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Abstract: In this paper, we develop a new online walking controller for biped robots, which integrates a
neural-network estimator and an incremental learning mechanism to improve the control performance
in dynamic environment. With the aid of an iteration algorithm for updating, some newly incoming
data can be used straightforwardly to update into the original well-trained model, in order to avoid a
time-consuming retraining procedure. On the other hand, how to maintain the zero-moment-point
stability and counteract the effect of yaw moment simultaneously is also a key technical problem
to be addressed. To this end, an interval type-2 fuzzy weight identifier is newly developed, which
assigns weight for each walking sample to deal with the imbalanced distribution problem of training
data. The effectiveness of the proposed control scheme has been verified through a full-dynamics
simulation and a practical robot experiment.

Keywords: biped robot; zero-moment-point; neural networks incremental learning

1. Introduction

In recent years, biped robot has received considerable attention owing to its unique
bipedal movement, excellent suitability to human society and theoretical importance. Up
to date, a number of active control approaches have been proposed, e.g., stability-criterion-
based method [1–3], model-based method [4–6], and optimization-based method [7–9]. In
addition to these, many real robot platforms have been successfully developed, including
Atlas, MABEL, ASIMO, and NAO [10,11]. To achieve the bipedal locomotion stability,
zero-moment-point (ZMP) was proposed and have become the most popular stability
criteria. In [12], Kajita et al. designed a ZMP tracking servo controller and proposed
a bipedal walking pattern generation algorithm based on cart-table model. In [13], a
modified walking pattern method was presented by utilizing allowable ZMP variation
and both step length and walking period can be independently adjusted without any extra
step. Subsequently, Shin et al. [14] further proposed a practical gait synthesis algorithm
by optimizing gait parameters, and the locomotion stability was guaranteed. Moreover,
Caron et al. [15] defined the pendular support area and presented a whole-body controller
for locomotion across arbitrary multicontact stances. Despite these contributions, the
stability established in [12–15] depends on an assumption that the effect on stability caused
by yaw moment can be ignored, which is in fact a restrictive condition. As pointed out
in [16–18], yaw moment is inevitably generated by the motion of swing leg, which may
lead to slippage or falling down.

To remove such limitation, much effort has been paid in this field and some interesting
results were reported in [16–21]. In particular, Hirabayashi et al. [16] proposed a waist-
rotation-based yaw moment compensation algorithm, while a biped robot was modeled
as a 3D inverted pendulum. In [22], with the fusion of waist joint control technique
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and optimized swing leg reference generation method, a fast walking pattern generation
approach was presented to counteract the effect of yaw moment. Inspired by human
walking experience, Xing et al. [18] designed an arm-swing-based control scheme to cancel
the factors which produce the yaw moment. To further improve the control performance,
in [19], the angular momentum rate changes were smoothly integrated into yaw moment
equation and the locomotion stability was ensured by utilizing a Eulerian ZMP resolution
approach. Moreover, Yang et al. [21] constructed a practical control scheme to compensate
yaw moment by controlling lower limb. Although much progress has been made in
dynamic balance control field, some challenging difficulties still remain open. In most of
existing control schemes on yaw moment compensation for biped robot, such as those
mentioned above, only a few joints are involved which bring much burden to driving
motors and may result in unnatural gaits. In practice, it is difficult to generate natural and
efficient gaits in real time according to external disturbance from circumstance.

To address this problem, a series of optimization-based methods were proposed.
In [23], a spline-based estimation of distribution algorithm was proposed by formulating
the gait pattern generation into a multiobjective optimization problem. In [24], besides
ensuring the ZMP stability, the performance of energy efficiency was also well guaranteed
by the fusion of moving ZMP criterion with the fourier series approximation technique.
With the recourse of Newton–Raphson iteration, the locomotion stability was achieved
and the walking speed of robot was successfully regulated online in [25]. Furthermore,
Wang et al. [26] presented a SVM-based learning control system for biped robots, in which
a novel SVM objective function with energy-related slack variables was proposed. This
objective function followed the principle that the slack variables were determined by
energy cost, which means the sample with lower energy consumption contributes more
to SVM regression. This provided an interesting clue to learn biped walking locomotion.
However, this method generally depends on a well-trained model, which may not always
be achieved in practical applications.

Motivated by such an observation, in this paper, we make an attempt to further ad-
dress the online control problem for biped robot. To remove the restrictions just mentioned,
the main challenging difficulty that obstructs the design of our control scheme lies in
the development of a protocol to compensate yaw moment and at the same time main-
tain zero-moment-point stability. To overcome the difficulty, an online walking control
approach is presented. In summary, the work of this paper has the following novelties
and contributions:

1. As compared with the control scheme developed in [26], ours newly equips with a
neural-network estimator and an incremental mechanism, with which those newly
coming data can be used straightforwardly to update the original well-trained model
in real time. This implies that it is possible for a robot to achieve better locomotion
stability in dynamic environment, e.g., from flat ground to uneven terrain;

2. Traditional optimization-based methods, such as those in [23–26] are involved in many
adaption laws to be updated or computed online, which may result in a computation
burden during control implementation. To remove this restriction, we achieve the
fusion of the random vector functional-link neural network with an incremental
mechanism, so that the entire retraining from beginning can be effectively avoided.
Furthermore, by designing an interval type-2 fuzzy weight identifier (IT2FWI), both
horizontal and vertical locomotion stabilities are successfully taken into account in
training procedure.

The rest of this paper is organized as follows. In Section 2, the kinematics and
dynamics of the biped robot are given and some preliminaries are presented. In Section 3,
we propose an online control scheme based on incremental learning Algorithm 1, and a
neural-network mechanism is established. In Section 4, simulation and experiment are
carried out to verify the effectiveness of our scheme. In Section 5, the conclusions are given.
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Algorithm 1 Online Updating with increment learning algorithm
Input:

incoming new samples Qi = (qi, q̇i, q̈i, ∆Xi
z, Mi

z);
Output:

T = (t1, ..., tN) = (∆q1, ..., ∆qN)
1: Randomly initiate We, Wh, βe, βh, set training error e = 0;
2: Calculate the matrix A = [Kn Hm];
3: Calculate (Am)+ with Equation (11);
4: while e ≤ threshold; do
5: Randomly initiate Wp, βp;
6: Set Yp = ϕ(QWp + βp) and Am+1 = [Am|Yp]

7: Calculate (Am+1)+ and Wm+1 by Equations (12)–(14);
8: end while
9: Calculate T = (Am+1)+Wm+1

2. System Description and Some Preliminaries
2.1. Overview of Biped Robot BRZ-4

BRZ-4 is a half-size biped robot, which is set up as a test bed, as presented in Figure 1.
Basically, BRZ-4 is 66.2 cm in height and 2.4 kg in weight, which contains 17 degrees.
Specifically, three degrees for hip joint, one for knee joint, and two for ankle joint. To collect
necessary feedback information, each joint is driven by a DYNAMIXEL MX-64-T motor
and the mechanical structure of this robot is made from 3D printing. Moreover, the rotary
encoders are integrated in the motors to obtain the motion of joint. The BRZ-4’s kinematic
model is accordingly depicted in Figure 1 and the physical parameters are given in Table 1.
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Figure 1. Kinematic model for BRZ-4.

Table 1. Basic Physical Parameters of BRZ-4.

Link Trunk Thigh Shank Arm Foot

BRZ-4 Length (cm) 20 17.5 15.5 24.7 5
Mass (kg) 1.05 0.256 0.156 0.156 0.075

A control system for BRZ-4 is set up to perform stable walking objective, which
consists of biped robot and ground workstation. By integrating Matlab in the ground
workstation, the proposed method is implemented to collect the real-time motion of robot
and send control signals to BRZ-4 through RS485 bus. Moreover, to reduce the number of
cables, driving motors are connected in daisy chains.
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2.2. Kinematics and Dynamics

Usually, biped robot can be simplified as connective link model as shown in Figure 1,
in which each link is uniform mass distribution. The relationship between joint speed and
end-effector velocity is defined as

ṙ = J(q)q̇ (1)

where ṙ ∈ Rm is task-space velocity, q = [q1, ..., qn] ∈ Rn represents joint angles, n is
the number of degrees of freedom, q̇ = [q̇1, ..., q̇n] denotes joint angle velocities and
J(q) ∈ Rm×n is the Jacobian matrix from joint space to task space.

From the Lagrangian approach, the dynamics of biped robot can be expressed as follows

M(q)q̈ + C(q, q̇)q̇ + G(q) + Fe = τ (2)

where M(q) ∈ Rn×n is the positive definite inertial matrix, C(q, q̇) ∈ Rn×n is the Coriolis
and centrifugal matrix, G(q) ∈ Rn is the gravitational force, Fe ∈ Rn denotes the external
disturbance, τ ∈ Rn is the joint torques.

2.3. Bipedal Locomotion Stability

Zero-moment-point (ZMP) stability criterion is one of the most popular stability
criteria, which is successfully applied in real biped robot platforms including ASIMO,
NAO, and HRP. According to the definition of ZMP, zero-moment-point is the point on the
sole, in which the horizontal component of the net moment caused by inertial and gravity
forces is zero as shown in Figure 2.

Figure 2. Forces acting on the supporting foot.

Hence, the following equation holds

Mx = My = 0 (3)

where Mx and My are the x-axis and y-axis moment of the inertial and gravity forces,
respectively.

As pointed out in [18,19], ZMP stability criterion cannot guarantee the moment equilib-
rium in vertical plane, which neglects the influence caused by yaw moment on locomotion
stability. Actually, the undesired yaw moment along the support leg would be generated
by the motions of components of biped robot in different planes. Thus, we have

Mz ≤ MR (4)

where Mz denotes yaw moment and MR is the moment generated by the ground reaction
force. Specially, yaw moment is defined as below

Mz =
n

∑
i=1

mi(ri − rzmp)× (r̈i + g) (5)
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where mi is the mass of the ith connective link; ri is the position vector of the center of
the ith connective link; rzmp denotes ZMP position vector; g = [0, 0, g] is the gravitational
acceleration vector; Mz is yaw moment.

Moreover, ZMP coordinate rzmp = (xzmp, yzmp, 0) has the following forms [27]:

xzmp =

n
∑

i=1
xi(z̈i + g)mi −

n
∑

i=1
zimi ẍi

n
∑

i=1
(z̈i + g)mi

(6)

yzmp =

n
∑

i=1
yi(z̈i + g)mi −

n
∑

i=1
zimi ÿi

n
∑

i=1
(z̈i + g)mi

(7)

where [xi, yi, zi] is the position of the center of the ith link.
To evaluate the locomotion stability in horizontal plane, ZMP stability margins intro-

duced in [28] are adopted.

Jzmp =


1
2

lzx

lcx
+

1
2

lzy

dcy
i f rzmp ∈ Ωzmp

0 i f rzmp /∈ Ωzmp

(8)

where lzx and lzy denote the x-axis and y-axis distance between zero-moment-point and
boundaries, respectively; lcx and dcy represent the x-axis and y-axis distance between the
center of foot sole and boundaries, respectively; Ωzmp denotes ZMP boundaries.

3. Online Control System Design

In this section, the control system design procedure will be specially introduced and a
walking control framework is presented as shown in Figure 3, in which the random vector
function-link neural networks (RVFLNNs) [29] is adopted to approximate f (•) and an
incremental learning mechanism is incorporated in the NNs. Moreover, an interval type-2
fuzzy weight identifier (IT2FWI) is designed to improve the control performance.

Figure 3. Architecture of proposed control system for biped robot.
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3.1. Weighted Neural-Network Estimator

From Equations (5)–(7), it is noted that both ZMP stability and yaw moment are
related with the position, velocity and acceleration of each link. According to [24,25] and
results in [28], the locomotion stability can be ensured by regulating robot joints. Thus, the
following mapping function is considered

∆q = f (q, q̇, q̈, ∆Xz, Mz) (9)

where f (•) is a non-linear mapping function, ∆q = [∆q1, ..., ∆qn]T denotes the corrections
of all joints; ∆Xz is ZMP error, Mz denotes yaw moment. By approximating the non-linear
mapping function f (•), ∆q can be obtained.

In our scheme, the random vector functional-link neural networks(RVFLNNs) [29]
is adopted to estimate f (•). Different from traditional Neural Networks, RVFLNNs effec-
tively eliminates the disadvantage of the long training process and provides a fast learning
property by designing a flatted network with randomly generated weights and biases.

Given N training sample sequences {Xi, ti}N
i , let ĉi represent the appropriate weight

of the ith sample. Thus, the approximation task is formulated as the following optimiza-
tion problem

arg min
W

:
N

∑
i=1

ĉi(AiWi − Ti) + λ‖W‖2
2 (10)

where ĉi denotes the weight of the ith sample, A = [A1, ..., AN ] = [Kn Hm] represents
the input matrix, Kn = [K1, ..., Kn] is the input node set, Ki = ϕ(XWei + βei) is the input
node, X is the input sample data, and Hm = [H1, ..., Hm] is the enhancement node set,
Hi = ϕ(KnWhi + βhi) is the enhancement node; βei and βhi are bias; Wei and Whi are
weight matrices; ϕ(•) is sigmoid function; T = [T1, ..., TN ] is the desired output matrix, λ is
a penalty coefficient. Moreover, W is the connecting weight matrix, which can be computed
by W = [W1, ..., WN ] = A+T.

By applying the Moore–Penrose inverse, we have

A+ = lim
λ→0

(λI + ĈAAT)−1ATĈT (11)

where A+ is the pseudo-inverse matrix of A, Ĉ = [ĉ1, ĉ2, ..., ĉn] is the weight matrix of
sample data.

3.2. Incremental Learning Method Design

Let Am+1 = [Am Yp], then the pseudoinverse of Am+1 can be expressed as follows [29]:

(Am+1)+ =

[
(Am)+ −DBT

BT

]
(12)

where Am = [A1, ..., Am] is the original input matrix, Yp = [Y1, ..., Yp] denotes the new
input node set, Yi = ϕ(QWpi + βpi ), Q is the new incoming data, D = (Am)+Yp,

BT =

{
(C)+ , i f C 6= 0
(1 + dTd)−1BT(Am)+, i f C = 0

(13)

and C = ϕ(KnWp + βp)−AmD.
Thus, the new weight matrix is achieved by the following equation:

Wm+1 =

[
Wm −DBTT

BTT

]
(14)
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3.3. Interval Type-2 Fuzzy Identifier Design

One of the main difficulties in the development of the proposed control scheme is
how to assign an appropriate learning weight for each walking sample. In this paper, an
interval type-2 fuzzy weight identifier (IT2FWI) is designed to deal with the uncertainty of
walking sample.

The interval type-2 fuzzy logic systems (FLSs) rules are given as follows

Rule l : If z is B̃l,1, y is B̃l,2,
then ĉ is Õl .

where z and y represent ZMP stability margin and yaw moment, ĉ denotes the weight of
sample data, B̃l,j and Õl denote the linguistic variables of the fuzzy sets; l = 1, 2, ..., L. L is
the total number of the fuzzy rules.

Gaussian membership function is adopted to map crisp input to fuzzy sets for its clear
physical signification. The membership function of ZMP stability margin is given as below

φB̃i,j
(zi) = [φ

B̃i,j
(zi), φB̃i,j

(zi)] (15)

φB̃i,j
(zi) =


(cz

i,j, σi,j, zi) , zi < cz
i,j

1 , cz
i,j ≤ zi ≤ cz

i,j
(cz

i,j, σi,j, zi) , zi > cz
i,j

(16)

φ
B̃i,j

(zi) =

 (cz
i,j, σi,j, zi) , zi >

cz
i,j+cz

i,j
2

(c̄z
i,j, σi,j, zi) , zi ≤

cz
i,j+cz

i,j
2

(17)

where (cz
i,j, σi,j, zi) = exp{− 1

2 (
zi−cz

i,j
σi,j

)2}, and cz
i,j ∈ [cz

i,jc
z
i,j].

From [30], the output fuzzy set �Õ(ĉ) can be obtained by the following equation

φÕ(ĉ)

=
∫

ĉ∈[ f
1
φ

G̃1
(ĉ)∨···∨ f

L
φ

G̃L
(ĉ), f 1φG̃1

(ĉ)∨···∨ f LφG̃L
(ĉ)]

1
ĉ

(18)

where f
i
= ∏n

j=1 φ
B̃i,j

, f i = ∏n
j=1 φB̃i,j

, n = 2; ’∨’ operation denotes the maximum operation.

Utilizing the center-of-sets-type reduction and the Karnik–Mendel method, we have

ĉ = [ĉlow, ĉhigh] (19)

ĉlow =
Σl

i=1(Q f )i c̃i + ΣL
j=l+1(Q f )j c̃j

Σl
i=1(Q f )i + ΣL

j=l+1(Q f )j
(20)

ĉhigh =
Σr

i=1(Q f )i c̃i + ΣL
j=r+1(Q f )j c̃j

Σr
i=1(Q f )i + ΣL

j=r+1(Q f )j
(21)

where ĉ is an interval set, ĉlow, ĉhigh represent the left and right limits, respectively; ĉi is
the centroid of the type-2 interval consequent set Õi; C = (ĉ1, ..., ĉL) represent the original
rule-ordered consequent values and c̃ = (c̃1, . . . , c̃L) = QC satisfying c̃1 ≤ c̃2 ≤ ...c̃L; Q is
an L× L permutation matrix.

Thus, the defuzzified output is

ĉ =
ĉlow + ĉhigh

2
(22)
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4. Experiment Results and Analysis

In this section, the effectiveness of our control scheme is discussed through simulations
and experiments. Robots are required to perform two typical kinds of tasks including
walking on flat ground and climbing stairs. The first one is based on a physical platform,
while the second one is carried out on a simulation platform.

4.1. Experiment: Walking on Flat Ground

As illustrated in Figure 1 and Table 1, the biped robot BRZ-4 is set up as test bed.
Roughly, the test bed consists of two parts, which are the ground workstation and BRZ-4.
We apply the proposed control algorithm to BRZ-4. Specifically, our scheme contains
off-line and online learning parts. To improve the efficiency, the off-line training is carried
out in matlab while the online learning is implemented by using C language. Moreover,
the control commands and the states of robot can be transmitted through RS485 bus. To
visually present the basic components of hardware system, a graphical result is provided
in Figure 4.

Figure 4. Basic components of hardware system.

One of the goals of the experiment is to control the biped robot to track the desired gait,
such that stable walk is achieved. Under the new constructed control framework, desired
gait is planned by using a spline-based parametric optimization technique [31], which
contains start gait, period normal gait, and stop gait. In addition, the generation of planned
gait is implemented in the ground workstation and specific control command will be
transmit to BRZ-4 through RS485 bus in real time. To visually illustrate the planned results,
the stick animation is presented in Figure 5, in which the CoM trajectory is highlighted
in red.
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Figure 5. Animation of planned gait.

In the construction of the proposed IT2FWI, we take the Gaussian function with
fixed standard deviation σ and uncertain mean as the primary membership functions. By
applying the trial-and-error procedure, the designed parameters of membership functions
of ZMP stability margin and yaw moment are chosen as follows

σz = 0.12; σy = 0.18

[cz
ij, cz

ij]
5
j=1 ={[−0.02, 0.02], [0.23, 0.27], [0.48, 0.52],

[0.73, 0.77], [0.98, 1.02]}
[cy

ij, cy
ij]

5
j=1 ={[−1.02,−0.98], [−0.52,−0.48], [−0.02, 0.02],

[0.48, 0.52], [0.98, 1.02]}

A comparison between the proposed control scheme and the one in [26] is carried
out on the platform of BRZ-4. The ZMP response trajectories are plotted in Figure 6. As
indicated in this figure, all the ZMP trajectories are observed to be within the convex
boundaries of the supporting foot, which implies that both methods can ensure the loco-
motion stability in horizontal direction. On the other hand, undesired yaw moment has an
significant impact on locomotion stability of biped robot, as pointed out in [16–18]. Now
we test the effectiveness of our control scheme in compensating for yaw moment. The
evolutions of yaw moment, with our method and the one in [26] are visualized in Figure 7.
As seen from the comparison, with the above two methods, the yaw moment is successfully
suppressed. Apart from these, the root-mean-square (RMS) errors of x-axis/y-axis ZMP
stabilities and yaw moment are recorded in Table 2. It is noted that, with the proposed
scheme, the RMS errors of x-axis,y-axis ZMP trajectories and yaw moment are around
5.9%, 9.9%, and 20.7% lower than those in [26], respectively. Moreover, comparing with the
method in [26], the online learning time is dramatically reduced from 1.56 s to 0.23 s.

Table 2. Comparison of control performance.

Proposed Method Method in [26]

RMS error (xzmp) 0.0322 0.0341
RMS error (yzmp) 0.0251 0.0276
RMS error (Mz) 0.0617 0.0745

Learning time of each cycle (s) 0.23 1.56
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Figure 6. ZMP trajectories for BRZ-4 with two methods.
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Figure 7. Yaw moment evolutions for BRZ-4 with two methods.

Remark 1. Comparing with [26] which also focuses on the optimization-based learning control
design, the learning mechanism in our scheme can be divided into two parts including off-line
learning and online learning. By employing a flat network structure and deriving an weight
matrix updating Equation (14), the proposed method successfully avoids the entire retraining from
beginning. As a result, the online learning time is dramatically reduced as shown in Table 2.

4.2. Simulation: Climbing Stairs

In this case, we consider the new robot BRZ-5, whose basic parameters Table 3. As
indicated in Figure 8, BRZ5 is 121 cm in height and 14.9 kg in weight. The whole simulation
contains two kinds of gaits. One is walking gait and the other is climbing stairs gait.
Specially, every gait includes six step cycles. In this simulation, the robot is required to
climb stairs after walking six steps on flat ground. Moreover, some comparative simulations
between our proposed method with the one in [26] are conducted on Pybullet which is a
real-time physics simulation platform. To facilitate the comparison and analysis, we keep
the setting parameters and initial conditions as the same.
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Figure 8. Kinematic model for BRZ-5.

Table 3. Basic physical parameters of BRZ-5.

Link Trunk Thigh Shank Foot

BRZ-5 Length (cm) 38.3 37.1 35.0 11.0
Mass (kg) 1.38 3.58 2.18 1.048

The comparative simulation results are given in Figures 9 and 10. In particular,
Figure 9 shows the snapshots of climbing stairs while the ZMP response trajectories are
plotted in Figure 10. From Figure 9, it is noticed that, with these two methods, the robot
can maintain balance in the first six step cycles on flat ground. However, in the next six
step cycles, the robot fell down with the method in [26] while the robot controlled by
the proposed scheme successfully finished the climbing stairs task. Similar results are
also observed in Figure 10, in which ZMP response trajectories are illustrated in dot-dash
black line and solid blue line. As indicated in Figure 10, with the approach in [26], ZMP
response trajectory is basically within ZMP boundaries in the first six steps while the
obvious deviation appears from the 8th to 12th steps. Comparing with the control scheme
in [26], ours exhibits a better generalization performance.

Figure 9. Snapshots of climbing stairs (Simulation platform: Pybullet).
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Figure 10. ZMP trajectories for BRZ-5 with two methods.

Remark 2. A brief analysis is given to the above comparative results. As we know, the strong
environment adaptive ability is one of the keys to realize the large-scale application of biped robots.
However, it is almost impossible to handle all kinds of dynamic disturbances from environment with
only one well-trained model. Unlike the approach in [26], an incremental updating mechanism is
newly integrated into our scheme. With the aid of an iteration algorithm for updating, the new
incoming data can be used straightforwardly to update into the original well-trained model, which
successfully avoids the entire retraining from beginning. Thus, with this incremental updating
mechanism, the adaptive capacity of robot is further improved.

5. Conclusions

This paper presented a walking control framework for biped robot to deal with the
online leaning and control problems. Under the new framework, an incremental learning
algorithm is further constructed, such that the new coming data can be integrated into
the well-trained model in real time without a retraining process. Finally, experiment and
simulation results verified the effectiveness of the proposed scheme.
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