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Abstract: Machine learning techniques provide a remarkable tool for advancing scientific research,
and this area has significantly grown in the past few years. In particular, reinforcement learning, an
approach that maximizes a (long-term) reward by means of the actions taken by an agent in a given
environment, can allow one for optimizing scientific discovery in a variety of fields such as physics,
chemistry, and biology. Morover, physical systems, in particular quantum systems, may allow one
for more efficient reinforcement learning protocols. In this review, we describe recent results in the
field of reinforcement learning and physics. We include standard reinforcement learning techniques
in the computer science community for enhancing physics research, as well as the more recent and
emerging area of quantum reinforcement learning, inside quantum machine learning, for improving

reinforcement learning computations.

Keywords: reinforcement learning; physics; artificial intelligence; machine learning; quantum
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1. Introduction

The ubiquity of bigger and bigger data sets has made machine learning (ML) a
common tool for knowledge discovery from those large data sets. The solid theoretical
foundations of ML [1,2] have found their application in many different fields [3], physics
being no exception [4,5]. In the particular case of quantum information processing [6],
there are remarkable attempts that make use of quantum resources to enhance learning,
particularly in terms of processing time, than can be reduced considerably, providing
relevant speedups, sometimes quadratic or exponential [7].

The application of classical ML to different problems in physics has also become more
and more common recently [8-10], even leading to the field of physics-based ML [11,12].
reinforcement learning (RL), the learning paradigm that this review focuses on, has been
applied for the control of physical systems [13-16].

The next section will be devoted to go over the main contributions of classical RL to
different problems in physics (Section 2.1), and quantum RL (Section 2.2), respectively.
Section 3 summarizes this mini-review with some concluding remarks.

2. Reinforcement Learning and Physics

RL is a ML paradigm that optimizes decision making based on stages [17]. While
it cannot be considered supervised learning because the desired outputs are not known
in advance to train the model, it is not unsupervised or semisupervised learning either
because there is not a training limitation due to a lack of labels [2,18].

The RL framework is shown in Figure 1; it consists of an agent that takes actions in a
given environment; those actions have an associated immediate reward. The goal of the
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learning process is to maximize the long-term reward, a function that depends on the sum
of all the rewards that are collected over time:

Re=Y Y reien 1)
k=0

where the immediate reward 7, 1 is the value returned by the environment depending
on the action taken by the agent at time f + k + 1 and 7 € [0, 1] is the so-called discount-
rate, that sets the relative importance of future rewards. The environment is explored by
taking different actions, what leads to learning the action-value function or Q-function,
that estimates the expected future reward R; following the policy 7t(s,a):

Q™ (s,a) = Ex[R¢|sy = s,a;r = a] )
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Figure 1. Reinforcement learning framework: a; is the action taken by the agent at time ¢, s; is the
state of the environment at time f, and r;1 stands for the reward at time ¢ + 1.

The optimal policy appears as the result of learning the Q-function:
" (s,a) = argmax Q" (s, a) ©)]
acA

Equation (3) corresponds with a deterministic policy, in which given a state, only
one action can be taken. Stochastical policies encompass more than one possible action
according to probabilities encoded in the policy [17].

The goal of RL algorithms is to calculate Q" (s, a) in order to obtain the optimal policy
using. Many different methods can be considered, basically grouped into three main
approaches [17]:

¢ Dynamic programming (DP): it makes use of the Bellman equation [19] when a
complete model of the environment is available.

e MonteCarlo (MC) methods [17]: They do not need a model of the environment but
only sample sequences of states, actions and rewards. R; is computed when an episode
finishes, and Q(s, a) accordingly updated.

e  Temporal difference methods (TD) [20]: They do not require an environment model,
either. The values of Q.1 (s, a) are updated using information from the environment
(r¢+1 and s;41) as well as estimations of Q(s, ).

Sarsa and Q-learning are the most-widely used TD methods. Sarsa is an on-policy
algorithm that modifies the starting policy towards the optimal one whereas Q-learning
is off-policy and computes the optimal policy while the agent is interacting with the
environment by means of another arbitrary policy, Equation (4):

Qrr1(s,a) < Qi(s,a) + afrrer +max(Qi(s',a')) — Qi(s, a)] )
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where « is the rate of the update; s’ and a’ are the state and the action in time t + 1,
respectively. Q; stands for the action-value function for a particular state before being
visited at time t. Qs is the updated value of that state once it has been visited.

RL is a natural approach for system control, that has been successfully applied to
many different fields, from robotics [21] to marketing [22] and medicine [23], to name a few.
In the case of physics, two main approaches arise, namely, the use of standard RL to control
different parts of physical systems (either classical or quantum), and the so-called quantum
RL, a quantum version of RL that shares objectives with other quantum ML approaches,
i.e., to make use of quantum technologies to carry out ML calculations in a more efficient
way. Both approaches are described in the next two subsections.

2.1. Standard Reinforcement Learning for Physics Research

The use of RL has spread across different physics applications in recent years, particu-
larly in quantum physics. One of the first remarkable approaches proposed the application
of RL to adaptive quantum metrology [15], in which RL-based control achieved a better
control of of quantum processes than standard greedy approaches. In [24], RL demonstrates
to be able to find the ground state and describe the unitary time evolution of complex inter-
acting quantum systems. The ability of RL to optimize quantum-error-correction strategies,
thus protecting qubits against noise is shown in [25]. In another original work [26], con-
trol based on RL shows a similar performance to optimal control methods in many-body
quantum systems of interacting qubits.

RL has also been applied in the field of quantum computing for dynamic non-convex
optimization in ultra-cold-atom experimentation [14] and measure control in order to
facilitate the access to quantum states [13]. Other relevant works to deal with the issue of
smart and efficient quantum measures make use of active learning [27,28].

The advent of Deep Learning (DL), that has allowed the resolution of data-driven
problems that were unapproachable just a few years ago, has also produced an impact
on RL by means of deep policies and DL-based function approximations, leading to the
so-called Deep Reinforcement Learning (DRL) [29]. DRL has already been used for efficient
measuring of quantum devices [30], for control optimization in quantum state prepara-
tion [31], for gate control [32] or for robust digital quantum control to break adiabatic
quantum control [16].

Although this subsection has focused on RL to different quantum problems, its ap-
plication to classical physics is also common. In [33], evolutionary RL was applied to
estimate the likelihood of dynamical large deviations, thus showing the suitability of ML
in path-extensive physics problems. An interesting review of RL approaches to solve fluid
mechanics problems is provided in [34]. RL has also found its application in other fields of
physics like optics, e.g., for an adaptive control of astronomy systems [35], or in thermody-
namics, to optimize thermodynamic trajectories [36], thus learning previously unknown
thermodynamic cycles. An interesting RL-based solution in dynamics is presented in [37],
where an efficient sampling of rare trajectories is achieved; in particular, the idea is to make
rare events typical so that dynamical behaviors that appear with very low probability in
non-equilibrium systems can be accessed in a statistically significant way.

Therefore, we can conclude that standard RL is a common choice for optimization and
control in different physics problems, particularly within the quantum realm. Recent RL
approaches, like DRL, that enhances RL with DL have rapidly been applied to a number of
physics control problems, with some relevant results, as shown in this subsection. Next,
the quantum version of RL will be presented in Section 2.2.

2.2. Quantum Reinforcement Learning

Quantum machine learning [38] is an emerging field where the aim is either to employ
quantum devices to carry out more efficient ML calculations, or to use ML algorithms to
better control and design quantum systems. Inside quantum machine learning, quantum
reinforcement learning (QRL) has been explored in the past few years [39-48]. Here the
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motivation is to design “intelligent” quantum agents capable of interacting with their
environment and adapting to it, by means of quantum resources such as entanglement
and superposition.

In [39], a QRL algorithm based on Grover search was introduced. This kind of
approach may achieve a polynomial speedup with respect to standard RL algorithms,
by means of genuine quantum features such as superposition and entanglement.

The concept of quantum agent was proposed in [40], which analyzed the situation
of a quantum agent with a quantum processing unit that interacts via a classical channel
with a classical environment. Similarly to [39], the authors showed that a polynomial
speedup in the processing of the information acquired from the environment, by means of
the quantum processor, could be achieved.

An exponential speedup was predicted in [41] via a quantum oracular environment.
This paper also analyzed a general framework for quantum machine learning, involving as
well quantum supervised and unsupervised learning.

The possibility to have a speedup in quantum systems is given, in part, by the quantum
mechanics properties of the Hilbert space, in which quantum superposition of different
states in this space is possible, and quantum superpositions of composite states give rise to
entanglement. This quantum parallelism is a crucial ingredient for achieving the quantum
speedup in quantum technologies.

An implementation of QRL with superconducting circuits was proposed in [42],
for basic protocols involving projective measurements and feedback inside the coherence
time of the quantum system. This was extended in [43] to other quantum platforms that
may not need to employ feedback, but just projective measurements and ancillary qubits.

Reference [44] introduced a QRL protocol where several copies of an environment
state are available, and a quantum agent is able to learn this environment state via succesive
measurements on the copies and feedback on its own state, following the outcome of the
measurements. A convenient balance between exploration and exploitation was considered
to optimize the outcome. This proposal was carried out in the quantum platforms of
quantum photonics [45] as well as superconducting circuits [46].

An extension of the previous theoretical work of [44] was proposed in [47] for learning
quantum operations instead of quantum states.

Moreover, a review of the field of quantum machine learning, and specifically of QRL,
with the quantum platform of quantum photonics was given by [48].

In summary, QRL is an exciting and intriguing field that in some situations may
provide a speedup with respect to standard RL algorithms, and in general terms may
allow one for improved control and measurement of quantum systems. First steps in this
direction have been produced, both in theory and experiments in a variety of quantum
platforms, and now the follow up should be further focused on scalability, for aiming at
larger quantum agents that may provide a faster speedup. In this respect, one should point
out that a different speedup, in small quantum systems, has been obtained, e.g., in [45],
in the context of a reduced amount of resources. This is what may be called the “reduced
resource scenario”, for which a speedup with QRL may be achieved, in this case with
respect to standard quantum tomography. Further evidence that a quantum speedup with
respect to classical computers may be achieved in this reduced resource scenario was given
in an experimental implementation of a quantum memristor with a quantum photonics
device [49]. In any case, achieving quantum agents of sizes above 50 qubits or so, will
allow one for promising applications in quantum control and ML.

3. Conclusions

In summary, RL is one of the most prominent paradigms in standard ML, and its
connection to physics is producing a plethora of interesting results and perspectives inside
scientifical and technological discovery. Both in the realms of classical and quantum physics,
it is expected that RL will provide an acceleration of the rate of breakthrough achievements.
Thus, it will contribute to scientific productivity in a time, nowadays, in which it is more
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expensive and harder as most of the “low hanging fruit” has already been taken since the
first half of the 20th century.
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