.10
	169
	1955.20



	14
	689.58
	53
	745.31
	92
	778.35
	131
	1814.40
	170
	1959.10



	15
	690.95
	54
	745.60
	93
	1025.80
	132
	1814.70
	171
	1962.10



	16
	691.55
	55
	746.21
	94
	1026.20
	133
	1814.90
	172
	1964.10



	17
	692.26
	56
	746.29
	95
	1037.40
	134
	1815.20
	173
	1967.90



	18
	692.84
	57
	746.80
	96
	1195.50
	135
	1815.30
	174
	1972.00



	19
	693.13
	58
	746.89
	97
	1199.00
	136
	1815.40
	175
	1976.40



	20
	693.66
	59
	747.23
	98
	1284.50
	137
	1815.60
	176
	1980.00



	21
	693.73
	60
	747.38
	99
	1292.50
	138
	1815.70
	177
	1983.90



	22
	694.09
	61
	747.57
	100
	1358.10
	139
	1815.80
	178
	1985.40



	23
	694.23
	62
	747.75
	101
	1359.40
	140
	1815.90
	179
	1988.50



	24
	694.39
	63
	747.83
	102
	1420.90
	141
	1816.00
	180
	1989.30



	25
	694.56
	64
	748.02
	103
	1426.50
	142
	1816.00
	181
	1991.50



	26
	694.63
	65
	748.08
	104
	1471.40
	143
	1816.10
	182
	1992.20



	27
	694.76
	66
	748.22
	105
	1484.90
	144
	1816.10
	183
	1993.50



	28
	694.82
	67
	748.26
	106
	1548.50
	145
	1816.20
	184
	1994.20



	29
	694.90
	68
	748.35
	107
	1555.20
	146
	1819.50
	185
	1994.90



	30
	694.95
	69
	748.46
	108
	1566.60
	147
	1822.60
	186
	1995.50



	31
	695.00
	70
	748.52
	109
	1585.50
	148
	1823.10
	187
	1996.20



	32
	695.04
	71
	748.59
	110
	1604.20
	149
	1824.70
	188
	1996.60



	33
	695.08
	72
	748.65
	111
	1615.90
	150
	1825.20
	189
	1997.20



	34
	695.13
	73
	748.74
	112
	1618.00
	151
	1825.30
	190
	1997.50



	35
	695.15
	74
	748.78
	113
	1679.80
	152
	1826.20
	191
	1997.70



	36
	695.19
	75
	748.79
	114
	1695.50
	153
	1827.50
	192
	1997.90



	37
	695.21
	76
	748.86
	115
	1700.80
	154
	1830.10
	193
	2011.00



	38
	695.22
	77
	748.90
	116
	1730.40
	155
	1831.90
	194
	2012.60



	39
	695.23
	78
	748.92
	117
	1763.20
	156
	1841.20
	195
	2049.70
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Table 9. First 160th order natural frequencies and mode shapes of the two-stage bladed disk coupled system.






Table 9. First 160th order natural frequencies and mode shapes of the two-stage bladed disk coupled system.





	Order Number
	Natural Frequency/Hz
	VIBRATION MODE





	1
	656.78
	Coupled vibration of the two-stage blade and wheel



	2–5
	664.55–668.810
	First-order bending vibration of the one-stage blade



	6
	674.13
	Coupled vibration of the two-stage blade and wheel



	7–39
	675.66–695.23
	First-order bending vibration of the one-stage blade



	40–91
	720.99–749.30
	First-order bending vibration of the two-stage blades



	92
	778.35
	Zero pitch diameter vibration of the stage two blades and disks



	93–94
	1025.80–1026.20
	One-pitch vibration of the stage two blades and disks



	95
	1037.40
	Zero pitch diameter vibration of the stage one blade and wheel



	96–97
	1195.50–1199.00
	One-pitch vibration of the stage one blades and disks



	98–99
	1284.50–1292.50
	Two-pitch vibration of the stage one blades and disks



	100–101
	1358.10–1359.40
	Two-pitch diameter vibration of the two stage blades and disks



	102–103
	1420.90–1426.50
	Three-pitch vibration of the stage one blades and disks



	104–106
	1471.40–1548.50
	Coupled vibration of the two-stage blade and wheel



	107–108
	1555.20–1566.60
	Four-pitch vibration of the stage one blades and disks



	109–110
	1585.50–1604.20
	Two-pitch diameter vibration of the two-stage blades and disks



	111–112
	1615.90–1618.00
	Three-section diameter vibration of the stage two blades and disks



	113–114
	1679.80–1695.50
	Five section diameter vibration of the stage one blade and wheel



	115–116
	1700.80–1730.40
	Coupled vibration of the two-stage blade and wheel



	117
	1763.20
	Four-pitch vibration of the stage two blades and disks



	118
	1763.90
	Bending-torsion coupled vibration of the stage one blade



	119
	1766.50
	Four-pitch vibration of the stage two blades and disks



	120–158
	1781.10–1866.90
	First order torsional vibration of the one-stage blade



	159–160
	1870.70–1874.00
	Five section diameter vibration of the stage two blades and wheel
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Table 10. Maximum displacement and ratio of the vibration of the Stage 1 and Stage 2 bladed disk systems.






Table 10. Maximum displacement and ratio of the vibration of the Stage 1 and Stage 2 bladed disk systems.





	Order Number
	Natural Frequency/Hz
	Level One Blade Disk/mm
	Level Two Blade Disk/mm
	Ratio





	99
	1292.5
	1.0060
	0.2319
	4.34



	104
	1471.4
	0.3266
	0.1907
	1.71



	105
	1484.9
	0.4579
	1.0943
	2.39



	106
	1548.5
	0.5240
	0.9044
	1.73



	115
	1700.8
	0.5405
	0.0969
	5.58



	116
	1730.4
	0.4907
	0.5007
	1.00







Note: the ratio is the ratio of the larger value to the smaller value in the maximum displacements of Stage 1 and Stage 2 bladed disk systems.
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Table 11. Comparison of natural frequencies between the two-stage and single-stage bladed disk coupled systems.






Table 11. Comparison of natural frequencies between the two-stage and single-stage bladed disk coupled systems.





	
Level One

	
Level Two

	
Two Levels of Coupling

	
Vibration Mode




	
Order Number

	
Natural Frequency

	
Order Number

	
Natural Frequency

	
Order Number

	
Natural Frequency






	
---

	
---

	
1

	
650.63

	
1

	
656.78

	
Coupled vibration of the two-stage bladed disk




	
1–38

	
667.68–695.48

	
---

	
---

	
2–5

	
664.55–668.81

	
Level one blade vibration




	
6

	
674.13

	
Coupled vibration of the two-stage bladed disk




	
7–39

	
675.66–695.23

	
Level one blade vibration




	
---

	
---

	
2–53

	
706.22–749.50

	
40–91

	
720.99–749.30

	
Level two blade vibration




	
39–54

	
1064.10–1784.70

	
54–78

	
797.09–2048.40

	
92–103

	
778.35–1426.50

	
Single stage coupled vibration of the bladed disk




	
104–106

	
1471.40–1548.50

	
Coupled vibration of the two-stage bladed disk




	
107–114

	
1555.20–1695.50

	
Single-stage coupled vibration of the bladed disk




	
115–116

	
1700.80–1730.40

	
Coupled vibration of the two-stage bladed disk
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