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Abstract: Primary bone sarcomas are rare tumors and surgical resection in combination with chemo
and radiation therapy is the mainstay of treatment. Some specific anatomical sites still represent a
reconstructive challenge due to their complex three-dimensional anatomy. In recent years, patient
specific instruments along with 3D printing technology has come to represent innovative techniques
in orthopaedic oncology. We retrospectively reviewed 23 patients affected by primary bone sarcoma
treated with patient-specific instruments and 3D printing custom made prostheses. At follow up
after approximately two years, the infection rate was 26%, mechanical complication rate 13%, and
local recurrence rate 13% (with a five-years implant survival rate of 74%). Based on our experience,
patient-specific instruments and 3D custom-made prostheses represents a reliable and safe technique
for improving the accuracy of resection of primary bone tumour, with a particular use in pelvic
surgery ameliorating functional results.
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1. Introduction

Primary malignant bone tumors are exceptionally rare, accounting for only 0.2% of all
neoplasms with an overall annual incidence rate in Europe of 0.8 per 100,000 people. The
incidence rates of specific bone sarcomas are age-related and have a bimodal distribution.
Their clinical, radiographic, and histological characteristics are well known and there is
consensus on their management (surgery, chemotherapy, and radiotherapy alone or in
combination each other) according to national and international treatment protocols in
referral centers for bone sarcomas and according to each specific histotype. In localized
disease, 5-yrs overall survival is 65% for osteosarcoma, 60–75% for Ewing Sarcoma, and
75–80% for chondrosarcomas [1].

The role of surgery is unquestionable in any other type of primary bone sarcoma.
Over the past twenty years, improvements in prosthetic designs, materials and surgical
techniques have guaranteed an excellent implant survival and functional outcome (particu-
larly for sarcomas affecting the appendicular skeleton). Nevertheless, some specific sites
of presentation (the pelvis, spine, scapula, periarticular tumors) still represent a challenge
either for safe tumor resection or for acceptable functional reconstruction due to their
complex three-dimensional anatomy.

The uptake in the use of computer assisted surgery and 3D printing is in response
to these factors in a bid to minimise the incidence of inadequate resection margins and
improving patients’ functional outcome.
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In recent years, “image based” computer assisted surgery (CAS) has been developed
along with 3D printing technology and now provides opportunities for personalizing
reconstruction with custom-made prostheses [2–5] and improving accuracy in bone cutting
using patient-specific instruments (PSI) [6].

Orthopaedic surgery and oral and maxillofacial surgery were among the first spe-
cialties to adopt this technology [7–14] and the advent of electron beam melting (EBM)
rapid prototyping (RP) techniques have improved the process which directly produces a
physical object with a defined structure and shape based on virtual/mathematical model
data, ensuring personalized and anatomical reconstructions after bone tumour resection.
Rapid prototyping was first used in the late 1990s and was developed to apply the precision
and functionality of computer assisted design (CAD) to manufacturing [15]. With this
technology, a prototype could be quickly produced and accurately represents the engineers
draft [16,17]. Furthermore, if changes needed to be made, the engineer could easily digitally
work on the draft and print the redesigned part. The EBM is the optimal technology to
fabricate metallic components with complex shapes and porous structures and has a pivotal
role either in the PSI technology and prosthesis manufacturing.

PSI technology has been used during the last decade in maxillofacial surgery, total knee
arthroplasty, hip resurfacing, pedicle screw insertion, pelvic, and long-bones osteotomy.
Evaluation tests have shown a high accuracy when compared to standard methods with
reduced surgery time [18–25]. A case example is reported in Figure 1.
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The aim of this article is to verify the oncological safety of PSI and 3D custom made
prostheses in a selected group of patients affected by primary bone sarcomas.
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2. Materials and Methods

From August 2013 to April 2020, 23 patients affected by a primary bone tumour of
the pelvis or appendicular skeleton were treated at our Institute with 3D printing custom
made prosthesis and PSI technique.

All patients underwent biopsy and histological characterization and complete staging
before surgery. Patients affected by malignant tumours received multimodality treatment
including surgery, radiotherapy and chemotherapy. Surgery was addressed for limb
salvage and to achieve “wide” surgical margins.

Tumour area and surrounding anatomical structures were studied with a CT scan
with 1mm slices to achieve a representative 3D model, while MRI images were needed for
an adequate evaluation of tumour extent within the bone (both medullary and cortically)
and in surrounding soft tissues. Patient-specific instruments (PSIs) and implants were
designed according to the planned resection strategy.

The fabrication process both for PSIs either for custom implant is in charge of a
company which has a specific expertise and industrial workflow for additive manifacturing.
Commercial softwares as well as Mimics® (Materialise, Leuven, Belgium) or Invesalius®

(freeware) are mostly used for segmentation. PSIs can be molded in nylon or printed in
titanium alloy according to the clinical needs and to the know-how of selected companies.

PSIs had bone specific contact surfaces to fit into unique position on the bony structure
of the patient based on the shape of the bone acquired by CT scan. PSIs were equipped
with flat surfaces and holes to be pinned temporarily on the bone. The final PSI is printed
in Nylon or titanium and made sterile for operation.

The virtual custom prosthesis was created defining the better method of fixation
according to the part to be reconstructed mirroring the opposite part.

The Ti-6Al-4V implants were fabricated through the deposition of few micron layers
of titanium powder melted by electron beams technology (i.e., Electron Beam Melting
technique). Implant porosity is widely variable to increase performance and macro-porosity
of the body to lighten the implant till micro-porosity at the bone surface contact. These
surfaces have pores with an average size of 0.7 millimetres, allowing the host bone to grow
directly inside the implant spaces to achieve a stable biological fixation. The prosthesis
was provided of tools to allow fixation to the host bone as well as plates or rods, while
screws position and lengths were previously planned as well. For articular reconstruction,
a polished manufacture or a surface layer (polycaprolactone, PCL or poly-lactic acid, PLA)
can be integrated in porous titanium structure.

All analysis was completed using the Statistical Package for Social Science (IBM Corp.
Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.).

All subjects gave their informed consent for inclusion before they participated in the
study.

The study was conducted under Ethical Approval of our Institute (approval code
0024015/2014) and in accordance with the Declaration of Helsinki, all data were retrieved
from medical and radiological records of our hospital.

3. Results

Among the 23 patients, 5 (22%) were female and 18 (78%) were male. The age ranged
from 14 to 76 years old (mean 37). A malignant primary bone tumour was diagnosed in
22 cases (96%), while 1 patient suffered a benign tumour (4%). The pelvic ring was affected
in 16 cases (70%), whereas in 7 (30%) the appendicular skeleton and extremities were
involved. In the group of pelvic ring, the sacro-iliac joint was involved in 3 patients (19%)
and the hip in 13 (81%), requiring sacroiliac joint fusion in the first group and total hip
replacement in the second group. Extra pelvic joint involvement was present in two ankles
(one distal tibia and one astragalus) and in one shoulder (glenoid). Surgical margins were
adequately “wide” in 21 cases (91%) and “marginal” in 2 (9%) on the soft tissue component.
All patients with pelvic tumour (complex surgical anatomy) reported wide margins on the
bone. (Table 1).
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Table 1. Demographics, surgical details, complications and follow up of 23 3D/PSI custom implants; * benign tumour **
low-grade malignant tumour.

Patient Gender Age Site Joint
Involvement Diagnosis Surgical

Margins

Revision
Surgery

(Months)

Implant
Removal
(Months)

Patient
Follow Up
(Months)

1 M 48 Tibia Myxofibrosarcoma Marginal Infection (1) 14
2 M 76 Pelvis Hip Chondorsarcoma Wide Infection (1) 2
3 M 18 Pelvis Hip Ewing Sarcoma Wide Infection (1) 76
4 F 23 Pelvis Hip Ewing Sarcoma Wide 69
5 F 26 Femur Osteosarcoma Wide 11
6 M 22 Femur Ewing Sarcoma Wide Infection (1) 33
7 F 46 Astragalus Ankle Osteosarcoma Wide Arthritis (19) 19
8 M 56 Pelvis Sacro Iliac Chondorsarcoma Wide Infection (1) Yes 39
9 F 47 Pelvis Hip Chondorsarcoma Wide Recurrence (39) Yes 44
10 M 40 Scapula Shoulder Osteosarcoma ** Wide 3
11 M 26 Pelvis Sacro Iliac Ewing Sarcoma Wide Screw (1) 11
12 M 45 Tibia Osteosarcoma Wide Non union (9) 18
13 M 55 Pelvis Hip Chondorsarcoma Wide Infection (1) 1
14 F 40 Pelvis Hip Osteoblastoma * Wide Recurrence (37) Yes 39
15 M 38 Tibia Ankle Chondorsarcoma Wide 16
16 M 14 Pelvis Sacro Iliac Ewing Sarcoma Wide 55
17 M 35 Pelvis Hip Chondorsarcoma Wide 20
18 M 28 Pelvis Hip Osteosarcoma Marginal 48
19 M 45 Pelvis Hip Chondorsarcoma Wide 33
20 M 26 Pelvis Hip Ewing Sarcoma Wide 66
21 M 43 Pelvis Hip Osteosarcoma Wide 8
22 M 26 Pelvis Hip Giant Cell Tumor Wide 28
23 M 36 Pelvis Hip Chondorsarcoma Wide Recurrence (14) Yes 62

At a mean follow up of two years (range zero to six), all patients were alive and
implants were evaluable for oncological, mechanical, and infective complications.

Six patients (26%) reported early implant infection (<1 months), four after pelvic,
one after femur, and one after tibial reconstruction. All patients underwent early surgical
debridement associated with antibiotics administration and only one case (sacro iliac joint
prostheses) was removed at seven months due to the persistence of infection.

Three patients (13%) reported implant mechanical complications at a mean follow up
of nine months (range 0–19). One patient with astragalus custom made implant developed
degenerative arthritis of the ankle and required a new custom-made prosthetic replacement
of the distal tibia. One intercalary diaphyseal tibial reconstruction suffered of delayed
implant integration and required additional surgery with structural allograft to improve
healing process. In one case of sacro iliac joint reconstruction, a S1 root/screw conflict
required screw removal.

Three patients (13%) developed local recurrence at a mean follow up of 30 months
(range 13–39). All recurrences occurred after pelvic reconstructions and three underwent
hindquarter amputation with prostheses removal.

Overall, three (13%) custom prostheses were removed due to complications (2 re-
currence and 1 infection) at a mean time of 18 months (range 1–39) and with an implant
specific survival of 74% at five years follow up (Figure 2).
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4. Discussion

Surgical resection with wide margins is the mainstay of treatment of primary bone
sarcomas in a setting of multimodal approach. Modular prostheses still represent the
standard of treatment in long bone periarticular reconstructions with complication rates
constantly decreasing in modern modular endoprostheses [26]. Prosthetic diaphyseal
reconstruction remain a debate with high incidence of failure [27]. Nevertheless, no “off
the shelf” implants are available on the market for periarticular reconstruction of complex
anatomical site such as hip and shoulder. Bone allograft reconstructions suffer high risk of
infection (18–55%) and mechanical failure (9–22%) and their role is constantly decreasing
and confined to specific indication [28–30].

Rapid prototyping 3D printing and patient specific instruments have been recently
described as an emerging alternative technique for “unconventional” reconstructions not
effectively supported by prosthetic or bone graft replacement. Liang et al. [31] reported
excellent functional results (75.6%) and good osteointegration in 35 pelvic custom-made
prosthesis after en-bloc tumour resection. Zhang et al. [32] reported excellent functional
outcome (80.3%) after distal radius resection and custom-made prosthetic replacement.
Both of the above-mentioned authors used titanium 3D custom made prostheses manu-
factured with electron beam melting technology. Other studies encourage the use of this
technology also in non-oncological conditions [33–38]. Our series of 23 patients showed a
five years implant specific survival of 64% with low complication rate if considered surgical
anatomy and complexity of the patients. Possible advantages in term of management
of implant infection emerged from our series, with 75% of pelvic infection healed after
surgical debridement associated with antibiotic administration.

Cernat et al. [39] and Gouin [40] reported 100% of safe margins in a series of 4 (pelvic)
and 11 bone tumors respectively using PSI confirming the possibility to carefully plan
bone osteotomy with safety. In our series of 16 pelvic tumours PSI confirmed reliability
in term of oncological resection with 100% adequate (wide) and recurrences not related
to PSI. Soft tissues extend of the tumour may also impact on the jig sitting correctly
on bony landmarks thereby potentially compromising the resection. Finally, due to the
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delay between planning and jig manufacture there is a possibility for disease progression
and therefore a mismatch between planned resection and tumour margins, resulting in
intralesional resections [41–43]. Surgeon error is also possible and misplacement of the jigs
can again result in intralesional resections.

5. Conclusions

Patient-specific instruments and 3D custom-made prostheses represents an innovation
that can improve the accuracy of resection of primary bone tumour with a particular use in
pelvic surgery ameliorating functional results.

Although burdened by high technology costs, time consuming preoperative planning,
and a steep learning curve, further development will make this technology more friendly
with potential development towards robotic surgery.
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