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Abstract: Cisplatin is one of the most effective anticancer agents used to treat colon cancer, which
is the third malignancy between the most common human cancers in the world, but the resistance
developed represents an obstacle against the full success of chemotherapy. An emerging interest
appeared in finding other metallic compounds, such as ruthenium(III) complexes, for chemothera-
peutic application in cancer. Our study focused on the anticancer activity of several ruthenium (Ru)
complexes with quinolone antibiotics in colon tumor cell cultures. Real-time cell analysis and drug-
mediated cytotoxicity tests monitored the inhibitory effects in the drug-treated LoVo colon cancer
cells. Flow cytometry assays were performed to evaluate cell cycle phases distribution and apoptotic
events. The obtained results showed dose-dependent increased levels of cell lysis and induction
of apoptosis in LoVo cancer cells treated with the Ru(III) complexes. In addition, data showed a
major decrease in cell proliferation, since the percentages of cells distributed in the S cell cycle phase
diminished, and a G0/G1 cell arrest was observed. Therefore, our results strongly suggest that
the newly synthesized Ru(III) complexes might play an important role in future chemotherapeutic
approaches, since their activity is based on diminishing cell proliferation, induction of apoptosis, and
modulation of cell cycle phases.

Keywords: ruthenium complexes; quinolones; cancer drug resistance; colon cancer; cytotoxicity;
apoptosis; cell cycle

1. Introduction

Cancer is a major public health problem worldwide with an estimated 19.3 million
new cancer cases and almost 10.0 million cancer deaths occurring in 2020. Moreover,
in 2040, the global cancer burden is expected to be 28.4 million cases, a 47% rise from 2020,
due to the increasing risk factors associated with globalization and a growing economy [1].
Colorectal cancer is the third malignancy between the most common human cancers in the
world, and it is also among the most diagnosed cancers in the United States and Europe
for both men and women, with high incidence and mortality (10% of cancer diagnosed
female patients, and 9.4% of cancer diagnosed male patients) [1,2]. Many studies showed
that cancer is a multi-step process consisting of several stages of development, such as
the transformation of normal cells, tumor progression, and advanced metastasis [3], and
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it involves the loss of genomic stability that promotes the acquisition of further DNA
alterations leading to cell transformation and tumor progression [4,5], aberrant progression
of the cell cycle, resistance to growth inhibition, proliferation without dependence on
growth factors, replication without limit, evasion of apoptosis, induction of angiogenesis,
and modification of cell adhesion [3,6,7].

Although many types of cancers are initially susceptible to chemotherapy, over time,
they can develop drug resistance that often leads to therapeutic failure. Resistance to
chemotherapy and molecularly targeted therapies is a major problem facing current cancer
research [8,9], and the number of drugs that have been shown to induce resistance in
cancer cell killing is rapidly increasing, possibly through the modulation of survival cell
components, such as proliferative or anti-apoptotic proteins [10–12]. The mechanisms of
resistance to “classical” cytotoxic chemotherapeutics and to therapies that are designed
to be selective for specific molecular targets share many features, such as alterations in
the drug target, activation of pro-survival pathways, and ineffective induction of cell
death [13–15].

The multi-drug combination chemotherapy was established to be a successful strategy
in the management of colon cancer treatment, the reason being the potential additive or
synergistic tumor cytotoxicity produced. Since the discovery of the cytotoxic properties of
the cisplatin, platinum-based drugs have been investigated for cancer treatment and repre-
sent some of the most widely used anticancer chemotherapeutics, but their high toxicity
and chemoresistance had spun the researchers to search for other novel chemotherapeutics
based on metal compounds. In addition to cisplatin (CisPt), oxaliplatin and carboplatin are
some of the most effective therapeutic agents commonly used in the treatment of colorectal
cancers. [16,17]. The mechanism of action of CisPt has been linked to its ability to crosslink
with the purine bases on DNA, and the CisPt-DNA adducts formed might interfere with
normal DNA replication and transcription and subsequently promote the activation of
cellular apoptosis [18,19].

Due to their potent cytotoxicity in cancer cells, ruthenium complexes have attracted
great interest and recently emerged as potential candidates to replace platinum chemother-
apy [19–21]. Over the last few years, research in colon cancer treatment has been focused
on finding better chemotherapeutics. Therefore, various Ru complexes have been obtained
and intensively studied due to their proper physicochemical and biochemical properties,
such as selective bioactivity as well as the ability to overcome the resistance encountered
with platinum-based drugs, which is associated with low toxicity profiles [21,22].

Ruthenium (III) complexes have shown remarkable antitumor activity with various
advantages over traditional platinum drugs, including potent efficacy, low toxicity, and less
drug resistance. Research in this area has shown over the last decade that subtle changes
in the structure often have a significant effect on the pharmacological properties of metal
complexes [20,23].

In the last years, many research studies were focused on obtaining complexes with
remarkable activity using quinolones molecules as ligands [24]. Quinolones represent a
class of synthetic antibacterial agents that is widely prescribed for the treatment of infections
in humans or for veterinary use. The bactericidal activity of these agents arises from their
capacity to inhibit two bacterial key enzymes: DNA gyrase (a type II topoisomerase) and
DNA topoisomerase IV [25,26].

While quinolone-based drugs were developed to inhibit the prokaryiotic DNA gy-
rase [27], the antineoplastic drugs have eukaryotic type II topoisomerase as their primary
target [28]. Moving the activity of quinolone from antibacterial to anticancer activity [29]
represents a current challenge considering the increasing resistance to chemotherapy and
the severe side effects of anti-neoplastic agents.

To accomplish this goal, different synthetic strategies were approached. The first
of these directions involves chemical modifications on the quinolone nucleus, either by
disruption of the zwitterionic properties of the compounds (which can be achieved by
modifying the C7 basic substituent, or the C3 carboxyl group, or both) or by increasing the
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number of aromatic/condensed rings [30]. The most successful example is represented
by vosaroxin (formely voreloxin), which is a first-in-class anticancer quinolone derivative
that inhibits topoisomerase II and induces selective double-strand breaks, G2 arrest, and
apoptosis [31,32]. Vosaroxin passed Phase 2 clinical trials in acute myeloid leukemia
(AML) and platinum-resistant ovarian cancer, while in a Phase III trial, the addition of
vosaroxin to cytarabine offered clinical benefit to some patients with relapsed or refractory
AML [33]. Vosaroxin displays some valuable pharmacokinetic properties such as the
minimal metabolization and a lack of free radical production; in addition, it is not a
substrate for the glycoprotein efflux pump, and its antineoplastic activity is independent of
P53 function [34].

A second direction aiming to extend the scale of biological activities for a molecu-
lar entity with coordinating properties is to obtain metal complexes with selected metal
ions. In this regard, a starting point could be the complexes of quinolone antibiotics with
Ru(III) ion based on the success of the already recognized NAMI-A [35] and KP1019 [36].
So far, only few Ru(III) complexes with quinolone antibiotics were reported. In these
complexes, the quinolone molecules bind to the metal ions in two ways: as monoanionic
bidentate generating metal chelates or as neutral unidentate ligand through the nitrogen
atom of piperazin-1-yl moiety. The chelate complex of Ru(III) with norfloxacin of gen-
eral formula [Ru(nor)3] (nor = norfloxacinate, C16H17FN3O3

−) remarkably enhances the
water solubility of norfloxacin and interacts with human serum albumin [37], while the
chelate of ciprofloxacin [Ru(C17H17FN3O3)3]·4H2O is fully water soluble and stable under
physiological pH for at least 48 h, and it interacts with ct-DNA [38]. The complexes of
Ru(III) with unidentate ligands levofloxacin (LEV), gatifloxacin (GAT), and pipemidic acid
(Pip-H: L) with formulas [Ru(LEVO)3(Cl)3]·8H2O [39], [Ru(GAT-NH4)(Cl)3(H2O)2] [40], and
[M(L)3(Cl)3]·6H2O, respectively, were prepared and physicochemically characterized [41].
The biological evaluation of the Ru(III) complex with pipemidic acid revealed antibacterial
efficiency against four kinds of bacteria—G(+) (Staphylococcus epidermidis and Staphylococcus
aureus) and G(–) (Klebsiella and Escherichia coli)—and inhibitory activity against the human
breast cancer (MCF-7) tumor cell line [41].

During previous research studies, our group also synthesized and characterized a series of some
novel ruthenium (III) complexes with mixed ligands of the type RuCl3L2(DMSO)m·nH2O [42,43],
as described in Table 1.

Table 1. Ruthenium (III) complexes with mixed ligands of the type RuCl3L2(DMSO)m·nH2O.

Complex X1 X2 R1 R2 R3

[RuCl3(pip)2(DMSO)]·2H2O
(pip = pipemidic acid); Ru-pip N N C2H5 - H

[RuCl3(enx)2(DMSO)]
(enx = enoxacin); Ru-enoxa N C C2H5 F H

[RuCl3(nf)2(DMSO)]·H2O
(nf = norfloxacin); Ru-nf CH C C2H5 F H

[RuCl3(cp)2(DMSO)]·DMSO·2H2O
(cp = ciprofloxacin); Ru-cipro CH C F H

[RuCl3(enro)2(DMSO)]·H2O
(enro = enrofloxacin); Ru-enro CH C F C2H5

[RuCl3(of)2(DMSO)]·H2O
(of = ofloxacin); Ru-oflo CH C F CH3

[RuCl3(levof)2(DMSO)]·DMSO·8H2O
(levof = levofloxacin); Ru-levo CH C F CH3

All these complexes display an octahedral stereochemistry with the quinolone ligand
acting as monodentate, coordinated through the N4 atom of the piperazinyl ring (Figure 1).
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Figure 1. Structures of the investigated Ru(III) complexes with quinolones.

Our previous studies showed that these Ru(III) complexes interacted in vitro with
biomolecules such as calf thymus DNA [44] and human serum transferrin [45], and they
presented antimicrobial activity in vitro [46] and antitumor activity in vivo [47]. In one
previous study, the fluorescence intensity of the DNA-EtBr system was registered in
the absence and in the presence of increasing amounts of complexes. The competitive
study revealed the quenching of the fluorescence intensity of the DNA-EtBr system for
all complexes, suggesting an intercalative mode for interaction with DNA [44]. The phe-
nomenon is not singular, since other studies performed by our research group showed that
organo-metal compounds induced cell lysis and apoptosis in several human cancer cell
lines [48–50].

Apoptosis or “programmed cell death”, along with the cell cycle, represented im-
portant research directions addressed by our group, due to the implications that these
biological processes could have in the evolution of neoplastic diseases and the therapeutic
approaches in cancer. The evaluation of the apoptosis process and cell cycle phases, added
by the characterization of related molecules, key regulators, in human cancer cells, was ad-
dressed by other previous in vitro studies performed by our group, which were carried out
mainly in colon [7,11], renal [51], mammary [52], ovarian [53], or head and neck cells [54,55].
Moreover, due to the fact that often, the effect of cancer therapy could be amplified by com-
bined treatments, in vitro approaches were made in testing the biological activity of several
biocompounds as additional treatments to classical chemotherapy [7,11,52,55]. In addition,
because the mode of administration of anticancer drugs and adjuvants contributes to
increasing the therapeutic effect and diminishing the unwanted side effects, we studied the
capacity of nanoparticles to better sensitize the tumor cells as well as modulate apoptosis
and proliferation [56,57]. The last but not least research direction aimed to decipher the
mechanisms underlying the drug resistance and find the means to reverse it in various
cancer cell lines [7,55].

Therefore, all these together with the anticancer potential showed by Ru(III) complexes
prompted us to extend our studies on the investigation of the in vitro anticancer biological
activity of the Ru(III) complexes with some quinolone antibiotics in the human colon
adenocarcinoma LoVo cell line, using as positive control the therapeutic drug cisplatin
(CisPt).
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2. Materials and Methods
2.1. Reagents

The Ru(III) complexes studied were previously synthesized and characterized [39,40].
The stock solutions were prepared by dissolving the Ru(III) complexes in a minimum
amount of DMSO, which was diluted in the cosolvent system H2O:Polyethyleneglycol 400
(PEG400) 3.8:6.2 (V/V) and preserved at −20 ◦C.

Cisplatin (Cis-diammineplatinum(II) dichloride, DDP) was purchased from Sigma
Aldrich (St. Louis, MO, USA), and stock solutions of 5 mM were prepared as recommended,
in ultrapure sterile water, and preserved at −20 ◦C. Working solutions were prepared from
the frozen stocks in culture medium before each experiment.

Ribonuclease A (RNase A) from bovine pancreas, propidium iodide (PI), ethylenedi-
aminetetraacetic acid (EDTA), dimethyl sulfoxide (DMSO), and paraformaldehyde (PFA) were
obtained from Sigma Aldrich (St. Louis, MO, USA). Annexin V-FITC Apoptosis Detection kit
was purchased from Becton Dickinson (BD) Biosciences (Mountain View, CA, USA).

2.2. Cell Cultures and Treatments

The LoVo human colon cancer cell line was derived from a metastatic tumor in the
left supraclavicular region of a 56-year-old male with Dukes’ type C, grade IV, colorectal
adenocarcinoma, and it was purchased from the American Type Culture Collection (ATCC).
Cells were routinely maintained in culture in DMEM/F12 medium added with 2 mM
L-glutamine and 10% fetal calf serum in culture flasks and incubated at 37 ◦C in 5% CO2
humidified atmosphere [11]. After 24 h, when cells achieved around 60% confluence,
they were treated for various periods of time with different concentrations of Ru(III)
complexes or CisPt, as positive control. Then, cells from flasks were detached with a
non-enzymatic solution of PBS/1 mM EDTA, washed twice in PBS, and immediately used
for proliferation/cytotoxicity assays or evaluation of apoptotic events by flow cytometry;
alternatively, cells were fixed in ice-cold ethanol/PBS (70:30) and kept until use at 4 ◦C for
cell cycle analysis by flow-cytometry technique. Non-treated cells were used as controls
throughout all experiments [11,52,55].

2.3. Real-Time Cell Analysis (RTCA) of Drug-Treated Cells

To analyze the proliferation profiles of treated LoVo cells, we continuously monitored
cell growth by using real-time cells analysis (RTCA) assay and an xCELLigence DP-System,
which allows cell-based, label-free in vitro assays and real-time monitoring of cellular
processes such as cell viability and cytotoxicity [52,58]. Changes in a cell status, such as
cell morphology, cell adhesion, or cell viability led to a change in cell index (CI), which is
a quantitative measure of the cell number present in a well [7,48]. Real-time impedance
data were obtained and used to generate compound-specific profiles that are dependent on
the biological mechanisms of action of each Ru(III) complex. Briefly, LoVo human colon
cancer cells were cultured in DMEM culture medium added by 2 mM L-glutamine and
10% FCS, and seeded in 100 µL culture medium in 16 cell E-Plates (ACEA Biosciences, San
Diego, CA, USA). Growth curves started to be automatically recorded in real time on the
xCELLigence System with a DP device [11]. After cells proliferated until a cellular index
(CI) over 1.0, usually after 24 h, scalar concentrations of Ru(III) complexes or CisPt were
added, and growth curves were registered in real time on a computer using RTCA 2.1.2.
Software [7,52,57].

2.4. Assessment of Drug Cytotoxicity by MTS Assay

All assays were performed in triplicate in 96-well microtiter plates with flat-bottom
(Falcon), using a CellTiter 96 Aqueous One Solution Cell Proliferation Assay (Promega),
which is a MTS colorimetric assay. The method is based on the ability of metabolically
active cells to reduce MTS, which is a yellow tetrazolium salt to the colored formazan that
is soluble in the culture medium. Briefly, 1.5 × 104 cells/well were cultured in 100 µL for
24 h, culture supernatants were discarded; then, cells were treated for an additional 24 h
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with increasing concentrations of Ru(III) complexes or CisPt. After the end of the incubation
time, 20 µL of reagent mixture were added in each well: (a) MTS[3-(4,5-dimethylthiazol-2-
yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] and (b) PES
(phenazine ethosulfate), which has a high chemical stability, and might be combined with
MTS to form a stable solution.

After adding the coloring mixture, plates were incubated for 4 h at 37 ◦C with mild
agitation every 20 min. The color that developed during incubation was spectrophotomet-
rically quantified at λ = 492 nm, using a Dynex ELISA reader (DYNEX Technologies—MRS,
USA) [48,50,54,57].

The percentages of cell lysis were calculated using with the equation below, and
compared to untreated cells (considered 100% viable):

Cell lysis (%) = 100 − (T − B)/(U − B) × 100

where T = absorbance of treated cells, U = absorbance of untreated cells, and B = absorbance
of culture medium (blank), for λ = 492 nm.

Cell lysis data were expressed as the mean values ± standard deviations (SD) of
three different experiments. A parallel assay for the evaluation of DMSO cytotoxicity was
determined in the same experimental conditions, but no cell cytotoxicity was observed for
concentrations lower than 1% (data not shown).

2.5. Apoptosis Analysis by Flow Cytometry

The apoptosis assay was carried out using the Annexin V-FITC Apoptosis Detection
Kit and the manufacturer’s protocol from Becton Dickinson (BD) Biosciences. The percent-
ages of apoptotic cells were evaluated by double staining with Annexin V-FITC/propidium
iodide (PI), followed by sample analysis by flow cytometry. As negative control of the test,
the unmarked cells were used [11,52]. Briefly, 1 × 105 cells per tube were resuspended in
100 µL binding buffer, added with 5 µL Annexin V/FITC and 5 µL PI solution, and then
incubated for 15 min/RT at dark. Then, 400 µL binding buffer were added and percentages
of apoptotic events were measured by using data acquisition by flow cytometry using
a FACScan or FACS CantoII cytometers (Becton Dickinson, Immunocytometry System,
Mountain View, CA, USA). Evaluation of apoptotic events was performed using WinMDI
2.9 and Kaluza softwares [11,52].

2.6. Cell Cycle Evaluation Using Flow Cytometry

Previously, ethanol fixed cells (1 × 106) were washed twice in PBS, and cell pellets
were resuspended in 350 µL of PBS and then added with 50 µL of 10 mg/mL RNase A
(1 mg/mL final concentration). After 10 min incubation at 37 ◦C, 100 µL of 100 mg/mL
PI solution were added (20 µg/mL final concentration) and further incubated at 37 ◦C for
10 min. The probes were kept in the dark at 4 ◦C until data acquisition by flow cytometry
using a FACS CantoII flow-cytometer (Becton Dickinson (BD) Immunocytometry System,
Mountain View, CA, USA). Then, cell cycle analyses were performed using ModFIT LT
software to estimate the nuclear DNA content in 3 × 104 nuclei and progression through
cell cycle phases [11,55].

2.7. Statistical Analysis

All measurements were performed in triplicates. Statistical analyses were performed
using one-way analysis of variance (ANOVA) and GraphPad Prism 7 software (GraphPad
Software Inc., La Jolla, CA, USA).

3. Results and Discussion
3.1. Real-Time Cell Analysis of Proliferation of LoVo Cells Treated with Ru(III) Complexes

The xCELLigence System of Real-Time Cell Analyzer (RTCA) allows label-free and
real-time monitoring of cellular processes such as cell proliferation, cytotoxicity, adhesion,
viability, invasion, and migration, using electronic cell sensor array technology. Cellular
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events are monitored in real time without the incorporation of labels by measuring the
electrical impedance across inter-digitated micro-electrodes integrated on the bottom of
special tissue culture plates. The actual kinetic response of the cells within an assay
provided important information regarding the biological status of the cell. Changes in cell
status, such as cell morphology, adhesion, or viability led to a change in cell index (CI),
which is a quantitative measure of the cell number present in a well [58].

The capacity of cisplatin (CisPt), a metallic anticancer drug that has been used for
many years to treat various human cancers, including colon cancer, and Ru(III) complexes
to inhibit cell proliferation was investigated in a LoVo colon cancer cell line in order to
modulate the chemosensitivity of colon cancer cells to drug treatments and overcome the
chemoresistance. Therefore, we monitored compound-induced cytotoxicity to produce
continuous compound- and concentration-dependent cell impedance profiles using the
xCELLigence System and LoVo cancer cell line as our in vitro model.

To assess the optimal number of cells to be used in further assays, in a first line of
experiments, LoVo colon cancer cells were seeded at scalar densities from 103 to 106/well
in 16-well E-Plates for a dynamic monitoring of adherent cell proliferation. The cell growth
curves were automatically recorded on the xCELLigence System in real time. RTCA growth
curves of LoVo cells and CI values prompted us to establish the optimal cell density to be
used in further experiments and choose the 15 × 103 cells/well for the Ry(III) compound-
mediated cell cytotoxicity assays (data not shown).

LoVo cancer cells were seeded in E-plates 16 in complete culture medium
(1.5 × 104 cells/well/100 µL), plates were put in the xCELLigence DP device and cul-
tured at 37 ◦C in a 5% CO2 humified atmosphere. After 24 h, cells were added by increasing
concentrations of Ru(III) complexes or CisPt (from 12.5 to 200 µM), and growth curves
were registered in real time on a computer by using RTCA 2.1.2. Software. Then, the cell
growth, proliferation, and viability of LoVo cells were continuously monitored. Results are
expressed as normalized cell index (CI) after automatic comparison between the curves of
viability for treated vs. non-treated (NT) cells (Figure 2).

Some active ruthenium complexes could manifest cytotoxic action against various
cancer cell lines, including colon cancer cell lines [16,17,20]. Therefore, we investigated the
proliferative vs. cytotoxic action of Ru(III) complexes on the LoVo colon cancer cell line,
and results varied depending on the type of compound, concentration, and treatment time.
RTCA analysis of the LoVo cell line proliferation curves for cells treated with concentrations
between 6.25 and 200 µM of Ru(III) complexes, and normalized vs. control (the proliferation
curve for untreated cells), demonstrated a pronounced cytotoxicity decrease in viability for
almost all the concentrations used in the assay, mostly for 25, 50, 100, or 200 µM (Figure 2).

Among the tested Ru(III) complexes, Ru-nf, Ru-oflo, and Ru-levo seem to induce the
highest inhibition of LoVo cell proliferation during the first 24 h of treatments with 50, 100,
or 200 µM of drugs. Ru-pip, Ru-enro, and Ru-enoxa showed also inhibitory effects on cell
proliferation, the inhibitory effect becoming stronger with increasing treatment time.

Real-time impedance data obtained were used to generate compound-dependent cell
impedance profiles that are dependent on the biological mechanisms of action of each
compound. The proper concentrations of compounds with cytotoxic or cytostatic potential
to inhibit the growth of LoVo adherent tumor cells were further used in end-point assays
such as the evaluation of cell proliferation by colorimetric MTS assay or flow-cytometry
approaches to investigate both apoptosis induction and DNA progression through cell
cycle phases.
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Figure 2. Real-time cell analysis of cytotoxic effects of Ru(III) complexes vs. CisPt. LoVo human colon cancer cells were
treated with the reported drug concentrations in 16-well E-plates. Monitoring of Ru(III) complexes-mediated cytolysis was
performed by measuring the cell index for several days using the xCELLigence DP-System and compared to CisPt-induced
inhibition of proliferation vs. cell lysis.

3.2. Cell Lysis Induced by Ru(III) Complexes Is Dose-Dependent

After analyzing the effects of various concentrations of Ru(III) complexes on LoVo
human colon cancer cell proliferation, and compared to cisplatin, in the real-time cell
analysis assay using the xCELLigence DP-System, cells were subjected to an end-point,
colorimetric drug-mediated cytotoxicity method. MTS assay was used in order to better
assess the levels of cell lysis induced by drug treatments and discriminate between the
Ru(III) complexes under study regarding their ability to kill the LoVo colon tumor cells.
Increasing concentrations of Ru(III) complexes with quinolones or CisPt ranging from
3.125 to 200 µM were used to treat LoVo cultured cells for 24 h. Percentages of cell lysis
induced by drug treatments in the LoVo cell line are shown in Figure 3. Untreated cells
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were used as control and considered to have 100% viability. Results were expressed as
mean values of three different experiments ± standard deviation (SD).

Analyzing the cell response to drug treatments, a cytotoxic dose-dependent effect was
observed for all Ru(III) complexes and CisPt. Treatments for 24 h with Ru(III) complexes in
cosolvents resulted in increased cell lysis rates and implicitly decreased cell viability. Thus,
more than 75% of the cells were killed when the LoVo cell line was incubated either with
200 µM or 100 µM of Ru-nf, Ru-levo, Ru-oflo, Ru-cipro, or CisPt. Treatments with 25 or 50 µM
drugs induced more than 50% of cell lysis for all the Ru(III) complexes under study as well as
CisPt. Even for 6.25 µM or 12.5 µM treatments, the percentages of cell lysis were higher than
25% for all drugs tested, while 3.125 µM induced more than 14% cell lysis (Figure 3).

Figure 3. Antitumor effect of Ru(III) complexes against LoVo colon cancer cells. Cells lysis was
induced by 24 h treatment with scalar concentrations of Ru(III) complexes or CisPt, and compared to
untreated control LoVo cells. Data shown are expressed as mean values ± standard deviations (SD)
of three different experiments (n = 3).

In addition, the inhibitory concentration values (IC) of Ru(III) complexes or CisPt were
calculated using the linear regression analysis from the cytotoxicity data of each compound
and for different percentages of cell lysis corresponding to drug concentrations.

Therefore, the corresponding drug concentrations required to induce the lysis of
50% (IC50), 75% (IC75), or 90% (IC90) of the cells were calculated when the cytotoxicity of
Ru(III) complexes was assessed by MTS assay after 24 h of their incubation with LoVo cells
compared to cisplatin as positive control (Table 2).

In terms of IC50 values, several Ru(III) complexes with quinolones displayed similar
activities to the positive control, cisplatin, on LoVo cells. The best cytotoxic activity seemed
to have Ru-cipro, Ru-nf, Ru-levo, and Ru-oflo since IC50, IC75, and IC90 values were
the lowest (Table 2), and therefore, the toxicity profile is lower compared to cisplatin,
which might allow a wide modulation of concentrations to be further used in therapeutic
approaches with an improved control of the non-target cell toxicity.
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Table 2. Values (µM) of IC50, IC75, and IC90, for Ru(III) complexes and CisPt-mediated lysis.

Compound IC50 IC75 IC90

Ru-cipro 27.88 ± 3.25 111.63 ± 2.40 161.87 ± 1.89
Ru-nf 4.70 ± 1.36 108.91 ± 0.88 171.44 ± 2.23

Ru-levo 7.42 ± 1.46 108.14 ± 3.14 169.15 ± 5.84
Ru-oflo 4.80 ± 2.58 114.89 ± 2.31 186.70 ± 5.25
Ru-enro 39.63 ± 1.97 165.63 ± 7.70 241.23± 13.50

Ru-enoxa 62.44 ± 0.06 174.14 ± 2.21 252.16 ± 3.50
Ru-pip 55.36 ± 0.34 148.70 ± 2.86 204.71 ± 4.78
Cis-Pt 30.7 ± 1.13 124.46 ± 1.30 180.71 ± 1.40

IC50, IC75, and IC90 values represent the concentrations of a tested compound required to inhibit 50%, 75%, or
90% of the cell growth, with respect to the control sample (in the absence of the tested compound), and they are
presented as mean ± SD of three independent experiments.

The results are similar to those obtained by in vitro treatments with several other
ruthenium compounds such as dinuclear Ru(III) complexes, whose effect was studied on
different types of cancer cell lines, and when a reduction of cell proliferation was observed
after 24 h of exposure to 100 µM of the compounds under study [16]. In addition, some
ruthenium organometallic compounds might present collateral sensitivity for cisplatin-
resistant cancer cells [59].

Data analysis following the MTS colorimetric assay confirms the results obtained
by RTCA analysis. Thus, in subsequent end-point assays, such as apoptosis and DNA
progression through cell cycle phases, LoVo cells will be treated with fixed concentrations
of 10 µM and 50 µM of Ru(III) complexes.

3.3. Promotion of Apoptosis by Ru(III) Complexes in LoVo-Treated Cells

Apoptosis, known also as “programmed cell death”, is a cellular “suicide” mechanism
responsible for the control of the cell number in tissues and elimination of those predis-
posed to malignant transformation that present DNA mutations or have an aberrant cell
cycle [60–63]. During tumorigenesis, apoptosis is undermined through the systematic loss
of regulatory control mechanisms, finally resulting in the generation of a malignant pheno-
type, and resistance to chemo- and radio-therapy [8,64,65]. The mechanisms of apoptosis
might be of great importance for carcinogenesis, tumor evasion, and have practical impli-
cations for anticancer therapy, since many anticancer drugs act during the physiological
pathways of apoptosis, in the end leading to tumor cell destruction [66–70].

Along with the inhibition of cellular proliferation, apoptosis is frequently evaluated
in the biological response to treatment with various chemotherapeutic agents. After
automatic data acquisition from the homogenous assays of real time of the compound-
specific influence, and further of the end-point test of drug-mediated cytotoxicity, we
calculated IC50 values and determined the optimal doses to be used in further end-point
experiments, such as evaluation of apoptosis induction.

In order to study the potential role of Ru(III) complexes in the induction of apoptosis
in colon cancer cells, the levels of apoptotic events were evaluated by flow cytometry
techniques. LoVo colon cancer cells were cultured in complete medium for 24 h; then,
the culture medium was changed, and cells were treated for an additional 24 h with
10 or 50 µM of Ru(III) complexes. Then, LoVo cells were detached with PBS/1 mM EDTA,
sequentially washed with PBS and washing buffer, and centrifuged at 300× g/5 min. Pel-
lets were suspended in 400 µL binding buffer, and 100 µL was distributed in flow tubes
and stained with 5 µL of Annexin-V/FITC and/or PI for 15 min/RT in the dark [7,55]).
As positive controls, cells treated with 10, 25, or 50 µM cisplatin were used, while the
negative control (CTRL) was represented by untreated cells. The green and red fluores-
cences were measured by using a FACScan flow-cytometer (BD Biosciences) after acquiring
10,000 events. Then, the acquired data were analyzed using WinMDI2.9 and Kaluza
softwares, and apoptotic events were expressed as cell percentages.
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Figure 4 shows data from a significant experiment of induced apoptosis in LoVo cells
by 24 h treatments with either Ru(III) complexes or CisPt compared to untreated cells. Total
apoptosis took into account the labeled Annexin-V/FITC cells, and data are presented as
histograms, the assay marker of positivity being set on non-treated cell champion.

Figure 4. Induction of apoptosis in the LoVo cell line by Ru(III) complexes vs. CisPt. Effects of drug treatments on apoptosis
induction in the LoVo human colon adenocarcinoma cell line were evaluated by Annexin-V/FITC and PI double-staining
assay. Levels of apoptotic events were assessed by flow cytometry acquisition using a FACScan cytometer and analysis with
WinMDI2.9 and Kaluza softwares. Data are presented as flow cytometry histograms.
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Annexin V belongs to a family of calcium-dependent phospholipid-binding proteins
that bind to phosphatidylserine (PS) and allow identifying the apoptotic cells found in early
and late stages, the last process preceding necrosis; propidium iodide (PI) is a dye used for
assessing cell viability and the exclusion of non-viable cells that binds to double-stranded
DNA but is excluded from cells with intact plasma membranes. It is used in combination
with Annexin V/FITC to assess the cell viability and discriminate between apoptotic and
necrotic cells; live cells do not bind Annexin or PI.

Use of 24 h treatments with 10 µM of all Ru(III) complexes with quinolones induced
higher levels of apoptosis compared to control cells with over 32% of apoptosis being found
in the treated cells (Figure 4). Ru-cipro, Ru-pip, Ru-enoxa, and Ru-enro induced levels
of apoptosis of 57.84%, 53.57%, 51%, and 54.23%, respectively, higher than the apoptotic
events induced by 10 µM CisPt treatment (50.27%). The lowest apoptosis was induced by
Ru-levo (32.97%), while Ru-oflo and Ru-nf induced more than 40% of apoptosis, 42.06%
and 46.55%, respectively.

When drug doses of cell treatments were increased to 50 µM, stronger effects were
observed both for Ru(III) complexes and CisPt treatments (Figure 4). Treatments with Ru-cipro,
Ru-pip, and Ru enro induced levels of apoptosis comparable with those induced by CisPt
treatment (63.76%, 64.33%, and 64.03%, respectively, as compared to 63.89%) (Figure 4). The
strongest effect of 73.34% apoptosis was induced by Ru-enoxa treatment. However, a high
increase in the total apoptosis was also induced by Ru-nf (51.77%), Ru-levo (42.55%), and
Ru-oflo (45.80%) (Figure 4).

Induction of apoptosis was also achieved by cancer cell treatments with several other
ruthenium (II) and (III) compounds, but levels of apoptotic events depended not only on
ligands but also on the doses used and the sensitivity of the cancer cell lines tested [16,22].

3.4. Cell Cycle Progression Changes in LoVo Cells Treated with Ru(III) Complexes

The cell cycle is the ordered sequence of events that occur to enable DNA replication
and cell division, and it can be divided in two phases (interphase and mitosis) and four
stages. During these stages, the cell increases in size (gap 1/G1 stage), copies its DNA
(synthesis, or S stage), prepares to divide (gap 2, or G2 stage), and then divides (mitosis or
M stage). The stages G1, S, and G2 belong to the interphase, which accounts for the span
between cell divisions. Some cells exit the G1 stage and enter in a resting state called G0.
Based on stimulatory and inhibitory messages received by a cell, it “decides” whether it
should enter into the cell cycle and divide. Regulation of the cell cycle machinery, resulting
in an arrest of cells in different phases of the cell cycle, might be altered by anticancer agents,
and thereby, the growth and proliferation of cancerous cells could be reduced [16,19,71].

To reveal the anti-carcinogenic effects of Ru(III) complexes with quinolones that may
have an inhibitory potential, cells were cultured and treated as in the experiment described
above, and the end-point assay of LoVo cell progression through cell cycle phases was
studied by flow cytometry. Perturbations in cell cycle progression may account for the anti-
carcinogenic effects. Flow cytometry assays are useful techniques that became standard
tools to analyze the DNA content of cells and show the cell cycle distribution.

Therefore, non-treated control LoVo cells or cells treated either with Ru(III) complexes
or CisPt were further subjected to RNase treatment, PI labeling, followed by data acquisition
and analysis by flow cytometry. DNA progression through cell cycle phases is shown in
Figure 5 for all drug-treated samples vs. control, which is represented by non-treated cells.
The nuclear DNA content and progression through cell cycle phases were evaluated in
acquired 3 × 104 nuclei.
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Figure 5. Modulation of LoVo cell cycle progression by Ru(III) complexes vs. CisPt. Effects of treatments with Ru(III)
complexes on the modulation of cell cycle phases was studied in the LoVo human colon adenocarcinoma cell line and
compared to CisPt-treated or non-treated cells. DNA progression through cell cycle phases was evaluated by PI labeling,
which was followed by flow cytometry acquisition and analysis using a FACS CantoII flow-cytometer (BD Biosciences) and
ModFit software.
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4. Discussion

The control cells displayed a cell distribution of 44.55% in G0/G1, 36.79% in S, and
18.66% in G2M cell cycle phases. Both 10 µM and 50 µM CisPt treatments induced a
decrease in LoVo cell proliferation, since cell distribution in the S phase diminished to
33.2% and 28.99%, respectively, and induced a cell cycle arrest in the G0/G1 phase, where
55.84% and 56.66%, respectively, of the nuclei were found (Figure 6, Table 3).

Figure 6. Effects of Ru(III) complexes on DNA progression through LoVo cell cycle phases. Cell
cycle phases were analyzed in LoVo human colon adenocarcinoma cell line after cell treatments with
10 µM (�) or 50 µM (�) Ru(III) complexes or CisPt. DNA progression through cell cycle phases was
evaluated after RNase treatment and PI labeling, which was followed by flow cytometry acquisition
using a FACS CantoII flow cytometer, and analysis with ModFit software. Negative control (CTRL)
was represented by untreated LoVo cells.

Table 3. Evaluation of DNA progression through LoVo cell cycle phases treated either with Ru(III)
complexes or CisPt.

Drug Treatment Cell Cycle Phases Proliferation Index

G0/G1 (%) S (%) G2M (%) S+G2M (%)

NT 44.55 36.79 18.66 55.45
CisPt (10 µM) 55.84 33.20 10.96 44.16
CisPt (50 µM) 56.66 28.99 14.35 43.34

Ru-cipro (10 µM) 52.41 34.10 13.49 47.59
Ru-cipro (50 µM) 66.01 29.29 4.69 33.98

Ru-nf (10 µM) 51.19 34.94 13.88 48.82
Ru-nf (50 µM) 63.68 16.77 19.54 36.31

Ru-levo (10 µM) 54.38 26.73 18.89 45.62
Ru-levo (50 µM) 54.60 21.99 23.42 45.41
Ru-oflo (10 µM) 52.24 31.70 16.06 47.76
Ru-oflo (50 µM) 65.76 13.43 20.81 34.24
Ru-pip (10 µM) 23.99 42.74 33.27 76.01
Ru-pip (50 µM) 61.51 18.82 19.67 38.49

Ru-enoxa (10 µM) 49.70 28.85 21.45 50.3
Ru-enoxa (50 µM) 48.11 8.81 43.09 51.9
Ru-enro (10 µM) 54.40 22.47 23.14 45.61
Ru-enro (50 µM) 48.28 9.97 41.75 51.72
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Cell treatments with 10 µM of Ru-cipro and Ru-nf induced similar decreases in the
S phase as CisPt (34.1%, and 34.94%), while Ru-oflo, Ru-levo, Ru-enoxa, and Ru-enro
induced a decrease in cell distribution in the S phase between 31.7% and 22.47%. At the
same time, percentages of nuclei blocked in the G0/G1 phase were between 49.7% for
Ru-enoxa and 54.40% for Ru-enro (Table 3, Figure 6).

When cells were treated with 50 µM of Ru(III) complexes, a higher decrease in the
S phase distribution was observed for all treated samples. So, the highest effect was
observed for Ru-pip (18.82%), Ru-nf (16.77%), Ru-oflo (13.43%), Ru-enro (9.97%), and
Ru-enoxa (8.81%) treated cells. Treatments with 50 µM of Ru-cipro, Ru-nf, Ru-oflo, and
Ru-pip increased also the cell distribution of over 60% in the G0/G1 phase, while Ru-enoxa
and Ru-enro induced also an increase in the G2M phase, to 43.09% and 41.75%, respectively
(Table 3, Figure 6).

When the proliferation indexes were calculated as the sum of the percentages of cells
distributed in the S and G2M cell phases, the highest decreases were found for 50 µM
treatments with Ru-cipro (33.98%), Ru-nf (36.31%), Ru-oflo (34.24%), and Ru-pip (38.49%) as
compared to the non-treated cells (55.45%) or CisPt (43.34%). In addition, 10 µM treatments
induced significant decreases of the proliferation index, which was mainly for Ru-cipro
(47.59%), Ru-nf (48.82%), Ru-levo (45.62%), Ru-oflo (47.76%), or Ru-enro (45.61%). Both 10
µM and 50 µM of Ru-levo treatments showed similar proliferation indexes (Table 3, Figure 6).

In conclusion, increased concentrations of Ru(III) complexes seem to induce a dose-
dependent decrease in cell distribution found in the S cell cycle phase. The results suggested
that cell cycle arrest mostly took place in the G0/G1 phase and in a lower proportion also
in the G2M phase, which might represent an important cause for the anti-proliferative
effect of Ru(III) complexes, similar to CisPt, but hopefully less toxic.

The arrest in G0/G1 and G2-M phases are some cell cycle-regulating mechanisms
related to cellular damage and, in particular, to DNA damage. In that case, DNA repair
mechanisms are activated to ensure the replication of an intact DNA. When the reparation
is successful, cells start again cycling; otherwise, apoptosis mechanisms are activated [16].

The results obtained during the study showed increased levels of cell lysis and apop-
totic events, which are both dose-dependent in LoVo cancer cells treated with the Ru(III)
complexes with quinolone antibiotics. In addition, data showed a major decrease in cell
proliferation, since percentages of cells distributed in the S cell cycle phase diminished, and
a G0/G1 cell arrest was observed. Therefore, our results strongly suggest that the newly
synthesized Ru(III) complexes might play an important role in future chemotherapeutic
approaches, since their activity is based on diminishing cell proliferation, induction of
apoptosis, and modulation of cell cycle phases.

5. Conclusions

Intrinsic (de novo) or acquired tumor cell resistance remains a major challenge for
different types of chemotherapeutical approaches. Despite the recent advances in surgery,
radiotherapy, and especially in chemotherapy that have led to major achievements in
cancer treatment, the development of tumor cell resistance to chemotherapeutic agents
is still an important problem, reducing the effectiveness of available therapies. A major
goal of early approaches in individualized therapy was to develop in vitro tests to predict
tumors’ drug responsiveness. Since the chemosensitivity of tumors could not be predicted
with high reliability, the evaluation of drug resistance is reliable independent of tumor
type, test assay, and drug used in in vitro tests [72,73].

One of the most effective anticancer agents used to treat colon cancer is the platinum-
based drugs, such as cisplatin, oxaliplatin, or carboplatin, but the insurgence of drug
resistance and the high systemic toxicity developed are among the important obstacles
against the success of chemotherapy. Ruthenium compounds have drawn great attention
for their potential clinical application as anticancer drugs. Contrast data are available on
their anticancer effects in colon cancer. The emerging interest appeared in developing
new pharmaceutical compounds, such as Ru(III) complexes, with a high potential for
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chemotherapeutic use in cancer, and the improvement in their delivery prompted us to
investigate their role in the modulation of colon cell proliferation vs. cytotoxicity, induction
of apoptosis, and cell cycle regulation, in order to further find ways to improve their
biological effects.

The Ru(III) complexes with quinolones developed by our group manifested a strong
drug-mediated cytotoxicity against the LoVo colon cancer cell line, as assessed both by
real-time cell analysis (RTCA) or end-point cytotoxicity assay, and results varied depending
on the compound and concentration used. The registered RTCA proliferation curves of
treated LoVo cells and the calculated IC50 values showed that Ru(III)-nf, -oflo, -levo, and
-cipro were the most effective in killing colon cells at lower doses. Their toxicity profiles
seemed to be lower compared to cisplatin; therefore, a wide modulation of concentrations
might be further used in therapeutic approaches, and the control of non-target cell-toxicity
could be improved.

Since apoptosis started to be considered as an ideal way to eliminate precancer-
ous and/or cancer cells, and chemopreventive agents might modulate apoptosis, our
experimental results obtained after evaluation of the apoptotic events induced by Ru(III)
complexes with quinolones showed that treatments of colon cancer cells with the drugs
under study induced dose-dependent effects, which could be useful in the management
and therapy of cancer, since they proved to be at least as efficient as cisplatin. Treatments
with 10 µM of all Ru(III) complexes with quinolones induced over 32% of apoptosis, while
Ru-cipro, Ru-pip, Ru-enoxa, and Ru-enro induced higher levels of apoptotic events than
CisPt. When drug doses of cell treatments were increased to 50 µM, stronger effects were
observed both for Ru(III) complexes and CisPt treatments, the highest apoptosis being
induced by Ru-enoxa treatment (73.34% apoptotic events).

Ru(III) complexes with quinolones seemed also to regulate the colon cell proliferation
through cell cycle phases in a dose-dependent manner: both 10 and 50 µM treatments
induced a decrease in the cells found in the synthesis (S) phase; in addition, we observed
an increase in the cell cycle arrest mainly in the G0/G1 phase, the highest effect being
obtained for Ru-pip, Ru-nf, Ru-oflo, Ru-enro, and Ru-enoxa treated cells.

Our results, consistent with other scientific reports highlighting the cytotoxic effects
of ruthenium-based drugs in colon cells, showed that Ru(III) complexes with quinolone
antibiotics might be further used to elaborate new therapeutic approaches for future
personalized cancer treatments.
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