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Abstract: Trap-neuter-return (TNR) has become an effective solution to reduce the prevalence of stray
animals. Due to the non-culling policy for stray cats and dogs since 2017, there is a great demand for
the sterilization of cats and dogs in Taiwan. In 2020, Heart of Taiwan Animal Care (HOTAC) had
more than 32,000 cases of neutered cats and dogs. HOTAC needs to take pictures to record the ears
and excised organs of each neutered cat or dog from different veterinary hospitals. The correctness of
the archived medical photos and the different shooting and imaging angles from different veterinary
hospitals must be carefully reviewed by human professionals. To reduce the cost of manual review,
Yolo’s ensemble learning based on deep learning and a majority voting system can effectively identify
TNR surgical images, save 80% of the labor force, and its average accuracy (mAP) exceeds 90%.
The best feature extraction based on the Yolo model is Yolov4, whose mAP reaches 91.99%, and the
result is integrated into the voting classification. Experimental results show that compared with the
previous manual work, it can decrease the workload by more than 80%.

Keywords: trap-neuter-return (TNR); object detection; multi-classifier majority voting; TNR surgery images

1. Introduction
1.1. Backgruond

The issue of stray dogs and cats has become a global concern because of animal
welfare and public hygiene; moreover, stray dogs and cats have an impact on native
wildlife through predation, competition, and disease transmission [1,2]. To reduce the
number of stray animals, people first impound them into shelters; however, more than
half of impounded animals are euthanized due to shelter crowding, infectious disease, and
feral behavior [3]. Stray animal euthanasia has been used for many years, but it is not able
to decrease the number of stray animals effectively. Besides, there are factors showing that
people performing the euthanasia often face serious mental problems such as depression,
insomnia, and even suicide [4–7]. Therefore, the trap-neuter-return (TNR) strategy has
grown in recent decades [8–13]. TNR, a non-lethal alternative to control the number of stray
cats, can be traced back to the 1950s in England. Since then, it has spread to many countries
in the world [14]. The Heart of Taiwan Animal Care Association (HTACA), one of Taiwan’s
animal protection groups, is a non-profit, non-governmental civil organization that puts
efforts in animal protection, animal life education courses, rural sterilization operations,
stray dog and cat rescue and sterilization programs, animal shelters, and university animal
protection activities. Due to the culling-free policy for stray cats and dogs since 2017,
Taiwan has a large demand for cat and dog sterilization. In 2020, the HTACA alone had
around 32,000 neutered cases of cats and dogs. Each case has one or two photos recorded,
which will increase year by year. Every dog or cat neutered from veterinary hospitals must
be photographed, including its ears and excised organs as the corresponding voucher for
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each dog or cat surgery. The problem is that the up to 60,000 archived medical treatment
photos from different veterinary hospitals and different shooting imaging angles must be
accurate. Since there is no special camera equipment or photography specifications for each
hospital, images have to be checked manually and reviewed carefully by a professional
human’s eye.

Neural networks are models with deep structures (multiple layers of neuron struc-
tures) that have been developed for a long time and became popular in the 1980s and
1990s [15]. However, due to the limitations of computing power and datasets, they encoun-
tered a bottleneck in accuracy and speed around the year 2000, coupled with the rise of
the support vector machine (SVM). Since 2005, the emergence of large, annotated datasets,
such as pattern analysis, statistical modeling, and computational learning (PASCAL) [16],
ImageNet Large-Scale Visual Recognition Competition, (ILSVR) [17], and the develop-
ment of high-performance computing technologies like processor clusters and GPUs, deep
models have shown efficient capabilities in many published models, such as ResNet [18],
VGG16 [19]. Girshick et al. [20] proposed region-based convolutional neural networks
(R-CNNs), which are defined by a two-stage architecture by integrating a region-wise and
object detector for object detection.

The region-wise feature extraction ideas of SPP-Net [21] and Fast R-CNN [22] greatly
accelerate the speed of the entire detector. Ren et al. [23] introduce a region proposal net-
work (RPN) [22] that shares the full-image convolution feature with the detection network,
thereby realizing almost cost-free region proposals. Cascade R-CNN [24] is a multi-stage
object detection architecture that improves accuracy by a sequence of detectors trained
with increasing intersection over union (IoU) thresholds. In the network architecture of
object detection, one-stage object detection (a neural network that can detect the position
of objects and identify objects at the same time) is very popular due to its computational
efficiency. Yolo [25] is implemented through an effective backbone network and sup-
ports real-time object detection. Yolov3 uses Darknet-53 [26] as the backbone network.
Yolov4 [27] uses CSPDarknet-53 [28] as the backbone network. Since the feature pyramid
network (FPN) [29] performs well in solving multi-scale problems, Yolov3 and Yolov4
improve network performance by integrating FPN and the Residue Network (ResNet).
The Single Shot MultiBox Detector (SSD) [30] uses multiple feature maps with multiple
resolutions to identify objects of different proportions and detect objects in a method that is
similar to RPN. Most two-stage architectures are higher than the faster first-stage detectors.
However, by solving the problem of foreground and background imbalances in dense
object detection, RetinaNet [31] achieved better results with more accuracy than most two-
stage object detectors. This is because this algorithm solves the foreground-background
imbalance in dense object detection. The masked region convolutional neural network
(Mask-RCNN) proposed by Kaiming et al. [32] has been able to integrate object detection
and instance segmentation into a single framework. However, in this study, we need to
locate the surgical location of the image. The classification neural network recognition
area cannot be located. The object detection network’s predictive output is the bounding
box, so the object area can be located clearly. The time for the person to work the image
label is within 1 min (each picture of our research case requires four label areas). Semantic
recognition technology can accurately confirm the contours of surgical organs but requires
more image label time (in this case, it may take 3 to 5 min). Labeling the contours of surgical
organs is a tedious task (as shown in Table 1). Thus, we chose the object detection network.
In the object detection neural network, we use the Yolo series of neural networks. YOLOv4
obtained an AP value of 43.5% on the MS COCO dataset and achieved a real-time speed up
to 65 FPS on the Tesla V100, gaining the title of the fastest and the most accurate detector
among the Yolo series. The Yolo series neural network has many network resources. For
edge computing applications and neural network modifications, the network resources
are relatively rich. So, this research uses Yolov3 tiny, Yolov3, and Yolov4 to fetch the key
features of image samples.
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Table 1. Neural network selection evaluation form.

Classification
Neural Network Object Detection Network Semantic Recognition

Neural Network

Can it locate the object area? No Yes Yes
Image label time Short within 1 min 3 to 5 min

1.2. Related Work

In recent years, using remote still and video surveillance in the research of wildlife and
management has grown rapidly [33–35]. Surveillance has many purposes, from the identi-
fication of pests or species with problem behaviors to the assessment of species diversity
and distribution, and thus the importance of conservation. However, these usually share a
common need, which is to identify a specific target species. In one study, they used image
recognition as an estimation tool, preventing Mycobacterium bovis transmission between
badgers and cattle. With growing interest in remote surveillance, capturing large amounts
of image data becomes a challenge in identification. Before, screening pictures was required
to be quality checked manually, which is expensive and time consuming [36,37]. Thus, peo-
ple are deeply interested in the emergence of automated methods [35]. Machine learning
has an increasing trend in automatic animal identification, and it has also been applied in
biological and fishery monitoring. These technologies have made great progress, and can
shoot high-resolution images in challenging environments, and in the end can effectively
manage natural resources [38]. However, the method of identifying animals depends on
the situation. For instance, it has been successful when using colors to distinguish animals
from the background in automatic detection and tracking of elephants. Furthermore, it
also works on other species [35]. If there are a lot of visual data including target and
non-target species that require manual review, machine learning that can automatically
identify wildlife needs to be used. When it comes to classification, image features are
required. Generally, the histogram of oriented gradient [39], one of hand-crafted image
feature methods, has been widely applied. Scale-invariant feature transform (SIFT) is also
another hand-crafted image feature method [40]. However, convolutional neural networks
(CNN) [41,42] perform better than all hand-crafted feature methods on large datasets [43].
For example, the ImageNet dataset includes 1.2 million images. In recent years, it has
been applied to the automatic classification of wildlife, but its performance still has its
limitations [37]. In Reference [44], the accuracy of deep learning classification photos was
evaluated with the processing of a few collections of picture materials that are difficult to
model. Their trained model was applied on a project from an online citizen science platform
that provides researchers with access to millions of volunteers via www.zooniverse.org,
where public volunteers can help ecologists classify large amounts of image data. Therefore,
CNN was applied to differentiate among different species, humans, or vehicles and empty
pictures (no animals, vehicles, or humans). Combining a trained model that has been
classified by citizen scientists, manual work has been reduced by 43% while maintaining
entire accuracy for a live experiment working on Zooniverse. It means that the trained
neural network can correctly replace 43% of the human workload, and the result is the
same as that done by humans. Besides, deep learning is used to automatically identify
and separate species’ specific activities from still images and video data using CNN. A
total of 8368 wild and domestic animal images were used to develop a method to separate
badgers from other species (two classifications), and then distinguish each from six species
(multi-classification). This means making two classifications first to determine whether it
is a target image, and if it is judged to be a target, then performing six classifications. In
Reference [37], two deep learning frameworks are used to do automatic image recognition
and get a high accuracy, 98.05%, for binary classification, and 90.32% for multi-classification.
In 2017, CNN was used to train for recognizing and counting the behavior of 48 species
in 3.2 million images [45]. The accuracy rate of neural network identification is greater
than 93.8%, and the number of identifications is expected to increase rapidly in the years to

www.zooniverse.org
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come. More importantly, if this system only classifies reliable images, it can automatically
recognize 99.3% of the data, which saves more than 8.4 years of time compared with
manual work while the classification rate of volunteers is still at 96.6% accuracy.

The goal of this paper is to deploy a deep learning method to save the previous time
from doing this task manually. No research has been found yet on how to detect whether
the animals have been neutered from the photos. A special challenge here is that it is
not easy to obtain images of neutered animals, and there are certain differences among
the images. Here, our goal is to develop a powerful framework to classify the images of
neutered animals by using the method of “You Only Look Once” (Yolo) and ensemble
learning. Deep learning is applicable to significant computational resources, large amounts
of labeled data, and modern neural network architecture. We found that the application of
deep learning has not been used in the neutered operation of TNR, but our experiments
prove that the integrated algorithms of deep learning and majority voting methods have
a good recognition rate for neutered operation images. Here, we combined thousands of
photos with labeled data from the neutering stage in TNR, a modern GPU server, using
Yolo-based deep learning and an ensemble learning of a majority voting system to test
how to use deep learning to automatically detect the photos in the neutering stage of TNR.
We found that the system performed as well as the human volunteer team on most of the
data and identified a few images that required manual evaluation. The goal of the overall
system is to automatically classify the sterilization images of male dogs, female dogs, male
cats, and female cats. The best feature extraction by the Yolo-based model is Yolov4, whose
mAP reached 91.99%, and the majority voting system reached the accuracy of 85%, so it
can save more than 86% of manual detection time. Experimental results show it can save
more than 80% time in comparison with the previous manual work.

2. Methodology
2.1. Yolov3 Deep Learning Network

The feature extraction network of Yolov3 is Darknet-53, and its structure is similar to
ResNet. The basic unit of Darknet-53 using 1 × 1 and 3 × 3 convolutional layers and the
remaining module. Darknet-53 uses the concept of Shortcut in ResNet to combine early
feature maps with up-sampling feature maps. It can combine the coarse-grained features
of the early stage with the fine-grained features of the later stage, so that the entire feature
extraction can capture more comprehensive features. Darknet-53 retains the leaked ReLU
layer and Batch normalization layer. In addition, Darknet-53 also mentioned the concept
of multi-scale feature layers in FPN, and selects the last three scale layers as the output,
as shown in Figure 1. The loss function of the Yolov3 is composed of l_box, l_obj, and
l_class terms. l_box is the loss brought by bounding boxes, and l_obj is the error caused by
confidence. The last term l_class is the error caused by the category.

The loss function is defined as follows.

Loss = ∑s2

i=0 lbox + lobj + lclass

, where lbox =
s2

∑
i=0

B
∑

j=0

{
lobj
ij ∗

[
lBCE(xi ,x̂i)

+ lBCE(yi ,ŷi)

]}
+ λcoord

s2

∑
i=0

B
∑

j=0

{
Iobj
ij ∗

[
(wi − ŵi)

2 +
(

hi − ĥi

)2
]}

lobj =
s2

∑
i=0

B
∑

j=0
Iobj
ij

[
lBCE(ci ,ĉi)

]
+ λnoobj

s2

∑
i=0

B
∑

j=0
Inoobj
ij

[
lBCE(ci ,ĉi)

]
,

lclass = ∑s2

i=0 Iobj
i ∑c∈classes lBCE(pi(c), p̂i(c)), (1)

where
lBCE(a,â) = −[a log a + (1− a) log(1− â)] (2)
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The l_BCE function (2) is the cross entropy of loss function. Cross entropy is used to
calculate the loss, and only applies to the grid with a target.

The 1obj
ij points out that the target is detected by the jth bounding box of grid i. Inoobj

ij
shows that there are no targets in this bounding box. B indicates that each grid predicts B
bounding boxes, to raise the loss from bounding box coordinate predictions and reduce the
loss for confidence predictions for boxes that do not contain objects. The parameters λcoord
and λnoobj are brought in and set to 5.

(
x̂, ŷ, ŵ, ĥ, ĉ, p̂

)
are respectively expressed as the

center coordinates, width, height, confidence, and category probability of the predicted
bounding box. Furthermore, those symbols without the cusp are the true labels.

2.2. Yolov3-Tiny Deep Learning Network

The Yolov3-Tiny model is a simple version of the Yolov3 model. Yolov3-Tiny reduces
the number of convolutional layer networks. The basic structure of Yolov3-Tiny has only
seven convolutional layers, and its features are extracted by using a small number of
and 3 × 3 convolutional layers. Yolov3-Tiny uses the pooling layer instead of Yolov3′s
convolutional layer with a step size of 2 to achieve dimensionality reduction shown in
Figure 2. The loss function that Yolov3-Tiny uses is the same as that of Yolov3.

2.3. Yolov4 Deep Learning Network

Yolov4 obtains good detection results on a single GPU, such as 1080 Ti and 2080 Ti,
and demonstrates a more favorable overall performance. Besides, Yolov4 is easier to use to
obtain a high-accuracy model under the single GPU. The prediction time is similar to that
of Yolov3. In our study, the classic algorithm modules frequently used in deep learning
models for design improvements were carefully selected and tested, and some modules
were improved to realize a fast and accurate detector. The improvements were primarily
related to the choice of backbone and the integration of several skills. CSPDarknet-53 was
selected as the backbone network of the detector, SPP block [21] was added to expand
the acceptance flexibility of the model, and the improved model PANet replaced FPN.
As for the Tricks, the detection modules most suitable for Yolov4 and most often used in
deep learning were selected, including Mish as the activation function and DropBlock as
a regularization method. Furthermore, Yolov4 uses a new data enhancement skill called
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Mosaic, which expands data by stitching four images together. Several existing methods,
including SAM, PANet, and cross-mini batch normalization, were employed to adapt
Yolov4 to training with a single GPU. Overall, the main structure of Yolov4 comprises
CSPDarknet-53, SPP, PANet, Yolov3 Head, and Tricks, as displayed in Figure 3.
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2.4. Basis of Classifier Voting Technique

The recognition results of the target network may be in different categories, so the
target classification needs a post-processing algorithm to make the final judgment and the
final classification. The algorithm uses the result of target recognition and then performs a
second operation to meet the classification requirements. The method can be an effective
method of classifying the TNR dataset. Our post-processing algorithm uses a set vote
classifier. This idea can classify the results of the target network, based on which the final
decision is taken. Typical approaches are as follows: majority voting (also known as hard
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voting), weighted majority voting, and more robust algorithms based on bagging and
boosting ideas [46,47], such as a popular AdaBoost.M1 method [48].

GP = {GP1, . . . , GPk}; k = 1 . . . N (3)

In the following example, the group GP is a series usually composed of basic classifiers
that are not too complicated.

On the assumption that:
Let the decision of the kthclassifier that chooses the jth class be denoted as

dk,j ∈ {0, 1}; k = 1, . . . , N; j = 1, . . . , M, (4)

where N is the number of the prediction classifiers and M is the number of predicted
classes. If the kth results of object detection choose the jth class, then dk,j = 1, and dk,j = 0
otherwise. The ensemble mechanism will then choose the featured class j that receives the
largest total vote. The situation of weighted majority voting is different from hard voting,
as weighted voting defines the factorωk according to a certain performance index, which
is the weight assigned to the kth classifier, denoted as GPk.

Here, we define the simplest ensemble voting index DG is as follows.

DG =
argmax
j=1,...,M

N

∑
k=1

ωkdk,j (5)

where k is equivalent to the number of the associated classifier, while j is chosen as the
featured class when the pattern recognition is computed. For example, suppose there is a
set of three classifiers GP = {GP1, . . . , GPK}, and three weightsω_1, ω_2, andω_3, which
classify an observation as follows:

For GP1 → class A andω_1 = 0.2.
For GP2 → class A andω_2 = 0.1.
For GP3 → class B andω_3 = 0.5.

This means that each GP1, GP2, and GP3 classifier chooses the class A withω_1 = 0.2,
class A withω_2 = 0.1, and class B withω_3 = 0.5, respectively.

Then, following (5) we calculate the voting index DG as:

3
∑

k=1
dK,A = 0.2× 1 + 0.2× 1 + 0.5× 0 = 0.4

3
∑

k=1
dK,B = 0.2× 0 + 0.2× 0 + 0.5× 1 = 0.5

3
∑

k=1
dK,C = 0.2× 0 + 0.2× 0 + 0.5× 0 = 0

(6)

Therefore, this maximum voting result will classify the sample as “class B”. This
algorithm will be used and is very suitable for our application. In this research, a calculated
confidence score of detected featured class or category will be used as the weighting factor
(ωk), while one of the four classes, say male dog, will be treated as 1 and 0 will be used for
female dog, male cat, and female cat.

3. Methods

The system construction process is described as shown in Figure 4. First, an image
recognition framework is created including a training stage and a testing stage (Figure 4). In
the training stage, neural network parameters are learned from the training images that have
been labeled by a manual, as shown in Figure 5. In the testing stage, the framework that is
trained takes incoming images as input and outputs a label prediction. Our developed system
is divided into 16 categories. The first four categories are male dogs, female dogs, male cats,
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and female cats. Each category has four featured categories including head, body, surgical
position, and surgical organs. In the adjusting parameters stage, the result of the classification
is then used for majority voting, which will adjust the parameters. Finally, the online stage
is implemented.
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3.1. Processing

The performance evaluations of Yolov3, Yolov3-Tiny, and Yolov4 were conducted
in darknet on a GPU PC with the following specifications: Intel Xeon CPU E5-2620 V4
(4.2 GHz × 4) with128 GB of RAM, and Nvidia GeForce RTX 1080 Tis. In the training stage,
the momentum of Yolov3 and Yolo3-Tiny was 0.9, the momentum of Yolov4 was 0.949, and
bath sizes were set to 64. We trained 50,000 epochs with an initial learning rate of 0.001.

3.2. Dataset Composition and Characteristics

The source of the dataset comes from the HTACT, which is one of the animal protection
organizations in Taiwan. These images are used to identify fertility surgery. The images in
the dataset are high quality, with resolutions between 960 × 720 and 3000 × 2250 pixels.
However, the photos come from different veterinary hospitals, thus standardizing the
relevant shooting parameters and shooting angles with the current research is not possible.
In total, 813 images were used as the training dataset and 96 images as the testing dataset.
The dataset composition is reported and as indicated in Table 2. The training dataset was
composed of samples from 73 male dogs, 101 female dogs, 266 male cats, and 373 female
cats. The test dataset was composed of samples from 11 male dogs, 19 female dogs, 29 male
cats, and 37 female cats. The training dataset accounted for 89% of the total dataset, and
the validation dataset accounted for 11% of the total data, as displayed in Table 2.
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Table 2. Training and test samples for four classes of TNR.

Class Train Test

Dog male 73 11
Dog female 101 19

Cat male 266 29
Cat female 373 37

Total 813 96

Figure 5a is a photo of a neutered female dog. The head is facing the right side, and
the right ear tip has a cut. The part undergoing surgery is larger than that of the male dog.
The removed organ is the female dog’s uterus. Figure 5b is a photo of a neutered male dog.
The head is facing the left side, and the left ear tip has a cut. The part undergoing surgery is
smaller than that of the female dog. The removed organ is the male dog’s testis. Figure 5c is a
photo of a neutered female cat. The head is facing the right side, and the right ear tip has a
cut. The part undergoing surgery is larger than that of the male cat. The removed organ is the
female cat’s uterus. Figure 5d is a photo of a neutered male cat. The head is facing the left
side, and the left ear tip has a cut. The part undergoing surgery is smaller than that of the
female cat. The removed organ is the male cat’s testis.

The HTACA needs to judge the relative images of each sterilization operation case to
see if there are the four corresponding characteristics (categories in this paper) as vouchers.
Cats and dogs’ ears are cut as a mark that the sterilization operation has been completed,
but some cats and dogs with an ear clip after ligation are not photographed, and there are
a lot of image records after the operation, as shown in Figure 5.

3.3. Detection Performance

As indicated in Figure 6 and Table 3, the inference results for female dogs are as
follows. Yolov3-Tiny (Figure 6a) obtained confidence scores of 0.9994 for the head, 0.9858
for the body, 0.9941 for the surgical position, and 0.9869 for the surgical organs. Yolov3
(Figure 6b) obtained confidence scores of 0.9999 for the head, 1.0000 for the body, 1.0000
for the surgical position, and 0.9959 for the surgical organs. Yolov4 (Figure 6c) obtained
confidence scores of 0.9997 for the head, 0.9986 for the body, 0.9926 for the surgical position,
and 0.9774 for the surgical organs.
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Table 3. Detection performance for female dog.

Yolov3-Tiny Yolov3 Yolov4

Head of female dog 0.9994 0.9999 0.9997
Body of female dog 0.9858 1.0000 0.9986

Surgical position of female dog 0.9941 1.0000 0.9926
Surgical organs of female dog 0.9869 0.9959 0.9774
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As displayed in Figure 7 and Table 4, the results of inference for male dogs are as
follows. Yolov3-Tiny (Figure 7a) obtained confidence scores of 0.8001 and 0.4046 for the
head and body, respectively. Yolov3 (Figure 7b) obtained confidence scores of 0.9948, 0.9993,
0.9995, and 0.9835 for the head, body, surgical position, and surgical organs, respectively.
Yolov4 (Figure 7c) obtained confidence scores of 0.9996, 0.9979, 0.9974, and 0.8059/0.9804 for
the head, body, surgical position, and surgical organs, respectively. The Yolov4 algorithm
has a good ability to recognize small areas, and it can identify the areas of surgical organs of
the male dog. The associated two confidence scores are 0.8059 and 0.9804, respectively. This
is because Yolov4 can determine two separate images (two balls) from the surgical organs
of the male dog, whereas the female dog’s organs are connected and lumped together.
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Table 4. Detection performance for male dog.

Yolov3-Tiny Yolov3 Yolov4

Head of male dog 0.8001 0.9948 0.9996
Body of male dog 0.4046 0.9993 0.9979

Surgical position of male dog Null 0.9995 0.9974
Surgical organs of male dog Null 0.9835 0.8059/0.9804

Body of female dog 0.3417

The body of the female dog was misjudged by Yolov3-Tiny. Moreover, the confidence
score for the body of the male dog was low according to the Yolov3-Tiny, with recognition
of only half of the score obtained via the Yolov4, as the architecture for the deep learning
model of Yolov3-Tiny is smaller than the Yolov4. These simulations show that Yolov4
performed optimally for small areas and correctly identified the surgical organs of the
male dog. Second best in terms of performance was Yolov3. Yolov3-Tiny did not meet
the expectations.

As displayed in Figure 8 and Table 5, the inference results for female cats are as follows.
Yolov3-Tiny (Figure 8a) obtained confidence scores of 0.9996 for the head, 0.9997 for the
body, 0.9914 for the surgical position, and 0.8308 for surgical organs. Yolov3 (Figure 8b)
obtained confidence scores of 1.0000 for the head, 0.9997 for the body, 0.9998 for the surgical
position, and 0.9961 for surgical organs. Yolov4 (Figure 8c) obtained confidence scores of
0.9991 for the head, 0.9998 for the body, 0.9988 for the surgical position, and 0.8912 and
0.5778 for the surgical organs.
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Table 5. Detection performance for female cat.

Yolov3-Tiny Yolov3 Yolov4

Head of female cat 0.9996 1.0000 0.9991
Body of female cat 0.9997 0.9997 0.9998

Surgical position of female cat 0.9914 0.9998 0.9988
Surgical organs of female cat 0.8308 0.9961 0.8912/0.5778

As displayed in Figure 9 and Table 6, the results of inference for male cats are as
follows. Yolov3-Tiny (Figure 9a) obtained confidence scores of 0.9998 for the head, 0.9993
for the body, 0.9539 for the surgical position, and 0.9487 and 0.9135 for the surgical organs.
Yolov3 (Figure 9b) obtained confidence scores of 1.0000 for the head, 0.9995 for the body,
1.0000 for the surgical position, and 1.0000 and 0.9999 for the surgical organs. Yolov4
(Figure 9c) obtained confidence scores of 0.9963 for the head, 0.9999 for the body, 0.9961
for the surgical position, and 0.9964 and 0.9966 for the surgical organs. Since the training
number of the female cat in Table 2 is 373, the overall confidence score is higher than
the confidence score of female dogs, in any case using Yolov3-Tiny, YoloV3, and YoloV4.
Nevertheless, complicated structures of YoloV3 and YoloV4 illustrate better confidence
scores than the confidence score of Yolov3-Tiny in the categories of body, head, and surgical
position of female cats. Still, the confidence score of Yolov3 for the small imaging area of
surgical organs of female cats is higher than the score of Yolov3-Tiny. However, Yolov4
can identify the surgical organs of the female cats in two small areas, and their confidence
scores are 0.8912 and 0.5778, respectively.
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Table 6. Detection performance for male cat.

Yolov3-Tiny Yolov3 Yolov4

Head of male cat 0.9998 1.0000 0.9963
Body of male cat 0.9993 0.9995 0.9999

Surgical position of male cat 0.9539 1.0000 0.9961
Surgical organs of male cat 0.9487/0.9135 1.0000/0.9999 0.9964/0.9966

3.4. Majority Voting Algorithm for Classification Results

Then we will discuss the calculation process and results of deep learning and overall
learning Yolo-based majority voting. The object detection classifying models included
in this research are Yolov3-Tiny, Yolov3, and Yolov4, which divide the input image into
16 categories (including the 4 categories of male dog, female dog, male cat, and female cat,
each of which has another 4 featured characteristics). The total of 16 classification features
are classified using a majority voting algorithm to classify male dog, female dog, male
cat, and female cat. Four of these classification values are calculated based on the sum of
the confidence scores of the corresponding categories of the detection performance, and
then compared with the threshold of the majority vote. If the classified value is above
the threshold value, then the result of correct TNR surgery can be the output without the
need for manual judgment. If the classified value is not greater than the threshold value,
then manual judgment is required. According to Table 4, the male dog target classification
results were as follows. For Yolov3-Tiny, the sum of the voting index by the male dog
confidence score of 0.8001 and 0.4046 was 1.2047, while the voting index for female dog
was 0.3417. Hypothetically, if the sum of the four confidence scores for the four categories
of the male dog in Table 4 is four times 0.85, as a result, the voting threshold value of male
dog was 3.4.

Equation (7) is calculated based on the voting index DG in Equation (5) as follows.

4
∑

k=1
dK,Dogmale = (0.8001× 1 + 0.4046× 1) = 1.2047

4
∑

k=1
dK,Dog f emale = 0.3417

(7)

Since the class Dogmale = 1.2047 and class Dog f emale = 0.3417, the class Dogmale >
class Dog f emale, and the male dog should be voted as the result. However, if the value of
the class Dogmale (1.2047) is less than the presetting value of the majority voting threshold
(DG =3.4), then the final majority voting judgment result is “other” (not the male dog). If
the classifying model is Yolov3, the presetting majority voting threshold value is 3.6. It
means that the confidence score of the four characteristics of male dogs has a performance
of 0.9 or higher, and then the voting index is calculated as follows.

4

∑
k=1

dK,Dogmale = (0.9948× 1 + 0.9993× 1 + 0.999× 1 + 0.9835× 1) = 3.9766 (8)

Since the voting index for class Dogmale(3.9766) is larger than the majority voting
threshold of 3.6, then class f ied as male dog will be returned.

From Table 4, if the classifying model is Yolov4 with the majority voting threshold
value of 3.6, then the voting index is calculated as follows.

4

∑
k=1

dK,Dogmale = (0.9996× 1 + 0.9979× 1 + 0.9974× 1 + 0.8059× 1 + 0.9804× 1) = 4.7812 (9)

Again, we have

4

∑
k=1

dK,Dog f emale =
4

∑
k=1

dK,Dogmale =
4

∑
k=1

dK,Cat f emale = 0 (10)
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Since the voting index for class Dogmale (4.7812) is larger than the majority voting
threshold of 3.6, the classfied as class maleDog will be returned.

Thus, the classification results of male dog images by the majority voting algorithms of
Yolov3 and Yolov4 for male dogs were 3.9766 and 4.7812, respectively, as shown in Table 7.
Based on the same threshold value (denoted as x = 3.4), the majority voting in Figure 10 will
be the male dog. The classifying model of using Yolov3 and Yolov4 is good for diagnosing
the male dog when the confidence score for the head, surgical position, and surgical organs of
male dogs are small.

Table 7. Classification results of male dog images by the majority voting algorithm.

Yolov3-Tiny Yolov3 Yolov4

Male dog 1.2047 3.9711 4.96
Female dog 0.3417

Categories result “Other” Male dog Male dog

According to the object detection results of the female dog in Table 3, the sum confi-
dence values of Yolov3-Tiny, Yolov3, and Yolov4 are 3.9662, 3.9958, and 3.9683, respectively,
and then through majority voting, the classification results by the three classifying models
are female dog, as shown in the Table 8. According to the object detection results of female
cat in Table 5, the sum confidence values of Yolov3-Tiny, Yolov3, and Yolov4 are 3.8215,
3.9556, and 4.4667, respectively, and then through majority voting, the classification results
of the three classifying models are female cat, as shown in Table 9. According to the object
detection male cat results in Table 6, the sum confidence values of Yolov3-Tiny, Yolov3, and
Yolov4 are 4.8152, 4.9994, and 4.9853, respectively, and then through majority voting, the
classification results of the three classifying models are male cat, as shown in Table 10.

Table 8. Classification results of female dog images by the majority voting algorithm.

Yolov3-Tiny Yolov3 Yolov4

Female dog 3.9662 3.9958 3.9683
Classification result Female Dog Female Dog Female Dog

Table 9. Classification results of female cat images by majority voting algorithm.

Yolov3-Tiny Yolov3 Yolov4

Female cat 3.8215 3.9956 4.4667
Classification result Female cat Female cat Female cat

Table 10. Classification results of male cat images by majority voting algorithm.

Yolov3-Tiny Yolov3 Yolov4

Male cat 4.8152 4.9994 4.9853
Classification result Male cat Male cat Male cat
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4. Discussion
4.1. Evaluation Criteria

TP, TN, FP, and FN represent true positive and true negative and false positive and
false negative, respectively.

The calculation of precision in Equation (11) is denoted by the precision for one of
images among one of several categories. The calculation of recall is shown in Equation (12).

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

The confidence score is obtained based on the probability that a classifier predicts
that an object is included in the corresponding bonding box. The IoU for one of images
of the one of the classes is the overlap between the prediction box and the original label
box (so-called ground truth). The ideal situation is completed overlap, that is, the ratio
is 1. Most often, the IoU value is between [0, 1]. Both confidence score and IoU jointly
determine the detection result and output whether it is TP or FP.

The calculation of the average precision (AP) is basically equivalent to calculating the
area under the precision-recall curve, which is a two-dimensional curve using accuracy
and recall as the vertical and horizontal axes. The performance of the model is evaluated
by classification precision, recall, and accuracy. Each category corresponds to an AP. The
formula for AP is defined as in Equation (13). As an example, for one head of a male dog
from the 16 categories in testing samples, the AP is as follows.

Averge PrecisionC =
∑

image N
i=1 Precisionn (based on the head of male dog)

Total number of the test sample images
(13)

The mean average precision (mAP), the index of measuring detection accuracy in
target detection, is the average value of AP values of each category of the multi-category
verification dataset, and the corresponding formula is Equation (14).

mAP =
∑c=16

c=1 Averge Precisionc
Total Category Numbers (16)

(14)

4.2. The Performance of Yolov3-Tiny, Yolov3, and Yolov4

As shown in Figure 11, the mAP of the Yolov3-Tiny and Yolov3 models is 77.68% and
90.92%, respectively; the detection time is 2.68 and 16.52 milliseconds (msec), respectively.
The mAP of theYolov4 model is 91.99%, with the detection time of 28.41 msec, as shown in
Table 11. Figure 11 Details for the mAP calculation of the Yolov3-Tiny are shown in Table 12.
Details for the AP of each category by Yolov3-Tiny and Yolov3 and Yolov4 are as shown in
Figures 12–14, respectively.

Table 11. Model efficiency.

mAP(%) Detection Time (msec)

Yolov3-Tiny 54.19 2.68
Yolov3 93.99 16.52
Yolov4 62.8 28.41
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Table 12. Yolov3-Tiny AP/mAP.

Categories AP(%)

Head of female dogs 54.19
Body of female dogs 88.43

Surgical position of female dogs 76.92
Surgical organs of female dogs 77.28

Head of male dogs 60
Body of male dogs 63.75

Surgical position of male dogs 60
Surgical organs male dogs 31.82

Head of female cats 93.99
Body of female cats 100

Surgical position of female cats 100
Surgical organs of female cats 78.72

Head of male cats 95.08
Body of male cats 100

Surgical position of male cats 100
Surgical organs male cats 62.8

mAP (%) 77.68
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4.3. The Performance and Confidence Thresholding of Majority Voting Multi-Classification by
Yolov3-Tiny, Yolov3, and Yolov4

The mean accuracy is obtained by averaging the accuracy of each class. We use
average accuracy because its measurement deviation is smaller than the accuracy in the
case of unbalanced datasets. In the training phase, when using an unbalanced dataset, the
weights may be biased toward larger groups, so random test images are more likely to be
assigned to larger groups. Therefore, in this study, 96 test samples containing 11 male dogs,
19 female dogs, 29 male cats, and 37 female cats were deployed for experimental validation
for the proposed model.

In Tables 13–15, the accuracy is the ratio of all predicted correct samples to the total
samples. Taking Table 13 as an example, the sum of 70 samples judged to be correct by the
majority voting system are 2 male dogs, 7 female dogs, 27 male cats, and 34 female cats. With
the “other” by 9, 12, 2, and 3 samples, respectively, there are 96 total samples. Thus, 0.73 is
obtained by the ratio of 70 to 96. Individual accuracy is calculated by the ratio of the correct
test samples to the total sample number in that specific class. An example for the male dog
class, 2 divided by 11 equals 0.18. Mean accuracy is the average of the total sum of each
individual accuracy. An example for the mean accuracy (=0.6) of the male dog class is the sum
of 0.18, 0.37, 0.93, and 0.92, followed by the division of 4. In Figures 15 and 16, the threshold
value parameter x is set as the majority voting value, which is used to determine whether
to give a classification category; if the majority voting operation is lower than x, then the
output is “other”. The number of manual test samples is the number judged as “other” by the
majority voting algorithm. More details will be discussed in the Results Section.
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Table 13. The performance of Yolov3-Tiny majority voting for multi-classification.

Male Dog Female Dog Male Cat Female Cat Accuracy Mean Accuracy

Male dog 2 0.73 0.6
Female dog 7

Male cat 27
Female cat 34

“Other” 9 12 2 3
Individual accuracy 0.18 0.37 0.93 0.92

Table 14. The performance of Yolov3 majority voting for multi-classification.

Male Dog Female Dog Male Cat Female Cat Accuracy Mean Accuracy

Male dog 4 0.802 0.6875
Female dog 8

Male cat 28
Female cat 37

“Other” 7 11 1
Individual accuracy 0.36 0.42 0.97 1

Table 15. The performance of Yolov4 majority voting for multi-classification.

Male Dog Female Dog Male Cat Female Cat Accuracy Mean Accuracy

Male dog 9 0.85 0.795
Female dog 1 7

Male cat 29
Female cat 37

“Other” 1 12
Individual accuracy 0.81 0.37 1 1
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In Table 13, the accuracy of Yolov3-Tiny majority voting is 0.73, with the mean accuracy
of 0.6, when the threshold of Yolov3-Tiny majority voting is set from 0.4 to 2. While the
accuracy of Yolov3 majority voting reaches 0.802, and its mean accuracy is 0.687 when the
threshold is between 0.4 to 3.6, as shown in the Table 14. As expected, as shown in the
Table 15, the accuracy of Yolov4 majority voting is 0.85, with its mean accuracy at 0.795
when the threshold is set from 0.4 to 3.6. As in Figures 15 and 16, when the majority voting
threshold of Yolov3-Tiny is set from 0.4 to 2, the accuracy is 0.73, and the number of manual
test samples is 26. When the majority voting threshold of Yolov3-Tiny is greater than 2, the
accuracy reduces to 0.56, and the number of manual test samples increases to 42. When the
majority voting threshold of Yolov3 is set from 0.4 to 3.6, the accuracy is kept at about 0.802,
and the number of samples to be manually tested is 19. When the majority voting threshold
of Yolov4 is set from 0.4 to 3.6, the accuracy reaches 0.85, and the number of manual test
samples is 13. The experimental results found that under the same TNR dataset, Yolov4
works best, Yolov3 takes the second place, and Yolov3-Tiny is less suitable for this dataset.

Some concluding remarks are as follows. If the object detection TNR system judges
the wrong category, misclassification will be in FP and FN. This leads to data logging errors
and an increase of manpower, administrative process, and cost. For an example, the paid
fee for the surgery of female cat is much higher than the male cat. Therefore, for system
robustness, an injection of a small percentage of random inspections is recommended.
The reliability and stability of the object detection system should be improved. In above
experiments, the confidence index of the wrong category was low. Most decision-making
algorithms cannot pass the threshold and thus will be judged as “other” here.

4.4. Special Case Discussion

Due to the geographical issue, the number of cats is far more than dogs. It takes times
to do the TNR operation. Besides, effective training photo input for neural networks needs
professional skill and manual labeling. So, the samples from HTACA’s dataset are limited
(execution time of this project is from April 2020 until the present). The data balance has a
great relevance for the training result of neural networks. To further explore the problem of
unbalanced samples, we regrouped a special balanced dataset to conduct the experiment
again, as shown in Table 16. We train the neural network using the same hyperparameters.
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After 18,000 training epochs, it was found that the Yolov4 neural network reached the mAP
of 91.78% on the test dataset, which is very close to the mAP of 91.99% in Yolov4′s training
for the original unbalanced dataset. Details for the Yolov4′s AP of each category are shown
in Figure 17.

Table 16. Training and test samples for four classes of TNR under the balanced dataset.

Class Train Test

Dog male 64 7
Dog female 64 7

Cat male 64 7
Cat female 64 7

Total 256 28Appl. Sci. 2021, 11, x FOR PEER REVIEW 24 of 28 
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Figure 17. Yolov4 AP of each category under the balanced data set.

As shown in Table 17, when the majority threshold of the balanced dataset is from
0.4 to 3.2, the accuracy and mean accuracy are 0.92, as shown in Figure 18. When the
majority vote threshold of Yolov4 is 3.4, the accuracy is reduced to 0.89, and the number
of manual test samples is increased to 3, as shown in Figure 19. When the majority vote
threshold of Yolov4 is 3.6, the accuracy is reduced to 0.75, and the number of manual test
samples is increased to 7. It is stable when the majority threshold of the balanced dataset is
0.4–3.2. From the experiments, it was found that Yolov4 trained on a large dataset is stable
compared to models trained on a small dataset. So, the majority vote threshold is relatively
easy to be adjusted.
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Table 17. The performance of Yolov4 majority voting on multi-classification under the balanced dataset.

Male Dog Female Dog Male Cat Female Cat Accuracy Mean Accuracy

Male dog 5 0.92 0.92
Female dog 7

Male cat 7
Female cat 7

“Other” 2
Individual accuracy 0.71 1 1 1
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In summary, when a deep learning object detection integrated with majority voting
algorithms is used for identifying the TNR sterilization operations through calculation results
(unbalanced dataset and special balanced dataset), the trained Yolov4 mAP reaches 91.99%.
The result integrates majority voting algorithms’ accuracy reaching 85% with an unbalanced
dataset. So, it can save more than 85% of manual detection time. Using the best accuracy of
the model to evaluate the TNR sterilization can undoubtedly save manual detection time. For
object detection with a small number of samples and small areas (such as the recognition of
surgical organs of male dogs in images), mAP had the highest value in the experiment. The
trained Yolov3 mAP reaches 90.92% and the result that integrates majority voting algorithms’
accuracy reaches 80%, so it can save more than 80% of manual detection time. In this research,
the performance by Yolov4 is better than the Yolov3. Regarding the Yolov3 and Yolov4′s
image classification results, the parameter× for majority voting threshold (from 0.4 to 3.6) is
the least sensitive to the overall classification, so it is the easiest to adjust the majority voting
threshold from this research study. Although the mAP of trained Yolov3-Tiny is not high, at
only 77.68%, it can save more than 72% of the manual detection time.

5. Conclusions

In this research, Yolov3-Tiny-, Yolov3-, and Yolov4-based feature extraction and majority
voting integrated systems used to classify the images of TNR sterilization surgery of neutered
animals were proposed and deployed successfully. Experimental results demonstrate that
such algorithms can use the spirit of man-machine cooperation for a novel TNR task force.
In fact, if the Yolo’s model is not accurate enough, the output of the majority voting will
be “other”. In practice, if the sample is judged as “other”, it will go directly to the manual
review status. Therefore, a situation caused by misjudgment will not occur. More than 90% of
the mAP is reached successfully when the Yolov3 and Yolov4 are implemented. This study
shows that the machine learning method with object detection and multi-classifier majority
voting can save more than 80% of time for classifying the images of neutered animals. A good
effect on the management of stray animals was demonstrated successfully. As the research is
continuously being conducted, there will be abundant available input images to be trained in
the proposed system and it should be gradually improved with higher accuracy with more
labor-saving abilities. Furthermore, the classification category for TNR dataset can be tailored,
adjusted, or expanded for images for the purpose of TNR’s medical diagnosis. Evaluation for
the use of machine learning to automatically adjust the value of the majority voting threshold
and the hyper parameters of the loss function based on the recall dataset of manual works will
be deliberated in future research. Moreover, the photos taken in different veterinary hospitals
are unable to be standardized. The hardware aspects of shooting angles and other related
shooting parameters will be considered in a future study. In terms of the Yolo-based DNN
efficiency, customization for TNR based on the modification of the CNN backbone and the
architecture of feature pyramid networks for object detection can be achieved.
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