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Abstract: Monitoring driving behaviour is important in controlling driving risk, fuel consump-
tion, and CO2 emissions. Recent advances in machine learning, which include several variants
of convolutional neural networks (CNNs), and recurrent neural networks (RNNs), such as long
short-term memory (LSTM) and gated recurrent unit (GRU) networks, could be valuable for the
development of objective and efficient computational tools in this direction. The main idea in this
work is to complement data-driven classification of driving behaviour with rules derived from
domain knowledge. In this light, we present a hybrid representation approach, which employs NN-
based time-series encoding and rule-guided event detection. Histograms derived from the output of
these two components are concatenated, normalized, and used to train a standard support vector
machine (SVM). For the NN-based component, CNN-based, LSTM-based, and GRU-based variants
are investigated. The CNN-based variant uses image-like representations of sensor measurements,
whereas the RNN-based variants (LSTM and GRU) directly process sensor measurements in the form
of time-series. Experimental evaluation on three datasets leads to the conclusion that the proposed
approach outperforms a state-of-the-art camera-based approaches in distinguishing between nor-
mal and aggressive driving behaviour without using data derived from a camera. Moreover, it is
demonstrated that both NN-guided time-series encoding and rule-guided event detection contribute
to overall classification accuracy.

Keywords: driving behaviour; convolutional neural networks; recurrent neural networks; telematics
sensors

1. Introduction

The development of computational tools using sensor measurements for the analysis of
driving behaviour raises several challenges from a machine learning and signal processing
perspective. These challenges include the formulation of classification schemes capable
of handling time-series of sensor measurements and the creation of sufficiently diverse
datasets, encompassing data of various driving styles.

The first approaches for driving behaviour analysis employed rules, which were
usually based on empirically defined thresholds. Bergasa et al. [1] defined such thresholds
for acceleration, braking, and turning. They developed a tool using data obtained from
mobile phone sensors and cameras, in order to provide feedback in the form of scores and
alerts. Joubert et al. [2] used data obtained from telemetry devices and discretized speed
and acceleration measurements into a finite risk space to provide personalized driving
risk assessment. These rule-based approaches performed well in some setups, assuming a
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calibration stage to adjust proper threshold values. This calibration stage could be sensitive
to certain factors, including vehicle type, road conditions, and traffic.

Another approach is to use handcrafted features within a traditional classification con-
text. Van Ly et al. [3] proposed a driver recognition method, which uses statistical features
reflecting the frequency of acceleration, braking, and turning events, in a framework of
either unsupervised learning (k-means clustering) or supervised learning (support vector
machines-SVMs). Vaitkus et al. [4] calculated the statistical features of 3-axis accelerometer
measurements to classify driving behaviour as normal or aggressive. Following sequential
forward feature selection (SFFS), they ended up with seven features, which were used
by a k-nearest neighbors (k-NN) classifier, resulting in 100% accuracy. At this point it
should be noted that the authors admit that the samples of their dataset might be too
easily separable. Yi et al. [5] performed a comparative study, which concluded in favour
of random forests with Bayesian optimization. In their experiments, they used speed and
acceleration measurements. Bouhoute et al. [6] combined various sensor measurements
and applied probabilistic automata, as well as labelled directed graphs, in order to model
driving behaviour. Xie et al. [7] considered certain driving maneuvers and defined time-
series of features derived from sensor measurements. Following a feature selection stage,
they used a random forest for driving behaviour classification. In a similar spirit, Yuksel
and Atmaca [8] proposed a system for driving risk assessment using features obtained by
accelerometers and gyroscopes, standard classifiers such as SVMs, NNs, decision trees,
random forests, and k-star, as well as fuzzy logic. Savelonas et al. [9] defined short-term
and long-term handcrafted features, using acceleration and speed measurements obtained
using telematics sensors and experimented with standard classifiers: k-NN, SVM and
decision trees. The highest classification accuracy was obtained by means of decision trees.
In general, handcrafted features are ‘manually’ engineered and their performance may
vary, depending on the task at hand.

Beyond handcrafted features and standard classifiers, some recent works employed
more advanced neural network (NN) architectures to differentiate between driving styles.
Spyrou et al. [10] employed convolutional neural networks (CNNs) on image-like represen-
tations of measurements, obtained by telematics sensors. Saleh et al. [11] applied RNNs on
the UAH dataset [12], whereas Mantzekis et al. [13] applied two RNN-based variants, long
short-term memory (LSTM) [14], and gated recurrent unit (GRU) networks [15,16] on a
dataset comprising of signals acquired by means of telematics sensors. This later work was
further developed by Savelonas et al. [17], incorporating rules in the context of a hybrid
approach. Khodairi and Abosamra [18] used stacked LSTMs for driving behaviour classi-
fication, whereas Xie et al. [19] employed a CNN-based multi-sliding window approach
for maneuver classification. Such NN-based approaches depend on the availability of a
sufficient amount of data to cope with overfitting. In numerous related works, performance
evaluation was performed by means of the UAH dataset, which comprises measurements
obtained from mobile phone sensors.

In this work, we introduce a hybrid representation approach, combining NN-based
encoding and rule-based event detection, in order to classify overall driving behaviour.
Aspects of this approach appeared in preliminary works [10,17]. A thorough description,
as well as a more complete experimental evaluation, are provided here. Apart from the
UAH dataset, experiments are also performed on two datasets obtained by means of
telematics sensors. Both datasets comprise samples of aggressive, semi-aggressive, and
normal driving behaviour.

The rest of this paper is organized as follows: in Section 2, we provide the theoretical
background on the NN architectures considered. In Section 3, we present the proposed
hybrid representation approach. In Section 4, we present the experimental evaluation,
whereas in Section 5 we discuss the main conclusions of this work.
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2. Background

This section briefly describes CNNs and RNNs. Both types of NNs are investigated in
the context of the proposed approach.

2.1. CNNs

Convolutional neural networks (CNNs) are widely established NN architectures,
capable of generalizing with a relatively low number of free parameters, when compared
to traditional NN architectures. CNN-based approaches have led to state-of-the-art results
in various areas, most prominently in computer vision [20] and speech processing [21].
The training of a CNN is very similar to the training of a standard NN. It consists of
forward data propagation, followed by gradient-based backward error propagation for
tuning NN weights. CNNs employ a non-linear activation function, such as rectified linear
unit (ReLU):

f (x) = max(0, x) (1)

where f is the ReLU and introduces nonlinearities in the decision function, as well as in the
entire network. Other functions, such as hyperbolic tangent and sigmoid, are also used to
increase non-linearity. ReLU is more often used since it reduces training time without a
considerable cost in terms of generalization.

CNNs comprise convolutional, pooling and fully connected layers:
Convolutional layers are responsible for feature extraction. Each convolutional layer

consists of a group of neurons, forming a rectangular grid. This grid is convolved with a
given part of the input and the result is passed to the next layer.

Pooling layers are usually placed between single or multiple convolutional layers and
progressively reduce the representation size. Each output block of the convolutional layer
is subsampled, reducing the complexity of the network and controlling overfitting.

Fully-connected layers are the top-level layers of every CNN-based architecture,
performing the high-level reasoning of the entire network, i.e., combining features detected
from input parts (such as image regions). The output of the pooling layer is transformed
into an N-dimensional vector, where N denotes the number of classes considered. It could
be argued that the fully-connected layers are the actual network, whereas the previous
layers are feature extractors. This last layer is tied to a loss function, used to provide an
estimation of the classification error, which affects the weight tuning performed by means
of backward error propagation.

2.2. RNNs

Recurrent neural networks (RNNs) were proposed to handle time-series data. An
RNN is formulated by means of state and hidden state variables, which depend on the
previous states and hidden states.

Let x = (x1, x2, , . . . , xT), be a sequence. Each hidden state ht is recurrently updated
by:

ht =

{
0

ϕ(ht−1, xt)
t = 0

otherwise
(2)

where ϕ is a nonlinearity, such as the composition of a logistic sigmoid with an affine
transformation. Optionally, the RNN may have an output y = (y1, y2, . . . , yT).

The update of the recurrent hidden state in Equation (2) is often implemented as:

ht = g(Wxt + Uht−1) (3)

where g is a smooth, bounded function such as the hyperbolic tangent or the logistic sigmoid.
RNNs often fail to capture long-term dependencies due to the vanishing gradient

effect. Two main directions were followed to cope with this. The first direction consists
of alternatives to stochastic gradient descent [15–17]. The second direction involves the
design of a sophisticated activation function, which consists of affine transformation and
a simple element-wise nonlinearity obtained by gating units. The earliest attempt in this
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direction resulted in a recurrent unit, called long short-term memory (LSTM) [18]. Later,
another type of recurrent unit, gated recurrent unit (GRU), was proposed [13,19]. RNNs
employing either of these recurrent units have been shown to perform well in tasks that
require capturing long-term dependencies, such as speech recognition [22,23] and natural
language processing [24,25]. Starting from time-series of sensor measurements obtained
under various driving conditions, we investigate the application of both LSTMs and GRUs
in the context of driving behaviour analysis.

2.2.1. LSTMs

LSTMs were originally proposed by Hochreiter and Schmidhuber [14], whereas several
variants followed, including the variant of Graves [26], which is described here. Unlike the
recurrent unit which simply computes a weighted sum of the input signal and applies a
nonlinearity, each j-th LSTM unit maintains a memory cj

t at time t. The activation hj
t of the

LSTM unit is:
hj

t = oj
ttan h

(
cj

t

)
(4)

where oj
t is an output gate that modulates the amount of memory content exposure. The

output gate is computed by:

oj
t = σ(Woxt + Uoht−1 + Voct)

j (5)

where σ is a logistic sigmoid function and Vo is a diagonal matrix.
The memory cell cj

t is updated by partially ‘forgetting’ the existing memory and

adding a new memory content
~
c

j
t:

cj
t = fj

tc
j
t−1 + ij

t
~
c

j
t (6)

where the new memory content is:

~
c

j
t = tanh(Wcxt + Ucht−1)

j (7)

The extent to which the existing memory is ‘forgotten’ is modulated by a forget gate ft
j,

and the degree to which the new memory content is added to the memory cell is modulated
by an input gate ij

t. Gates are computed by:

fj
t = σ(Wfxt + Ufht−1 + Vfct−1)

j (8)

ij
t = σ(Wixt + Uiht−1 + Vict−1)

j (9)

Note that Vf and Vi are diagonal matrices.
Unlike the traditional recurrent unit which overwrites its content at each time-step

(Equation (3)), an LSTM unit is able to decide whether to keep the existing memory via the
introduced gates. Intuitively, if the LSTM unit detects an important feature from an input
sequence at an early stage, it easily carries this information much later, capturing potential
long-term dependencies.

2.2.2. GRUs

GRUs are more efficient than LSTMs, since they have less parameters and no output
gate. Each recurrent unit adaptively captures dependencies in different time scales. As is
the case with LSTMs, GRUs have gating units that modulate the flow of information inside
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the unit, yet without separate memory cells. The activation of the GRU at time hj
t is a linear

interpolation between the previous activation hj
t−1 and the candidate activation

~
h

j

t:

~
h

j

t +
(

1 − zj
t

)
hj

t−1 + zj
t

~
h

j

t (10)

where an update gate zj
t determined the extent of activation or content update. The update

gate is computed by:
zj

t = σ(Wzxt + Uzht−1)
j (11)

This process of deriving a linear sum between the existing state and the new state
is similar to the process of LSTMs. However, GRUs do not have any control mechanism
determining the extent of state exposure and expose the entire state each time.

The candidate activation
~
h

j

t is computed similarly to that of the traditional recurrent
unit (Equation (3)) and [23]:

~
h

j

t = tanh(Wxt + U(rt
◦ht−1))

j (12)

where rt is a set of reset gates and ◦ is element-wise multiplication. When off (r close to 0),
the reset gate effectively makes the unit act as if it is reading the first symbol of an input
sequence, allowing it to forget the previously computed state. The reset gate r is computed
similarly to the update gate:

rj
t = σ(Wrxt + Urht−1)

j (13)

3. Hybrid Representation Approach

The proposed hybrid representation approach employs NN-based (NN could be either
CNN or RNN) time slice encoding, and rule-guided event detection. Both components have:
(1) input formed by sensor measurements; (2) output encoded in the form of histograms
representing frequency of occurrence. The two resulting histograms are merged, divided by
route duration, and normalized to form feature vectors aimed at reflecting overall driving
behaviour. Figure 1 summarizes the main stages of the proposed approach, whereas
each component is described in the following subsections. It can be noted that rather
than providing an alternative to CNN, LSTM, and GRU, each variant of the proposed
approach incorporates one of these NN types as its data-driven component. Accordingly,
CNN/LSTM/GRU models are just ‘part of the story’.

3.1. CNN-Based Image-like Representation of Sensor Measurements

The main idea in this representation variant is to treat sensor measurements as an
image, which is subsequently analyzed by a CNN. Figure 2 illustrates examples of such
‘images’, derived from sensor measurement samples of the datasets used in this work (see
Section 4.1) and associated with different driving behaviours. It could be observed that for
each type of driving behaviour there is a distinctive visual element. Taking into account
that each time slice label is derived from the label of the containing route (e.g., normal,
semi-aggressive or aggressive), the absolute classification accuracy is not a primary concern
at this stage. The intuition is to generate a time-series encoding which represents frequency
of occurrence of driving patterns and is distinctive of each driving style.
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Figure 2. Examples of image-like representations of sensor measurements for different driving
behaviours: (a) 50 × 3 image for normal driving behaviour in UAH dataset, (b) 50 × 3 image for
aggressive driving behaviour in UAH dataset, (c) 50 × 22 image for normal driving behaviour in
MOTIF 1 dataset, (d) 50 × 22 image for semi-aggressive driving behaviour in MOTIF 1 dataset,
(e) 50 × 22 image for aggressive driving behaviour in MOTIF 1 dataset.

The CNN architecture used in this work consists of three convolutional layers filtering
their input with 32, 64 and 64 kernels of size 1 × 1, 1 × 1 and 3 × 3, respectively. A flatten
layer is used to transform the output of the last convolutional layer to a vector. This vector
is the input to a dense layer with 100 units. Finally, a fourth dense layer classifies each time
slice. The end product of this component in the context of the proposed approach is the
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histogram encoding the frequency of occurrence of each type of driving behaviour, in the
time slice level (Figure 1). Convolutional and dense layers employed the ReLU activation
function, except for the last dense layer that employed the sigmoid activation function.
Sparse categorical cross-entropy is employed as a loss function and stochastic gradient
descent is employed for optimization. This CNN-based approach has been presented in
detail in our preliminary work [10].

3.2. RNN-Based Time-Series Representation

As an alternative to CNNs, RNNs, such as LSTMs or GRUs, can also be employed for
the classification of time slices of raw acceleration data. Taking into account that RNNs
have been formulated to address time-series, they constitute a natural choice for time slice
classification. As was the case with CNNs (see Section 3.1), the absolute classification
accuracy is not a primary concern at this stage and the resulting time-series encoding
represents the frequency of occurrence of driving patterns. Both LSTMs and GRUs are
configured with 1 layer of 128 neurons, followed by a dense layer of 2 neurons with softmax
activation function. This shallow network architecture has been tested, taking into account
to avoid overfitting. Sparse categorical cross-entropy is employed as a loss function and
Adam is employed for optimization. Preliminary versions of these components have been
presented in [13,17].

3.3. Rule-Guided Event Detection

Rules can be formulated to express domain knowledge in the area of driving behaviour.
In this light, it has been suggested that simple thresholds can be used to reliably detect
basic events, such as acceleration, braking and turning [1,2]. Table 1 presents the thresholds
proposed by Bergasa et al. [1] for each type of event and three levels of intensity: low,
medium, and high. The rule-guided event detection component uses these thresholds to
calculate the frequency of occurrence for each pair of event type and intensity. The derived
histogram reflects long-term driving behaviour. Intuitively, both normal and aggressive
drivers are expected to use brakes at some point, yet aggressive drivers use brakes much
more frequently.

Table 1. Event thresholds [1].

Event Type
Threshold Sensitivity

Low Medium High

Acceleration 0.1 g < az < 0.2 g 0.2 g < az < 0.4 g 0.4 g < az
Braking −0.1 g > az > −0.2 g −0.2 g > az > −0.4 g −0.4 g > az
Turning 0.1 g < |ay| < 0.2 g 0.2 g < |ay| < 0.4 g 0.4 g < |ay|

3.4. Route Level Classification

This stage unifies the previously described components in order to obtain route level
classification, as illustrated in Figure 1. The histogram generated from the CNN-based
component (Section 3.1) or RNN-based component (Section 3.2) is concatenated with the
one generated from the rule-guided component (Section 3.3), forming a feature vector
aimed at reflecting overall driving behaviour. This feature vector is divided by overall
route duration and normalized. Labelled samples of normalized feature vectors are used
to train a standard SVM classifier, in order to assess driving behaviour at the route level. A
preliminary version of the hybrid approach has been presented in [17]. This approach can
be considered as a framework. Accordingly, the NN-based component, the rule-guided
component or the SVM classifier could be replaced by alternatives.
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4. Experimental Evaluation

In this section, we describe the datasets used to experimentally evaluate the classifica-
tion schemes investigated, we provide information details on the experimental setup and
present the results obtained.

4.1. Datasets

The classification schemes investigated are evaluated on the publicly available UAH
dataset [12], which has been acquired by means of mobile phone sensors, as well as on two
datasets, which have been acquired by means of telematics sensors and have been created
in the context of this work.

4.1.1. UAH

The UAH dataset has been introduced by Romera et al. [12] to facilitate benchmarking
of computational approaches for driving behaviour analysis. It comprises of data acquired
by means of mobile phone sensors and cameras. UAH route samples represent three types
of driving behaviour: normal, aggressive, and drowsy, under various conditions: motorway
or secondary road, with six drivers of different genres and ages (Table 2). As demonstrated
by Romera et al., drowsy driving behaviour is manifested with slow lane changes and
can be effectively detected by means of a camera. Since, in this work, we limit our study
in sensor data, we focus on distinguishing between normal and aggressive behaviour,
using only the respectively labelled routes from UAH. Overall, in our experiments we
use 23 UAH route samples encompassing acceleration measurements in the lateral and
longitudinal axis of the vehicle, acquired at 10 Hz by means of the inertial sensor of an
iPhone [12].

Table 2. Drivers and vehicles in the UAH dataset [12].

Driver Genre Age Range Model Fuel

D1 Male 40–50 Audi Q5 Diesel
D2 Male 20–30 Mercedes B180 Diesel
D3 Male 20–30 Citroen C4 Diesel
D4 Female 30–40 Kia Picanto Gasoline
D5 Male 30–40 Opel Astra Gasoline
D6 Male 40–50 Citroen C-Zero Electricity

4.1.2. MOTIF Datasets

We created two datasets, namely MOTIF 1 and MOTIF 2 (MOTIF is the title of the
project which funded this work). Both datasets were acquired by means of FMS-500Light+
telematics device, manufactured by Xirgo technologies (former BCE) [27]. The device
is equipped with accelerometers, a GPS receiver of 1 m resolution, and a GSM modem
that works up to 4G cellular protocol. The raw accelerometer data were merged with the
corresponding GPS coordinates to create vehicle routes. Three types of driving behaviour
have been considered: normal, semi-aggressive, and aggressive. The MOTIF 1 dataset
comprises of 11 route samples, whereas the MOTIF 2 comprises of 12 route samples.
Six drivers have been involved (Table 3) in a range of six months, driving the same
vehicles, following the same route but in different time periods. Each route sample has
approximately a duration of 15 min, whereas the measurement vectors were acquired
at 0.1 Hz and comprise 27 features: maximum positive acceleration, maximum negative
acceleration, maximum transverse acceleration, a 21-bin histogram of acceleration values
ranging from −0.5 g to 0.5 g, latitude, longitude and speed.
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Table 3. Drivers and vehicles in the MOTIF-1 and MOTIF-2 datasets.

Driver Genre Age Range Model Fuel

MTF1-D1 Male 30–40 Toyota Yaris Gasoline
MTF1-D2 Male 30–40 Toyota Yaris Gasoline
MTF2-D3 Male 30–40 MERCEDES-41hp Diesel
MTF2-D4 Male 40–50 IVECO-177hp Diesel
MTF2-D5 Male 40–50 MERCEDES-41hp Diesel
MTF2-D6 Male 50–60 IVECO-177hp Diesel

4.2. Experimental Setup

For the CNN-based variant of the proposed approach, dropout is set to 0.4, whereas
batch size was set to 32. In the case of the RNN-based variants dropout, recurrent
dropout [28] and sample length were set to 0.2, 0.2, and 50, respectively, whereas the
batch size for RNNs was set to 1914. The SVM used for route level classification employs
an RBF kernel with C = 1000. When considering 20% ranges centered on these parameter
settings, the classification accuracy variance did not exceeding 5%, for all parameters. In
the case of event-based detection component, the thresholds used are the ones validated by
Bergasa et al. [1] for identifying accelerations, braking, and turnings, with three different
levels of intensity: low, medium, and high. These threshold values are provided in Table 1,
where ay and az, are the accelerations in lateral and longitudinal direction, respectively.
Sixty percent of the samples have been used for training, 30% for validation, and 10% for
testing. For the training stage, all time slices of a route inherit its label (i.e., all time slices of
a normal or aggressive route are labelled as normal or aggressive, respectively). Accord-
ingly, this component is trained using a broad labelling at the route level and provides
classification at the time slice level.

The experiments were performed on a workstation with AMD Ryzen 5 1400 quad
core processor (8 CPUs) on 3.4 GHz and 8 GB RAM, using NVIDIA GeForce GTX 1060
GPU with 6 GB and Microsoft Windows 10 Pro (64 bit). All pipelines were implemented in
Python, using Keras [29] with the Tensorflow [30] backend.

4.3. Results

The experiments were performed at two levels: the first level is the classification of
time slices by means of the NN-based representations presented in Sections 3.1 and 3.2,
whereas the second level is the classification of routes, which is performed by means of the
hybrid approach described in Section 3.4. In both levels, we perform comparisons with
state-of-the-art approaches.

4.3.1. Time Slice Classification

In this Section we evaluate the classification performance of the three variants of the
proposed approach (CNN, LSTM and GRU) at the time slice level and perform quantitative
and qualitative comparisons with state-of-the-art.

Figures 3–5 illustrate the training and validation loss of the proposed approach at the
time slice level for CNN, LSTM, and GRU-based variants, respectively. The oscillations of
the validation loss can be attributed to Adam optimization [31]. Besides this, there are no
increasing parts in the validation loss, indicating that overfitting has been prevented.
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Table 4 presents the confusion matrices for the classification of time slices, as per-
formed by the three variants of the proposed approach (CNN, LSTM and GRU) on each
one of the three datasets described in Section 4.1 (UAH, MOTIF 1 and MOTIF 2). The
overall classification results at the time slice level are summarized in Table 5. The most
accurate classification is performed by GRU (accuracy 0.91), followed closely by LSTM
(accuracy 0.89). Also, CNN tends to misclassify most aggressive time slices as normal. This
latter behaviour also emerged in the preliminary work [17], and agrees with the intuition
that both normal and aggressive drivers often seem to drive ‘normally’. Still, the results of
both LSTM-based and GRU-based components indicate that there are differences between
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normal and aggressive drivers in most time slices, which can be distinguished by certain
NN-based encodings.

Table 4. Confusion matrices for time slice classification.

UAH

CNN
Normal Aggressive

Normal 0.85 0.15
Aggressive 0.70 0.30

LSTM
Normal Aggressive

Normal 0.97 0.03
Aggressive 0.25 0.75

GRU
Normal Aggressive

Normal 0.98 0.02
Aggressive 0.22 0.78

MOTIF 1

CNN

Normal Semi-aggressive Aggressive
Normal 0.92 0.05 0.03

Semi-aggressive 0.14 0.83 0.03
Aggressive 0.03 0.04 0.94

LSTM

Normal Semi-aggressive Aggressive
Normal 1.00 0 0

Semi-aggressive 0.005 0.99 0.005
Aggressive 0 0.02 0.98

GRU

Normal Semi-aggressive Aggressive
Normal 1.00 0 0

Semi-aggressive 0 1.00 0
Aggressive 0 0.01 0.99

MOTIF 2

CNN

Normal Semi-aggressive Aggressive
Normal 0.86 0.07 0.07

Semi-aggressive 0.15 0.81 0.04
Aggressive 0.08 0.16 0.76

LSTM

Normal Semi-aggressive Aggressive
Normal 0.95 0.03 0.02

Semi-aggressive 0.01 0.98 0.01
Aggressive 0 0.01 0.99

GRU

Normal Semi-aggressive Aggressive
Normal 0.98 0.01 0.01

Semi-aggressive 0.03 0.96 0.01
Aggressive 0.03 0.01 0.96

It should be noted that classification at the time slice level cannot be regarded as a
goal in itself in the context of this work. Rather than resulting in ‘correctly’ classified time
slices, the intuition is to result in a time-series encoding which represents frequency of
occurrence of driving patterns and is distinctive for each driving style. More so, taking into
account that time slice labels are derived by the label of the containing route, essentially
prohibiting a ‘normal’ time slice in an ‘aggressive’ route and vice-versa. In this sense,
each NN-based component performing time slice classification is essentially evaluated by
considering the labels at the route level. For example, when comparing two NN-based
variants, variant A with lower classification accuracy at the time slice level, followed by
higher classification accuracy at the route level, and variant B with higher classification
accuracy at the time slice level, followed by lower classification accuracy at the route level,
the encoding obtained by variant A generalizes better than the one obtained by variant B.
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Table 5. Accuracy, Precision, Recall and F1 measures for time slice classification.

UAH

Acc P R F1
CNN 0.64 0.63 0.64 0.60
LSTM 0.89 0.89 0.89 0.89
GRU 0.91 0.91 0.91 0.91

MOTIF 1

Acc P R F1
CNN 0.82 0.83 0.82 0.82
LSTM 0.99 0.99 0.99 0.99
GRU 0.99 1.00 1.00 1.00

MOTIF 2

Acc P R F1
CNN 0.78 0.79 0.78 0.78
LSTM 0.97 0.97 0.97 0.97
GRU 0.96 0.97 0.97 0.97

Other works, sharing similar elements with the proposed approach, have been applied
on the UAH dataset focusing on time slice classification. Saleh et al. [11] report an F1
measure of 91%, which is equal to the one reported here for the GRU-based variant
(Table 5). Saleh et al. additionally identify drowsy driving behaviour, however this is
achieved by employing mobile phone camera in order to identify lane drifting, which
has been acknowledged [12] as a strong indicator for this type of driving behaviour.
On a similar setting, Khodairi and Abosamra [18] report an F1 measure exceeding 99%.
This is the highest score reported in the literature for time slice classification, however
it is also obtained by using mobile phone camera. The CNN-based approach of Xie
et al. [7] is also evaluated on the UAH dataset, however it is not quantitatively comparable
since it addresses a different problem: maneuver classification. Overall, the proposed
hybrid approach can be viewed as a framework to combine data-driven classification with
domain knowledge. As such, it could potentially encompass other classification approaches
introduced in the literature, as is the approach of Khodairi and Abosamra, in order to
address time slice classification, as well as overall route classification (see Section 4.3.2).

4.3.2. Route Level Classification

In this section, we evaluate the classification performance of the three variants of the
proposed approach (CNN, LSTM and GRU) at the route level. To provide further insights,
we also investigate the performance of standalone NN-based and rule-based components.
Finally, we perform quantitative and qualitative comparisons with state-of-the-art.

Table 6 presents the confusion matrices for the classification at the route level, as
performed by the three variants of the proposed approach (CNN, LSTM and GRU) on each
one of the three datasets described in Section 4.1 (UAH, MOTIF 1 and MOTIF 2). Hybrid
variants, which employ rule-based event detection, are presented without parentheses,
whereas their corresponding NN-only variants are presented in parentheses. It could be
observed that:

(1) In almost all cases, each hybrid variant obtains equal or higher classification accuracy,
when compared to its NN-only counterpart (one exception arises in CNN-based
classification of normal samples in the MOTIF 1 dataset). This indicates that the
rule-based component contributes to overall classification performance and in several
cases ‘corrects’ the result obtained by the NN-based component.

(2) When comparing the three NN architectures investigated, the RNN-based ones (LSTM
and GRU) obtain a higher classification performance than the CNN-based architecture,
more so in the UAH and MOTIF 2 datasets. This could be attributed to the fact
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that RNNs have been formulated to capture patterns in time-series such as these
sensor measurements.

(3) Between LSTM and GRU, the latter achieves slightly more accurate classification.

Table 6. Confusion matrices for route level classification (NN-only result in parentheses).

UAH

CNN
Normal Aggressive

Normal 11/12 (8/12) 1/12 (4/12)
Aggressive 4/11 (6/11) 7/11 (5/11)

LSTM
Normal Aggressive

Normal 11/12 (10/12) 1/12 (2/12)
Aggressive 1/11 (5/11) 10/11 (6/11)

GRU
Normal Aggressive

Normal 12/12 (11/12) 0/12 (1/12)
Aggressive 1/11 (5/11) 10/11 (6/11)

MOTIF 1

CNN

Normal Semi-aggressive Aggressive
Normal 10/11 (11/11) 1/11(0/11) 0/11 (0/11)

Semi-aggressive 0/11 (0/11) 11/11 (9/11) 0/11 (2/11)
Aggressive 0/11 (0/11) 0/11 (2/11) 11/11 (9/11)

LSTM

Normal Semi-aggressive Aggressive
Normal 11/11 (5/11) 0/11 (6/11) 0/11 (0/11)

Semi-aggressive 0/11 (2/11) 11/11 (7/11) 0/11 (2/11)
Aggressive 0/11 (0/11) 1/11 (1/11) 10/11 (10/11)

GRU

Normal Semi-aggressive Aggressive
Normal 11/11 (5/11) 0/11 (6/11) 0/11 (0/11)

Semi-aggressive 0/11 (2/11) 11/11 (7/11) 0/11 (2/11)
Aggressive 0/11 (0/11) 0/11 (0/11) 11/11 (11/11)

MOTIF 2

CNN

Normal Semi-aggressive Aggressive
Normal 7/12 (4/12) 1/12 (8/12) 4/12 (0/12)

Semi-aggressive 1/12 (0/12) 11/12 (12/12) 0/12 (0/12)
Aggressive 0/12 (0/12) 0/12 (2/12) 12/12 (10/12)

LSTM

Normal Semi-aggressive Aggressive
Normal 10/12 (9/12) 2/12 (3/12) 0/12 (0/12)

Semi-aggressive 1/12 (1/12) 11/12 (11/12) 0/12 (0/12)
Aggressive 0/12 (0/12) 0/12 (0/12) 12/12 (12/12)

GRU

Normal Semi-aggressive Aggressive
Normal 11/12 (10/12) 1/12 (2/12) 0/12 (0/12)

Semi-aggressive 0/12 (0/12) 12/12 (12/12) 0/12 (0/12)
Aggressive 0/12 (0/12) 0/12 (0/12) 12/12 (12/12)

To facilitate comparisons, Table 7 provides a more detailed view of the classifi-
cation results in the UAH dataset, including the results obtained by the approach of
Romera et al. [12]. Each classification result is marked as ‘T’ (True) or ‘F’ (False). We
included the results obtained by the standalone rule-based component (‘Events (only)’) in
order to highlight its contribution to overall classification accuracy obtained by the hybrid
variants. It could be observed that:

(1) The GRU-based hybrid variant (‘Hybrid (GRU)’) has 1/23 misclassification, whereas
the LSTM-based and CNN-based hybrid variants (‘Hybrid (CNN)’ and ‘Hybrid
(LSTM)’) have 6/23 and 2/23 misclassifications. The approach of Romera et al. [12]
has 3/23 misclassifications.

(2) All ‘NN-only’ variants lead to a considerable number of misclassifications. Still, when
‘NN-only’ variants are combined with ‘Events-only’, the overall classification accuracy



Appl. Sci. 2021, 11, 8574 16 of 19

is increased, as evident in the results obtained by the ‘Hybrid’ counterparts. Also,
there is a case in which ‘NN-only’ variants ‘correct’ ‘Events-only’ (‘D4-Aggressive-
Secondary’). These observations demonstrate that each component contributes com-
plementary information, increasing overall classification accuracy.

It should be noted that the results of the hybrid classification variants, as well as of
the ‘NN-only’ and ‘Events-only’ variants, which have been introduced in the context of
this work, were obtained using acceleration measures as input. On the other hand, the
method of Romera et al. [12] uses all smartphone sensors (inertial sensors, camera, GPS,
and internet access), in order to log and recognize driving maneuvers and infer behaviour.
In addition, Romera et al. identify drowsy driving behaviour, but as is the case with
Saleh et al. [11], this is achieved by using mobile phone camera in order to identify lane
drifting, which has been acknowledged by the authors as a strong indicator for this type of
driving behaviour. In the work of Romera et al., there are no misclassifications of either
normal or aggressive routes as drowsy, in order to affect the results presented on Table 7.

Table 7. Route level classification on UAH dataset.

State Driver Time
(min) Km CNN

(Only)
LSTM
(Only)

GRU
(Only)

Events
(Only)

Hybrid
(CNN)

Hybrid
(LSTM)

Hybrid
(GRU)

Romera
et al. [12]

Normal
(Motorway)

D1 14 25 T T T T T T T T
D2 15 26 F T T T T T T T
D3 15 26 F T T T T T T T
D4 16 25 T T T T T T T T
D5 15 25 F T T T T T T T
D6 17 25 T T T T T T T T

Aggressive
(Motorway)

D1 12 24 F T T T T T T T
D2 14 26 T F F T F T T F
D3 13 26 F T T T T T T T
D4 15 25 T F F T T T T F
D5 13 25 F F F T T T T F
D6 15 25 F T T T T T T T

Normal
(Secondary)

D1 10 16 T T T T T T T T
D2 10 16 T F T T T F T T
D3 11 16 F T T T T T T T
D4 11 16 T F F T T T T T
D5 11 16 T T T T F T T T
D6 13 16 T T T T T T T T

Aggressive
(Secondary)

D1 8 16 T F F T T T T T
D2 10 16 T T T T T T T T
D3 11 16 F F F F F F F T
D4 10 16 F T T F F T T T
D5 7 12 T T T T F T T T

Accuracy at Normal 8/12 10/12 11/12 12/12 11/12 11/12 12/12 12/12

Accuracy at Aggressive 5/11 6/11 6/11 9/11 6/11 10/11 10/11 8/11

Overall Accuracy 13/23 16/23 17/23 21/23 17/23 21/23 22/23 20/23

5. Conclusions

This work introduces a hybrid representation approach for driving behaviour clas-
sification. The main idea is to combine data-driven classification methods with domain
knowledge in the form of rules. The proposed approach combines NN-based encoding and
rule-based event detection. Histograms derived from the output of these two components
are concatenated and normalized to train a standard SVM, which is used to assess overall
driving behavior. CNN, LSTM, and GRU architectures are employed in the context of
different variants. The proposed approach is evaluated on the publicly available UAH
dataset [12], as well as on two datasets (MOTIF 1 and 2) created in the context of this work.
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Such a hybrid approach has not appeared in the literature of driving behaviour analysis
computational tools. Other novel elements of the proposed approach include the use of
image-like representations of sensor measurements in the case of the CNN-based variant,
as well as the first application of GRUs in driving behaviour analysis.

The main conclusions derived from our experiments can be summarized as follows:

(1) Both NN-guided time-series encoding and rule-guided event detection contribute to
the accuracy obtained by the proposed hybrid classification method.

(2) The RNN-based variants (LSTM and GRU) obtain higher classification performance
than the CNN-based variants, more so in the UAH and MOTIF 2 datasets.

(3) Between LSTM and GRU, the latter achieves slightly more accurate classification.
(4) The GRU-based variant obtains time slice classification, which exceeds 90% accuracy,

without using data derived from camera, as is the case with other state-of-the-art
approaches [11,18].

(5) In terms of overall route classification, the proposed approach outperforms the ap-
proach of Romera et al. [12] in distinguishing between normal and aggressive driving
behaviour, resulting in less misclassifications in the UAH dataset. This result of the
proposed method is obtained without using data derived from camera, as is the case
with the method of Romera et al.

Future perspectives of this work include experimentation with other data-driven
components, as well as the use of fuzzy rules in the context of the rule-guided event
detection component. Silva et al. [32] underlined the scientific opportunity that is created
by the abundance of live data retrieved from sensing systems, pervasive devices, or systems
with context recognition and communication. In the same direction, Semansjki et al. [33]
investigated the integration of data generated through the mobile devices and the social
media activities can be integrated to Smart City sustainable mobility planning. Having
been successfully applied on various domains [34,35], machine learning techniques could
eventually lead to “intelligent” mobility criteria, contributing to the decision making,
planning and overall sustainable mobility policy of modern Smart Cities.
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