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Abstract: The large amount of information stored in audio and video repositories makes search on
speech (SoS) a challenging area that is continuously receiving much interest. Within SoS, spoken
term detection (STD) aims to retrieve speech data given a text-based representation of a search
query (which can include one or more words). On the other hand, query-by-example spoken term
detection (QbE STD) aims to retrieve speech data given an acoustic representation of a search query.
This is the first paper that presents an internationally open multi-domain evaluation for SoS in
Spanish that includes both STD and QbE STD tasks. The evaluation was carefully designed so that
several post-evaluation analyses of the main results could be carried out. The evaluation tasks aim to
retrieve the speech files that contain the queries, providing their start and end times and a score that
reflects how likely the detection within the given time intervals and speech file is. Three different
speech databases in Spanish that comprise different domains were employed in the evaluation: the
MAVIR database, which comprises a set of talks from workshops; the RTVE database, which includes
broadcast news programs; and the SPARL20 database, which contains Spanish parliament sessions.
We present the evaluation itself, the three databases, the evaluation metric, the systems submitted to
the evaluation, the evaluation results and some detailed post-evaluation analyses based on specific
query properties (in-vocabulary/out-of-vocabulary queries, single-word/multi-word queries and
native/foreign queries). The most novel features of the submitted systems are a data augmentation
technique for the STD task and an end-to-end system for the QbE STD task. The obtained results
suggest that there is clearly room for improvement in the SoS task and that performance is highly
sensitive to changes in the data domain.

Keywords: search on speech; spoken term detection; query-by-example spoken term detection;
international evaluation; Spanish language

1. Introduction

The huge amount of information stored in audio and audiovisual repositories makes it
necessary to develop efficient methods for search on speech (SoS). Significant research has
been carried out for years in this area, and, in particular, in the tasks of spoken document
retrieval (SDR) [1–6], keyword spotting (KWS) [7–13], spoken term detection (STD) [14–25]
and query-by-example spoken term detection (QbE STD) [26–31].
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1.1. Spoken Term Detection Overview

Spoken term detection aims to find terms within audio archives. This is based on a
text-based input, commonly the word/phone transcription of the search term, and hence
STD is also called text-based STD.

Spoken term detection systems typically comprise three different stages: (1) the
audio is decoded into word/subword lattices using an automatic speech recognition (ASR)
subsystem trained for the target language; (2) a term detection subsystem searches the terms
within those word/subword lattices to hypothesise detections; and (3) confidence measures
are computed to rank the detections. The STD systems are normally language-dependent
and require large amounts of language resources.

1.2. Query-by-Example Spoken Term Detection Overview

Query-by-example spoken term detection also aims to search within audio archives,
but it is based on an acoustic (spoken) input. In QbE STD, we consider the scenario in
which the user finds a segment of speech that contains terms of interest within a speech
data repository, and the user’s purpose is to find similar speech segments within that
repository. The speech segment found is the query and the system outputs other similar
segments from the repository, which we will henceforth refer to as utterances. Alternatively,
the query can be uttered by the user. This is a highly valuable task for blind people or
devices that do not have a text-based input, and, consequently, the query must be given in
another format, such as speech.

Query-by-example spoken term detection has been traditionally addressed using three
different approaches: methods based on the word/subword transcription of the query,
methods based on template matching of features and hybrid approaches. In the last couple
of years, however, there have been new proposals based on deep learning.

1.3. Difference between Spoken Term Detection and Query-by-Example Spoken Term Detection

It should be noted that STD and QbE STD tasks are quite similar. Both tasks aim
to retrieve the speech files that contain the query of interest along with the appropriate
timestamps. They only differ in the input format. Whereas, for STD, the input is text, for
QbE STD it is speech. Although it is true that an STD system can be used to build a QbE
STD system by decoding the acoustic query with an ASR system and then performing an
text-based STD search, both tasks are fully-independent.

1.4. Related Work

In this section, we summarise the previous work related to both STD and QbE STD tasks.

1.4.1. Spoken Term Detection

Spoken term detection has been a hot topic in the past few years due to its many
applications and has received a great deal of interest from many outstanding companies and
research institutes, such as IBM [14,32–36], BBN [37–39], SRI & OGI [40–42], BUT [17,43,44],
Microsoft [45], QUT [46,47], JHU [16,48–50], Fraunhofer IAIS/NTNU/TUD [15], NTU [31,51],
IDIAP [52] and Google [21], among others. Within an STD system, the ASR subsystem
uses mostly word-based speech recognition [24,41,53–59] due to its better performance in
comparison with subword-based approaches.

However, subword-based ASR [22,24,60–66] is also being used, sometimes in combina-
tion with word-based ASR. One of the main challenges of using word-based ASR in this
context is that, in principle, only in-vocabulary (INV) terms can be detected. Subword-based
ASR, on the other hand, can detect terms even though they are not in the vocabulary of the
recognizer (i.e., out-of-vocabulary (OOV) terms). A more robust system could be obtained by
combining both approaches [17,24,25,38,39,42,50,67–73].

The availability of ASR toolkits, such as Kaldi [50,74] and ESPnet [75], among others,
facilitates the development of STD systems. For instance, Kaldi includes the tools to build a
complete STD system since it integrates an ASR subsystem, a term detector and a decision
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maker [74,76,77]. It uses a word-based approach and proposes a method based on proxy-
words for OOV detection that replaces each OOV word by the most similar in-vocabulary
word (or word sequence) [78].

In current state-of-the-art neural end-to-end ASR approaches, it is common to use
plain characters or word fragments as units [75,79], which theoretically avoids the OOV
issue. However, in practice, these systems are combined with language models to improve
recognition accuracy, which again limits the vocabulary of the ASR system.

Deep learning and, in particular, end-to-end systems were also recently investigated to
solve the STD problem directly. In this direction, several end-to-end ASR-free approaches
for STD were proposed [13,34–36]. In addition to exploring neural end-to-end approaches,
deep learning is extensively used to extract representations (embeddings) of audio docu-
ments and query terms that facilitate the search [20,21,23,25].

1.4.2. Query-by-Example Spoken Term Detection

It is possible to use a text-based STD system to solve the problem of QbE STD by first
transcribing the acoustic query, which can be done automatically using an ASR system
and, thus, converting the QbE STD problem into a text-based STD problem. However,
errors produced in the transcription of the query are difficult to recover and lead to a
significant performance degradation. Some examples of this approach using different
models and units are [26–28,80–88]. More recently, this approach has been extended
with automatic unit discovery [89–91] and deep neural networks (DNNs) for extracting
bottleneck features [92,93].

Another approach, perhaps the most common one, transforms audio (both queries and
utterances) into sequences of acoustic features and then makes use of template matching
methods to find subsequences in the utterance representations that are similar to the
sequence representing the query. This approach typically outperforms transcription-based
techniques in QbE STD [94]. In addition, this approach can lead to language-independent
STD systems, since prior knowledge of the language is not needed. The two main variations
of this approach are the features used to represent the audio and the template matching
method used.

The most commonly used features are posteriorgrams, and, among them, the most
common type is the phoneme posteriorgram [87,95–104]. Another frequent type is the
Gaussian posteriorgram [29,82,95,105,106]. Finally, there are also works exploring other
types of posteriorgrams [107–110]. In recent years, the use of bottleneck features extracted
from DNNs became popular [87,92,93,111–115].

There are also methods that explore other types of features beyond posteriorgrams
and bottlenecks [116–119]. Most of the previous works make use of dynamic time warping
(DTW) for query search, in many cases in the form of subsequence DTW (S-DTW) and some
variants [29,95,100–103,105,108,110,112,115,120]. A well-known problem of these methods
is the computational cost. To reduce this cost, Ref. [104] proposes hashing the phone
posteriors to speed up the search and thus enable searching on massively large datasets.

Aiming to keep the advantages of both methods, hybrid methods that combine the two
previous approaches were proposed. Most works use logistic regression-based fusion of
DTW and phoneme or syllable-based speech recognition systems [121–127]. Other hybrid
approaches combine DTW with other techniques, such as subspace modelling [110]. Some
more recent approaches use DNNs for posteriorgram-based rescoring [128,129].

In the last few years, there were a few novel proposals in QbE STD, most of them
based on deep learning. The most direct use of deep learning is perhaps the one proposed
in [130,131], where a convolutional neural network (CNN) is used to decide whether the
DTW cost matrix (considered as a grey scale image) contains a match. A less direct approach
consists of replicating the standard approach of natural language processing (NLP) of
representing a word with a fixed-length vector (embedding). In [120,132–134], this is
extended by obtaining the word embedding directly from the audio. Once the embeddings
are obtained, matching words is trivial and can be done using nearest neighbours [132].
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Finally, attention mechanisms in DNNs allow the system to focus on the parts of the audio
that are more relevant.

This was applied in the context of QbE STD to train a neural end-to-end system in
which the attention weights indicate the time span of the detected queries [135]. More
recently, attention mechanisms were extended to two-way attention mechanisms in the NLP
context of question answering [136], and this approach was also applied to the problem of
QbE STD [137].

2. Search on Speech Evaluation
2.1. Evaluation Summary

The SoS evaluation involves searching a list of queries (given in both written and
acoustic forms) within speech data. As a result, both audio files and timestamps of each
detected occurrence must be given.

Specifically, the evaluation consists in searching different queries within different sets
of speech data. Workshop talks, broadcast news and parliament sessions domains are
considered in the evaluation. Individual speech and text datasets are provided for each
domain. Each domain contains training/development/test data, except for the parliament
sessions dataset, for which only test data are provided. The evaluation results and rankings
are established independently for each domain using the corresponding test data.

Regarding the system construction, participants are allowed to use the training data
only for system training and the development data only for system tuning; however, any
additional data can also be employed both for system training and development.

Two different types of queries are defined in this evaluation: in-vocabulary queries
and out-of-vocabulary queries. The OOV query set aims to simulate the out-of-vocabulary
words of a large vocabulary continuous speech recognition (LVCSR) system. In the case
where participants employ an LVCSR system for system construction, these OOV words
should be previously removed from the system dictionary, and hence other methods (e.g.,
phone-based systems) need to be used for searching OOV queries. The only exception
is for end-to-end system construction, for which participants are allowed to treat all the
queries as INV queries. On the other hand, the words present in the INV queries could
appear in the LVCSR system dictionary if the participants find it suitable.

For the QbE STD task, participants are allowed to make use of the target language
information (Spanish) when building their system/s (i.e., system/s can be language-
dependent), although evaluation organizers highly encouraged participants to develop
language-independent systems.

Participants can submit a primary system and up to four contrastive systems for each
task. No manual intervention is allowed for each system to generate the final output file,
and hence all systems have to be fully automatic. Listening to the test data or any other
human interaction with the test data is forbidden before the evaluation results are sent
back to the participants. The standard extensible markup language (XML)-based format
accepted by the national institute of standards and technology (NIST) evaluation tool [138]
is used for query detection. Test data ground-truth labels are given to participants once
organizers send them back the evaluation results.

About five months were given to participants for system development, and therefore
the SoS evaluation focuses on building SoS systems in a limited period of time. Training
and development data were released by mid-March 2020. Test data were released by the
beginning of September 2020. System submission was due by mid-October 2020. The final
results were discussed at IberSPEECH 2020 conference by the end of March 2021.

2.2. Databases

Three databases that comprise different acoustic conditions and domains were em-
ployed for the evaluation: the workshop talks MAVIR and broadcast news RTVE databases,
which were used in previous ALBAYZIN SoS evaluations, and the SPARL20 database,
which was the new one added for this evaluation and which contains speech from Spanish
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parliament sessions held from 2016. For the MAVIR and RTVE databases, three indepen-
dent datasets (i.e., training, development and testing) were provided to participants.

For the SPARL20 database, only test data were provided. This allowed measuring
the system generalization capability to an unseen domain. Tables 1–3 show some of the
database features, such as the training/development/test division, the number of word
occurrences, the duration, the number of speakers and the average mean opinion score
(MOS) [139]. The latter is included to show the quality of each speech file in the databases.

Table 1. Characteristics of the MAVIR database: number of word occurrences (#occ.), duration (dur.)
in minutes (min), number of speakers (#spk.) and average MOS (Ave. MOS). These characteristics
are displayed for training (train), development (dev) and testing (test) datasets.

File ID Data #occ. dur. (min) #spk. Ave. MOS

Mavir-02 train 13,432 74.51 7 (7 ma.) 2.69

Mavir-03 dev 6681 38.18 2 (1 ma. 1 fe.) 2.83

Mavir-06 train 4332 29.15 3 (2 ma. 1 fe.) 2.89

Mavir-07 dev 3831 21.78 2 (2 ma.) 3.26

Mavir-08 train 3356 18.90 1 (1 ma.) 3.13

Mavir-09 train 11,179 70.05 1 (1 ma.) 2.39

Mavir-12 train 11,168 67.66 1 (1 ma.) 2.32

Mavir-04 test 9310 57.36 4 (3 ma. 1 fe.) 2.85

Mavir-11 test 3130 20.33 1 (1 ma.) 2.46

Mavir-13 test 7837 43.61 1 (1 ma.) 2.48

ALL train 43,467 260.27 13 (12 ma. 1 fe.) 2.56

ALL dev 10,512 59.96 4 (3 ma. 1 fe.) 2.64

ALL test 20,277 121.3 6 (5 ma. 1 fe.) 2.65

Table 2. Characteristics of the RTVE database: number of word occurrences (#occ.), duration (dur.) in
minutes (min), number of speakers (#spk.) and average MOS (Ave. MOS). These characteristics are
displayed for training (train), development (dev), and testing (test) datasets. The results for train and
dev1 are not reported per file due to the large number of files (about 400 for train and about 60 for dev1).

File ID Data #occ. dur. (min) #spk. Ave. MOS

LN24H-20151125 dev2 21,049 123.50 22 3.37

LN24H-20151201 dev2 19,727 112.43 16 3.27

LN24H-20160112 dev2 18,617 110.40 19 3.24

LN24H-20160121 dev2 18,215 120.33 18 2.93

millennium-20170522 dev2 8330 56.50 9 3.61

millennium-20170529 dev2 8812 57.95 10 3.24

millennium-20170626 dev2 7976 55.68 14 3.55

millennium-20171009 dev2 9863 58.78 12 3.60

millennium-20171106 dev2 8498 59.57 16 3.40

millennium-20171204 dev2 9280 60.25 10 3.29

millennium-20171211 dev2 9502 59.70 12 2.95

millennium-20171218 dev2 9386 55.55 15 2.70

EC-20170513 test 3565 22.13 N/A 3.12
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Table 2. Cont.

File ID Data #occ. dur. (min) #spk. Ave. MOS

EC-20170520 test 3266 21.25 N/A 3.38

EC-20170527 test 2602 17.87 N/A 3.42

EC-20170603 test 3527 23.87 N/A 3.90

EC-20170610 test 3846 24.22 N/A 3.31

EC-20170617 test 3368 21.55 N/A 3.36

EC-20170624 test 3286 22.60 N/A 3.65

EC-20170701 test 2893 22.52 N/A 3.47

EC-20170708 test 3425 23.15 N/A 3.58

EC-20170715 test 3316 22.55 N/A 3.82

EC-20170722 test 3929 27.40 N/A 3.88

EC-20170729 test 4126 27.45 N/A 3.61

EC-20170909 test 3063 21.05 N/A 3.64

EC-20170916 test 3422 24.60 N/A 3.40

EC-20170923 test 3331 22.02 N/A 3.24

EC-20180113 test 2742 19.02 N/A 3.80

EC-20180120 test 3466 21.97 N/A 3.28

EC-20180127 test 3488 22.52 N/A 3.56

EC-20180203 test 3016 21.60 N/A 3.90

EC-20180210 test 3214 23.20 N/A 3.71

EC-20180217 test 3094 20.33 N/A 3.57

EC-20180224 test 3140 20.78 N/A 3.56

millennium-20170703 test 8714 55.78 N/A 1.10

millennium-20171030 test 8182 57.05 N/A 3.44

ALL train 3,729,924 27729 N/A 3.04

ALL dev1 545,952 3742.88 N/A 2.90

ALL dev2 149,255 930.64 N/A 3.25

ALL test 90,021 605.48 N/A 3.32

Table 3. Characteristics of the SPARL20 database, used as test data in the evaluation: number of
word occurrences (#occ.), duration (dur.) in minutes (min), number of speakers (#spk.) and average
MOS (Ave. MOS). These characteristics are displayed for training (train), development (dev) and
testing (test) datasets.

File ID #occ. dur. (min) #spk. Ave. MOS

13_000500_003_1_19421_642906 875 5.55 2 (1 ma. 1 fe.) 3.11

13_000400_007_0_19432_643097 563 3.53 2 (1 ma. 1 fe.) 3.47

13_000400_005_0_19422_642932 718 3.57 2 (1 ma. 1 fe.) 2.92

13_000400_005_0_19422_642923 1898 11.62 1 (1 fe.) 3.27

13_000400_005_0_19422_642922 1733 11.67 1 (1 fe.) 3.19

13_000400_004_0_19388_642448 1107 7.43 1 (1 ma.) 2.53

13_000400_003_0_19381_642399 1403 8.13 3 (2 ma. 1 fe.) 2.83
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Table 3. Cont.

File ID #occ. dur. (min) #spk. Ave. MOS

13_000400_003_0_19381_642398 1279 11.45 3 (2 ma. 1 fe.) 3.26

13_000400_002_1_19376_642375 2007 13.70 2 (1 ma. 1 fe.) 2.41

13_000400_002_1_19376_642366 1720 10.73 1 (1 ma.) 2.27

13_000327_002_0_19437_643241 1405 8.73 2 (2 ma.) 3.37

12_000400_153_0_18748_633006 1331 8.33 2 (2 ma.) 3.48

12_000400_148_0_18727_632388 1012 5.42 2 (1 ma. 1 fe.) 3.14

12_000400_003_0_16430_586456 1484 10.33 1 (1 ma.) 2.17

ALL 18,535 120.19 25 (16 ma. 9 fe.) 2.90

2.2.1. MAVIR

The MAVIR database consists of a set of Spanish talks from the MAVIR workshops
(http://www.mavir.net, accessed on 10 september 2021) held in 2006, 2007 and 2008. It
contains speech from Spanish speakers both from Spain and Latin America.

The MAVIR Spanish data consist of 7 h of spontaneous speech files from different
speakers. These data were then divided into training, development and test sets. The
data were manually annotated in an orthographic form, but timestamps were only set for
phrase boundaries. For the SoS evaluation, organizers manually added the timestamps for
the roughly 3000 occurrences of the queries used in the development and test evaluation
sets. The training data were made available to the participants, including the orthographic
transcription and the timestamps for phrase boundaries (http://cartago.lllf.uam.es/mavir/
index.pl?m=videos, accessed on 10 september 2021).

Initially, the speech data were recorded in several audio formats (pulse code modula-
tion (PCM) mono and stereo, MP3, 22.05 kHz, 48 kHz, among others). Recordings were
afterward converted to PCM, 16 kHz, single channel, 16 bits per sample using the SoX tool
(http://sox.sourceforge.net/, accessed on 10 september 2021) for this evaluation. All the
recordings except for one were originally made with a Digital TASCAM DAT model DA-P1
equipment. Different microphones were used, which mainly consisted of tabletop or floor
standing microphones, and one lavalier microphone was also employed. The distance from
the microphone to the mouth of the speaker was not specifically controlled, but in most of
the cases was smaller than 50 cm.

The speech recordings took place in large conference rooms with capacity for over a
hundred people. This conveys additional challenges including background noise (partic-
ularly babble noise) and reverberation. Therefore, these realistic settings and the variety
of phenomena in the spontaneous speech make this database appealing and challenging
enough for the SoS evaluation.

2.2.2. RTVE

The RTVE database belongs to the broadcast news domain and contains speech from
different television (TV) programs recorded from 2015 to 2018 (e.g., Millenium, Al filo de
lo imposible, Asuntos públicos, La tarde en 24H, to name a few). These amount to about
570 h in total, which were further divided into training, development and test sets. To
prepare the data for the evaluation, organizers manually added the timestamps for the
roughly 2700 occurrences of the queries used in the development and test evaluation sets.

The training speech data along with the corresponding subtitles (even though these
could contain non-accurate word transcriptions) were provided to participants. The de-
velopment data were divided into two different development sets, as follows: The dev1
dataset consists of about 60 h of speech and human-revised word transcriptions without
time alignment. The dev2 dataset, which was employed as real development data for the
SoS evaluation, consists of 15 h of speech data. The format of the recordings is advanced

http://www.mavir.net
http://cartago.lllf.uam.es/mavir/index.pl?m=videos
http://cartago.lllf.uam.es/mavir/index.pl?m=videos
http://sox.sourceforge.net/
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audio coding (AAC), stereo, 44.1 kHz and variable bit rate. More information about the
RTVE database can be found in [140].

2.2.3. SPARL20

The SPARL20 database consists of a small subset of speech from Spanish parliament
sessions held from 2016. The SPARL20 data consist of spontaneous speech and amount
to about 2 h of speech extracted from 14 audio files. For the SoS evaluation, organizers
manually added the timestamps for the roughly 1500 occurrences of the queries used as
test data.

The original recordings are videos in moving picture experts group (MPEG) format.
The evaluation organizers extracted the audio of these videos and converted them to PCM,
16 kHz, single channel and 16 bits per sample using the ffmpeg tool (https://ffmpeg.org/,
accessed on 10 september 2021). This database contains several noise types (e.g., laugh,
applause, etc.), which makes it quite challenging.

2.2.4. Query List Selection

Query selection plays an important role within search on speech, since it should
carefully take into account different search scenarios. To do so, the queries involved both
in the STD and the QbE STD tasks include high occurrence queries, low occurrence queries,
in-language (INL) (i.e., Spanish) queries, out-of-language (OOL) (i.e., foreign) queries,
single-word and multi-word queries, in-vocabulary and out-of-vocabulary queries and
queries of different length. In the evaluation datasets, a query may not have any occurrence
or appear one or more times in the speech data. Table 4 includes some features of the
development and test query lists, such as the number of INL and OOL queries, the number
of single-word and multi-word queries and the number of INV and OOV queries, along
with the number of occurrences of each set in the corresponding speech database for the
STD task.

Table 4. Development and test query list characteristics for the MAVIR, RTVE and SPARL20 databases
for the STD task. ‘dev’ stands for development, ‘INL’ refers to in-language queries, ‘OOL’ to foreign
terms, ‘SING’ to single-word queries, ‘MULTI’ to multi-word queries, ‘INV’ to in-vocabulary queries,
‘OOV’ to out-of-vocabulary queries and ‘occ.’ stands for occurrences. The term length of the
development query lists varies between 4 and 27 graphemes. The term length of the MAVIR and
RTVE test query lists varies between 4 and 28 graphemes. The term length of the SPARL20 test query
list varies between 3 and 19 graphemes.

Query List Dev-MAVIR Dev-RTVE Test-MAVIR Test-RTVE Test-SPARL20

#INL (occ.) 354 (959) 307 (1151) 208 (2071) 301 (1082) 236 (1521)

#OOL (occ.) 20 (55) 91 (351) 15 (50) 103 (162) 16 (39)

#SING (occ.) 340 (984) 380 (1280) 198 (2093) 383 (1186) 252 (1560)

#MULTI
(occ.) 34 (30) 18 (222) 25 (28) 21 (58) 0 (0)

#INV (occ.) 292 (668) 312 (1263) 192 (1749) 316 (1035) 204 (1375)

#OOV (occ.) 82 (346) 86 (239) 31 (372) 88 (209) 48 (185)

Regarding the QbE STD task, three different acoustic examples per query were pro-
vided for both development and test datasets. One example was extracted from the same
dataset as the one to be searched (hence in-domain acoustic examples). This scenario
considered the case in which the user finds a term of interest within a certain speech dataset
and he/she wants to search for new occurrences of the same query.

The two other examples were recorded by the evaluation organizers and comprised
an scenario where the user pronounces the query to be searched (hence, out-of-domain
acoustic examples). These two out-of-domain acoustic examples amount to 3 s of speech

https://ffmpeg.org/
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with PCM, 16 kHz, single channel and 16 bits per sample with the microphone of an HP
ProBook Core i5, 7th Gen and with a Sennheiser SC630 USR CTRL microphone with noise
cancellation, respectively.

The queries employed for the QbE STD task were chosen from the STD queries, and
the corresponding figures are presented in Table 5. For both the STD and QbE STD tasks, a
multi-word query was considered OOV in the case where any of the words that form the
query were OOV.

Table 5. Development and test query list characteristics for the MAVIR, RTVE and SPARL20 databases
for the QbE STD task. ‘dev’ stands for development, ‘INL’ refers to in-language queries, ‘OOL’ to
foreign terms, ‘SING’ to single-word queries, ‘MULTI’ to multi-word queries, ‘INV’ to in-vocabulary
queries, ‘OOV’ to out-of-vocabulary queries and ‘occ.’ stands for occurrences.

Query List Dev-
MAVIR Dev-RTVE Test-MAVIR Test-RTVE Test-SPARL20

#INL (occ.) 96 (386) 81 (464) 99 (1163) 89 (808) 87 (903)

#OOL (occ.) 6 (39) 22 (110) 7 (29) 19 (72) 13 (30)

#SING (occ.) 93 (407) 101 (544) 100 (1180) 105 (861) 100 (933)

#MULTI (occ.) 9 (18) 2 (30) 6 (12) 3 (19) 0 (0)

#INV (occ.) 83 (296) 76 (480) 94 (979) 87 (750) 65 (788)

#OOV (occ.) 19 (129) 27 (94) 12 (213) 21 (130) 35 (145)

2.3. Evaluation Metrics

In search on speech systems (both for STD and QbE STD tasks), a hypothesised
occurrence is called a detection; if the detection corresponds to an actual occurrence, it is
called a hit, otherwise it is called a false alarm. If an actual occurrence is not detected, this
is called a miss. The actual term weighted value (ATWV) metric proposed by NIST [138]
was used as the main metric for the evaluation. This metric combines the hit rate and false
alarm rate of each query and averages over all the queries, as shown in Equation (1):

ATWV =
1
|∆| ∑

Q∈∆
(

NQ
hit

NQ
true

− β
NQ

FA

T − NQ
true

), (1)

where ∆ denotes the set of queries and |∆| is the number of queries in this set. NQ
hit and

NQ
FA represent the numbers of hits and false alarms of query Q, respectively, and NQ

true is
the number of actual occurrences of query Q in the audio. T denotes the audio length in
seconds, and β is a weight factor set to 999.9, as in the ATWV proposed by NIST [37]. This
weight factor causes an emphasis placed on recall compared to precision with a ratio 10:1.

The time tolerance for query detection was higher than the original proposed by NIST
to encourage participants to build end-to-end systems for both STD and QbE STD tasks. To
do so, a detection was labelled as correct in case it appeared within ±15-s interval from the
ground-truth timestamp.

ATWV represents the term weighted value (TWV) for an optimal threshold given
by the system (usually tuned on the development data). An additional metric, called
maximum term weighted value (MTWV) [138] is also used in this paper to evaluate the
upper-bound system performance regardless of the decision threshold.

Additionally, p(Miss) and p(FA) values, which represent the probability of miss and
FA of the system as defined in Equations (2) and (3), respectively, are also reported.

p(Miss) = 1− Nhit
Ntrue

(2)



Appl. Sci. 2021, 11, 8519 10 of 39

p(FA) =
NFA

T − Ntrue
, (3)

where Nhit is the number of hits obtained by the system, Ntrue is the actual number of occur-
rences of the queries in the audio, NFA is the number of FAs produced by the system and T
denotes the audio length (in seconds). These values, therefore, provide a quantitative way
to measure system performance in terms of misses (or equivalently, hits) and false alarms.

In addition to ATWV, MTWV, p(Miss) and p(FA) figures, NIST also proposed a detec-
tion error tradeoff (DET) curve [141] that evaluates the performance of a system at various
miss/FA ratios. Although DET curves were not used for the evaluation itself, they are also
presented in this paper for system comparison.

The NIST STD evaluation tool [142] was employed to compute both the MTWV, ATWV,
p(Miss) and p(FA) figures, along with the DET curves.

2.4. Comparison with Previous Search on Speech International Evaluations

The SoS ALBAYZIN evaluation comprises two different tasks (STD and QbE STD).
The most similar evaluations to the SoS ALBAYZIN evaluation are the NTCIR-11 [143] and
NTCIR-12 [144] search on speech evaluations that also involved these two tasks. The data
used in these NTCIR evaluations contained spontaneous speech in Japanese provided by
the National Institute for Japanese Language and spontaneous speech recorded during
seven editions of the Spoken Document Processing Workshop.

These evaluations also provided the participants a voice activity detector (VAD) for
the speech data, the manual transcription of the speech data and the output of an LVCSR
system. The results of those evaluations vary from 0.6140 to 0.7188 in terms of F-measure
for the STD task and from 0.5860 to 0.7963 in terms of MAP measure for the QbE STD task.

However, our SoS evaluation differs from those in several aspects:

• The SoS ALBAYZIN evaluation makes use of a different language (i.e., Spanish).
• The SoS ALBAYZIN evaluation defines disjoint development and test query lists,

along with different domains and an unseen domain for test data to measure the
generalization capability of the systems.

• Participants were highly encouraged to build end-to-end systems.
• In the case that participants do not build end-to-end systems, the SoS ALBAYZIN

evaluation defines two types of queries: INV and OOV, which demand participants to
build different types of systems, especially those handling OOV query search.

• The SoS ALBAYZIN evaluation for the QbE STD task provides two acoustic query
types: in-domain acoustic examples, which correspond to spoken queries extracted
from the search speech collection; and out-of-domain acoustic examples, which corre-
spond to spoken queries recorded by the evaluation organizers.

2.4.1. Comparison with Previous STD International Evaluations

Since the SoS ALBAYZIN evaluation integrates the STD task, it is worth mention-
ing other previous STD international evaluations. In 2006, NIST launched the first STD
evaluation [145]. This evaluation involved different languages (i.e., English, Arabic and
Mandarin) and different acoustic conditions (i.e., conversational telephone speech (CTS),
broadcast news and round-table meetings). The best performance was obtained for the
broadcast news condition and English language (ATWV = 0.8485), for which more data for
system construction was typically available by that date.

IARPA BABEL program started in 2011 and addressed KWS/STD tasks to a great
extent as well [146]. This program focused on building fully automatic and noise-robust
speech recognition and search systems in a very limited amount of time (e.g., one week)
and with limited amount of training data. The languages addressed in that program were
low-resourced, such as Cantonese, Pashto, Tagalog, Turkish, Vietnamese, Swahili, Tamil
and so on, and significant research has been carried out [13,61,147–159].
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Moreover, NIST continued organising STD evaluations in the so-called open keyword
search (OpenKWS) evaluations from 2013 to 2016 [160–163]. These OpenKWS evaluations
were very similar to the NIST STD 2006 evaluation, since they included CTS data and
microphone speech data. The main novelty was that the evaluation language was unknown
up to 4 weeks (or less) before the system submission. The main results of these evaluations
are presented in Table 6.

Table 6. Best performance (in terms of the Actual Term Weighted Value, ATWV) obtained in the
different editions (2013, 2014, 2015 and 2016) of the OpenKWS evaluations under the full language
pack condition.

Evaluation ATWV Language

OpenKWS 2013 0.6248 Vietnamese

OpenKWS 2014 0.5802 Tamil

OpenKWS 2015 0.6548 Swahili

OpenKWS 2016 0.8730 Georgian

From 2017, NIST has also been organising the biennial open speech analytics tech-
nologies (OpenSAT) evaluations [164–167], which include keyword search among their
tasks, and aim to provide support for developing novel speech analytic technologies for
low-resourced languages by including multiple speech analytic tasks (speech activity
detection, speech recognition and keyword spotting) and multiple data domains (low-
resourced languages, speech from video and public-safety communications). The only
publicly available results are those from the 2017 evaluation and show an ATWV = 0.57 for
the low-resourced languages and a quite low ATWV (negative value) for the challenging
public-safety communication domain.

In the STD task of the SoS ALBAYZIN evaluation, speech comprises various recording
conditions: (1) real talks in real workshops held in large conference rooms with audience,
(2) broadcast news speech and (3) parliament sessions speech. In the workshop data,
microphones, conference rooms and even recording conditions change from one recording
to another, where tabletop and ground standing microphones were typically employed.
In addition, the SoS ALBAYZIN evaluation explicitly defines different in-vocabulary and
out-of-vocabulary term sets and makes use of Spanish language. These differences in
the evaluation conditions make our evaluation pose different challenges but also make it
difficult to compare the results obtained in our evaluation with those of previous NIST
STD/OpenKWS/OpenSAT evaluations.

2.4.2. Comparison with Previous Qbe STD International Evaluations

Several QbE STD international evaluations held around the world are similar, in some
ways, to the QbE STD task of the SoS ALBAYZIN evaluation. These comprise the spoken
web search (SWS) task in MediaEval 2011 [168], 2012 [169] and 2013 [170] evaluations,
whose results range from 0.173 to 0.762 in terms of ATWV.

However, the QbE STD task of the SoS ALBAYZIN evaluation differs from those
evaluations in several aspects:

• The most important difference is the nature of the audio content. In the SWS eval-
uations, the speech is typically telephone speech, either conversational or read and
elicited speech, or speech recorded with in-room microphones. In the SoS ALBAYZIN
evaluation, the audio consists of microphone recordings of real talks in workshops
that took place in large conference rooms in the presence of audience. Microphones,
conference rooms and recording conditions change from one recording to another.
The microphones were not close talking microphones but table top or floor standing
microphones. In addition, the SoS ALBAYZIN evaluation also contains broadcast TV
shows and live-talking parliament sessions speech, and explicitly defines different
in-vocabulary and out-of-vocabulary query sets.
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• SWS evaluations dealt with Indian and African-derived languages, as well as Albanian,
Basque, Czech, non-native English, Romanian and Slovak languages, while the SoS
ALBAYZIN evaluation only deals with the Spanish language.

This makes it difficult to compare the results obtained in the QbE STD task of the SoS
ALBAYZIN evaluation with those of SWS MediaEval evaluations.

2.4.3. Comparison with Previous Search on Speech Albayzin Evaluations

From 2012, the SoS ALBAYZIN evaluation is being organized every two years. Com-
pared with the previous evaluation held in 2018, the 2020 edition integrates the follow-
ing advances:

• The Spanish parliament sessions is a new domain that was selected as the unseen
domain to test the system generalization capability.

• For the QbE STD task, organizers recorded two acoustic examples per query aiming
to encourage participants to build a more robust acoustic query for search.

• Aiming to build end-to-end systems both for STD and QbE STD tasks, organizers
allowed participants to include OOV queries within the system dictionary in the case
an end-to-end system is built.

3. Systems

Seven different systems were submitted from two research teams to the SoS evalua-
tion. Specifically, four systems were submitted for the STD task, and three systems were
submitted for the QbE STD task. This allows for a comparison between both tasks. Table 7
lists the systems submitted along with their main characteristics.

Table 7. Participants in the ALBAYZIN 2020 SoS along with the systems submitted.

Team ID Research Institution Systems Task Type of System

CENATAV

Voice group,
Advanced Technologies

Application Center,
Cuba

Kaldi DNN + DA
Kaldi SGMM + DA

Kaldi DNN
Kaldi SGMM

STD
STD
STD
STD

LVCSR
LVCSR
LVCSR
LVCSR

AUDIAS
Universidad
Autónoma

de Madrid, Spain

E2E + LA
E2E

E2E + ZNORM

QbE STD
QbE STD
QbE STD

LD end-to-end
LI end-to-end
LI end-to-end

3.1. Spoken Term Detection

The four systems submitted to the STD task are based on LVCSR from the Kaldi
toolkit [74]. These systems are described below.

3.1.1. Kaldi-Based DNN with Data Augmentation System (Kaldi DNN + DA)

This system, whose architecture is presented in Figure 1, is based on an LVCSR system
constructed with the open-source Kaldi toolkit [74].

Figure 1. Architecture of the Kaldi DNN + DA system.
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First, a VAD is employed to remove noisy and voiceless segments from the original
speech signals. This VAD was developed with the open-source machine learning frame-
work Pytorch as an artificial neural network that consists of a single unidirectional long
short-term memory (LSTM) recurrent layer and one fully connected layer. The input
features for this VAD are 12 Mel frequency cepstrum coefficients (MFCCs) along with their
first derivatives. Data employed for VAD training consist of the training data provided by
the evaluation organizers.

Then, the LVCSR module based on Kaldi takes the speech segments as input and
produces word lattices as output. The system’s design makes use of the s5 Wall Street
Journal (WSJ) recipe in Kaldi [171]. The acoustic features are 13 MFCCs with cepstral
mean and variance normalization (CMVN) applied to reduce the effects of the channel,
and appended, just for the flat initialization of the acoustic model, with their delta and
acceleration coefficients.

Some other transformations, such as linear discriminant analysis (LDA), maximum
likelihood linear transform (MLLT) and feature-space maximum likelihood linear regres-
sion (fMLLR) are also applied to obtain more robust features. The acoustic model training
starts with a flat initialization of context-independent phone hidden Markov models
(HMMs). Then, several re-training and alignment of acoustic models are carried out to
produce context-dependent phone HMMs, following the standard procedures of the Kaldi
s5 WSJ recipe.

These phone models consist of three HMM states, each in a tied-pdf cross-word
tri-phone context with Gaussian mixture models (GMMs). Then, the subspace Gaussian
mixture model (SGMM) is employed on top of the GMM-HMM model for speaker adapta-
tion, as described in [172], using fMLLR features and sharing the same Gaussian model.
The GMM-HMM is also employed to produce the alignments needed to the DNN-based
acoustic model (DNN-HMM). The DNNs consist of two hidden layers with 300 nodes
each. The number of spliced frames is 9 to produce 360 dimensional vectors as input to
the first layer. The output layer is a soft-max layer representing the log-posteriors of the
context-dependent HMM states.

The acoustic model training data comprise the following data: the TC-STAR evaluation
package data recorded from 2005 to 2007, which amount to about 27 h of speech; a subset of
the dev1 set of the RTVE data, which amounts to about 14 h of speech; the LibriVox-Bailén
data, which consist of audiobook speech and amount to about 7 h of speech; and the
MAVIR training data, which amount to more than 4 h of speech. There are 52 h of speech
material in total in the four datasets. Overlapped speech is removed from the dev1 set of
RTVE, and thus eventually 51 h of speech are used for acoustic model training.

The data used for language model training consist of the text transcriptions of the
acoustic model training data, which contain 163,000 word occurrences. Specifically, these
text transcriptions are given to the SRILM toolkit [173] to create a trigram-based language
model with 45,000 trigrams, 188,000 bigrams and 28,000 unigrams. The system’s vocabulary
consists of the different words contained in the training data and, after removing the OOV
words, amounts to 28,000 words. The multilingual G2P transcriber [174] is employed to
obtain the phone transcription of each word.

Then, the Kaldi decoder outputs word lattices using the DNN-HMM based acoustic
models. The STD subsystem, which takes the word lattices as input, includes the Kaldi
term detector and Kaldi decision maker. The Kaldi term detector [74,76,77] searches for the
input queries within the word lattices. To do so, these lattices are first processed using the
lattice indexing technique described in [175] so that these are converted from individual
weighted finite state transducers (WFSTs) to a single generalized factor transducer structure
in which the start-time, end-time and lattice posterior probability of each word token are
stored as 3-dimensional vectors.

This factor transducer represents an inverted index of all word sequences in the
lattices. Thus, given a list of queries in a written form, a finite state machine is first created,
then it accepts each query and finally composes it with the factor transducer to obtain all
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occurrences of the queries in the search speech files. The Kaldi decision maker provides a
YES/NO decision for each detection based on the term specific threshold (TST) approach
presented in [54], so that a score for each detection is computed as shown in Equation (4):

p >
Ncon f

T
β + β−1

β Ncon f
, (4)

where p is the confidence score of the detection, Ncon f is the sum of the confidence score
of all the detections of the given query, β is set to 999.9 (as in Equation (1)), and T is the
length of the audio (in seconds).

No strategy was employed for retrieving the OOV words, and therefore this system
cannot detect the OOV terms.

In order to alleviate the data mismatch between training and test speech, a data
augmentation strategy is incorporated to the system. This aims to generate artificial (i.e.,
synthetic) speech data to augment the speech training material. Both noise databases and a
tool to simulate noisy conditions in the speech with different signal-to-noise ratio (SNR)
levels were employed.

The noise resources consist of two different databases: (1) free TV programs and
radio music background excerpts collected through the Internet; and (2) the DEMAND
database [176]. The noise effects in the DEMAND database are common in-door and
out-door background sounds, which aim to mimic acoustic noises that occur in natural
conversations, such as those in the MAVIR database. Both TV programs and radio music
background excerpts aim to mimic the acoustic events that may occur in the RTVE database.

The filtering and noise adding tool (FaNT), which was originally used to create
noisy data in the AURORA 2 speech recognition corpus, was employed to synthesize the
augmented speech data [177]. This tool allows adding noise to previously recorded speech
signals with the desired SNR. Two different SNR ranges were employed for the two noise
databases (i.e., 1–10 dB and 6–15 dB) so that the training data are augmented by a factor
of 4.

3.1.2. Kaldi-Based SGMM with Data Augmentation System (Kaldi SGMM + DA)

This system is the same as the Kaldi DNN + DA system described before, except that
SGMMs are employed as acoustic models.

3.1.3. Kaldi-Based DNN System (Kaldi DNN)

This system is the same as the Kaldi DNN + DA system described before, except that
the data augmentation strategy is not applied.

3.1.4. Kaldi-Based SGMM System (Kaldi SGMM)

This system is the same as the Kaldi SGMM + DA system, except that the data
augmentation strategy is not applied.

3.2. Query-by-Example Spoken Term Detection

The three systems submitted to the QbE STD task are end-to-end systems based on
deep learning approaches. These systems are described below.

3.2.1. End-to-End with Language Adaptation System (E2E + LA)

This system is based on attentive pooling networks [136], which were proposed in the
context of question answering in NLP. These networks use a two-way attention mechanism
able to compare a query (question) and a document (answer) of different lengths by
focusing on the most relevant parts of both the query and the document. This approach
was recently proposed for the QbE STD task [137]. The system developed is based on this
work and has the structure depicted in Figure 2.
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First, the WebRTC VAD is employed to remove silence and random noise effects that
may appear at the beginning and end of the audio queries.

Figure 2. Attentive pooling network structure for the E2E + LA QbE STD system.

An LSTM network is used to obtain embedding representations of both the acoustic
queries and the audio segments in which the utterances are divided. To do so, for a spoken
query with acoustic features given by Q = {q1, q2, . . . , qM}, where M is the number of
frames of the query, the shared recurrent neural networks (RNNs) consisting of LSTM units
project the query into a hidden state sequence HQ = {hQ

1 , hQ
2 , . . . , hQ

M}, where hQ
M contains

information of the whole query. In the same way, the audio segment with acoustic features
given by S = {s1, s2, . . . , sN}, where N is the number of frames of the audio segment, is
encoded into the corresponding hidden state sequence HS = {hS

1 , hS
2 , . . . , hS

N}, hence the
query and utterance representations convey the same feature space.

Then, the attention matrix, G, is computed as shown in Equation (5) so that the query
and audio segment hidden state vector sequences can then be compared:

G = tanh(HT
QUHS). (5)

Matrix U in Equation (5) is a measure of the HQ and HS representations and is learned
during training. To build a more symmetric system, the measure matrix, U, is defined
to be symmetric (i.e., U = UT), which allows it to exchange query and audio segment
representations, as given in Equation (6):

HT
QUHS = HT

S UT HQ = HT
S UHQ. (6)
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Matrix U is initialised with random normal samples with zero mean and 10−4 variance.
Then, matrix G can be seen as a soft alignment score between each query and audio
segment frame.

The next step is to apply column-wise and row-wise max-pooling to matrix G to
generate the corresponding weight vectors gQ ∈ RM and gS ∈ RN , which are computed as
in Equations (7) and (8), respectively:

[gQ]j = max1≤i≤N [Gj,i] (7)

[gS]i = max1≤j≤M[Gj,i]. (8)

The j-th element in gQ represents the weight applied to the j-th frame in the query
Q. This results in an estimation of which frames of the queries are actually relevant
for query/audio segment matching. Since gQ and gS are weight vectors, these are then
normalized with a softmax function, whose output represents the attention weight vectors
denoted as σQ and σS in Figure 2.

Finally, the dot product between the hidden states representing both the query and
the audio segments in the utterance, and the attention vectors σQ and σS, is employed to
enhance the meaningful information. To do so, VQ and VS are computed as in Equation (9):

VQ = HQσQ, VS = HSσS. (9)

The whole system is trained using a large margin cost function (i.e., hinge loss), whose
aim is maximising the inter-class distance and minimising the intra-class distance. To do
so, the training set comprises 3-element groups: a spoken query Q = {q1, q2, . . . , qM}, a
positive audio segment S(P) = {s(P)

1 , s(P)
2 , . . . , s(P)

N } and a negative audio segment S(N) =

{s(N)
1 , s(N)

2 , . . . , s(N)
N′ }. The positive audio segment contains the same terms as the query,

while the negative audio segment is a randomly-selected audio segment extracted from the
training set that does not match with the query term.

Then, for each group, the tuples (Q, S(P)) and (Q, S(N)) are created to calculate the at-
tention matrix, G, for each tuple and the corresponding vector representations, (V(P)

Q , V(P)
S )

and (V(N)
Q , V(N)

S ). The VQ vector representation differs depending on the audio segment
for which it is computed, due to the two-way attention mechanism. The cosine distance is
employed to measure the similarity between the tuples VQ and VS, as in Equation (10):

l(VQ, VS) = (1− cos(VQ, VS))/2. (10)

To minimise the distance between the query and the positive audio segment and
maximise the distance between the query and the negative audio segment, the hinge
objective function in Equation (11) is used.

Lhinge = max{0, M + l((V(P)
Q , V(P)

S ))− l((V(N)
Q , V(N)

S ))}, (11)

where M is the maximum allowable distance, which is set to 1.
For query and audio segment representation, 13-dimensional MFCC extracted using

the Kaldi toolkit [74] and Python Speech Features library are employed. For MFCC
computation, a 0.025 s-length sliding window with a shift equal to 0.01 s is used. The
shared RNNs consist of two layers with 128 LSTM units for all the models. An Adam
optimizer with a learning rate of 0.00005 and a minibatch of 128 are employed. The neural
networks are implemented in Pytorch and are trained for four epochs.

The system was initially trained on the English LibriSpeech database [178]. Specifically,
500 randomly selected terms that have at least six phonemes and last between 0.5 and 1.0 s
were employed to form training samples from 2 audio segments that contain the same
term (one for the query (Q) and another for the positive audio segment (SP)) and one
audio segment that contains a different term for the negative audio segment (SN). For each



Appl. Sci. 2021, 11, 8519 17 of 39

training epoch, there were 1000 groups in total, which consisted of the (Q, SP, SN) tuple
each. Then, the neural networks in the two-way attention mechanism are retrained for two
epochs using the MAVIR development data. This aims to benefit from transfer learning by
adapting the initial system trained on a language-independent setup to a small database
in Spanish.

The search of each query in each utterance applies an adaptive sliding window in the
utterances to form the audio segments for attentive pooling network-based query/audio
segment matching. The length of the sliding window depends on the length of the query.
Different window lengths (i.e., 50, 100, 150 and 200 frames) with a 50% overlap are em-
ployed so that the window length for searching each query is the upper limit that best
approximates the query length (e.g., if the query has 37 frames, the window length is
set to 50; if the query has 160 frames, the window length is set to 200 and so on). Once
the final vectors VQ and VS representing the query and the audio segment are obtained
according to Figure 2, the cosine distance between both vectors is taken as the final score
for each detection.

3.2.2. End-to-End without Language Adaptation System (E2E)

This system is the same as the E2E + LA system except that the retraining with the Span-
ish database is not applied, hence aiming to build a language-independent QbE STD system.

3.2.3. End-to-End with Z-Score Normalization System (E2E + ZNORM)

This system is the same as the E2E system except that, in this case, a z-score normal-
ization approach was included. To do so, each detection score is normalised according
to Equation (12):

z =
x− µ

σ
, (12)

where x represents the original detection score, µ is the mean of all the detection scores,
and σ is the standard deviation of all the detection scores.

4. Results and Discussion

We present the results obtained by the systems submitted to the evaluation for both
the STD and the QbE STD tasks, and both for the development and test data. In addition,
we also compare the performance of the QbE STD systems submitted to the evaluation
with a text-based STD system.

4.1. Spoken Term Detection
4.1.1. Development Data

Evaluation system results for the development data are presented in Tables 8 and 9 for
MAVIR and RTVE data, respectively. For MAVIR data, results show quite low performance,
which suggests the challenging conditions of MAVIR data. For RTVE data, better results
are obtained. The data augmentation technique results in better performance for the system
that employs DNN for acoustic modelling both for MAVIR and RTVE data. This better
performance is statistically significant for a paired t-test (p < 0.001) over the system without
data augmentation.

This could be due to the more varied acoustic and background noise conditions used
to train the DNN. However, when using SGMM for acoustic modelling, data augmentation
gains are not so clear. This could be due to the fact that data augmentation works well
with robust learning schema (e.g., neural network-based approaches) as DNNs. However,
when less parameters are involved in the model, as in SGMM-based approaches, data
augmentation is not so powerful. The better performance obtained with SGMM over the
DNN model without data augmentation could be due to the limited training material used
for DNN training, which makes SGMM outperform DNNs.

For MAVIR data, the best performance obtained by the Kaldi DNN + DA system is
statistically significant (p < 0.001) for a paired t-test compared with the Kaldi SGMM + DA
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and the Kaldi DNN systems and weak significant (p < 0.03) compared with the Kaldi SGMM
system. For RTVE data, the best performance of the Kaldi SGMM system is statistically
significant (p < 0.001) for a paired t-test compared with the Kaldi DNN and the Kaldi DNN
+ DA systems.

Table 8. System results of the STD task for MAVIR development data.

System ID MTWV ATWV p(FA) p(Miss)

Kaldi DNN + DA 0.0018 −0.0150 0.00000 0.997

Kaldi SGMM + DA 0.0000 −0.4697 0.00000 1.000

Kaldi DNN 0.0000 −0.4819 0.00000 1.000

Kaldi SGMM 0.0000 −0.1713 0.00000 1.000

Table 9. System results of the STD task for RTVE development data.

System ID MTWV ATWV p(FA) p(Miss)

Kaldi DNN + DA 0.1026 0.1018 0.00001 0.892

Kaldi SGMM + DA 0.2879 0.2853 0.00001 0.701

Kaldi DNN 0.0070 0.0046 0.00000 0.991

Kaldi SGMM 0.2886 0.2858 0.00002 0.692

The DET curves for MAVIR and RTVE data are presented in Figures 3 and 4, respec-
tively. For MAVIR data, the Kaldi DNN + DA system performs the best for a low FA ratio,
and the Kaldi DNN system performs the best for a low miss ratio. For RTVE data, the
Kaldi DNN + DA system performs the best for a low FA ratio, and the Kaldi SGMM system
performs the best for a low miss ratio.

Figure 3. DET curves of the STD systems for MAVIR development data.



Appl. Sci. 2021, 11, 8519 19 of 39

Figure 4. DET curves of the STD systems for RTVE development data.

4.1.2. Test Data

The evaluation system results on the test data are presented in Tables 10–12 for MAVIR,
RTVE and SPARL20 data, respectively. Opposite to the results on the development data,
the systems obtained better results for MAVIR data than for RTVE data. This could be due
to the higher OOV rate for the RTVE data compared with for the MAVIR data (21.8% vs.
13.9%). Since the systems do not allow for OOV query detection, the performance drop is
much more remarkable for RTVE data.

On the test data, the data augmentation technique does not improve the system
performance neither for the DNN nor for the SGMM-based systems. This suggests some
overfitting to the development data, where the DNN-based acoustic model benefits from
that technique. The only exception is for the DNN acoustic model on the SPARL20 data,
although the difference in performance is not statistically significant for a paired t-test. The
results show that the best performance is, in general, obtained by the Kaldi SGMM system.

This best performance is statistically significant (p < 0.001) compared to the systems
that employ data augmentation (i.e., Kaldi DNN + DA and Kaldi SGMM + DA) for MAVIR
data and with the rest of the systems for SPARL20 data. For RTVE data, similar performance
is obtained with the Kaldi DNN and the Kaldi SGMM systems, and the difference is not
statistically significant.

To sum up, these results on the test data show that the data augmentation strategy
fails when addressing spoken term detection on unseen test data.

Table 10. System results of the STD task for MAVIR test data.

System ID MTWV ATWV p(FA) p(Miss)

Kaldi DNN + DA 0.0025 −0.0168 0.00000 0.996

Kaldi SGMM + DA 0.0505 0.0403 0.00002 0.933

Kaldi DNN 0.4218 0.4230 0.00007 0.513

Kaldi SGMM 0.4413 0.4356 0.00007 0.489
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Table 11. System results of the STD task for RTVE test data.

System ID MTWV ATWV p(FA) p(Miss)

Kaldi DNN + DA 0.0019 −0.0049 0.00000 0.997

Kaldi SGMM + DA 0.0037 −0.0010 0.00001 0.990

Kaldi DNN 0.2120 0.2123 0.00002 0.763

Kaldi SGMM 0.2107 0.2101 0.00001 0.778

Table 12. System results of the STD task for SPARL20 test data.

System ID MTWV ATWV p(FA) p(Miss)

Kaldi DNN + DA 0.0096 −0.0028 0.00001 0.985

Kaldi SGMM + DA 0.0149 0.0094 0.00000 0.980

Kaldi DNN 0.0074 −0.0034 0.00000 0.989

Kaldi SGMM 0.5118 0.5090 0.00002 0.463

The DET curves for MAVIR, RTVE and SPARL20 data are presented in Figures 5–7,
respectively. For MAVIR data, the Kaldi SGMM system performs the best for a low FA
ratio, and the Kaldi DNN system performs the best for a low miss ratio. For RTVE data,
the Kaldi SGMM + DA system performs the best for a low FA ratio, and the Kaldi DNN
system performs the best for a low miss ratio. For SPARL20 data, the Kaldi SGMM system
performs the best for both low FA and miss ratios.

Figure 5. DET curves of the STD systems for MAVIR test data.
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Figure 6. DET curves of the STD systems for RTVE test data.

Figure 7. DET curves of the STD systems for SPARL20 test data.

4.2. Query-by-Example Spoken Term Detection
4.2.1. Development Data

Evaluation system results for the development data are presented in Tables 13 and 14
for MAVIR and RTVE data, respectively. They show similar findings: (1) The E2E + LA
system obtains the best QbE STD performance for both datasets, since this system is
adapted to the target language. This improvement is statistically significant for a paired
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t-test (p < 0.001) for RTVE data and weak significant (p < 0.03) for MAVIR data compared
to the other QbE STD systems. Moreover, this improvement is larger for MAVIR data
(see MTWV results), since the language adaptation relies on these data; (2) The z-norm
normalization decreases system performance. We consider that this could be due to the use
of a global mean score and therefore global standard deviation score for all occurrences,
regardless of the search query.

Comparing the QbE STD systems to a text-based STD system (i.e., the Kaldi SGMM
system in the STD task) evaluated on the QbE STD queries, the text-based STD system
obtains better performance for RTVE data, due to the use of the target language for system
construction. This improvement is statistically significant for a paired t-test (p < 0.001)
compared to the QbE STD systems.

Considering the results obtained by the end-to-end systems, it can be said that in
general the performance is low. Preliminary experiments with the same systems were
carried out on the read speech LibriSpeech dataset [178], following a similar experimental
setup as in [137]. In this setup, the test language matched the training language and the
query and each of the test word alignments were known in advance, so that words were
only compared one to one (not one query against a segment of audio containing a few
words, noise or fragments of words).

The results on this dataset with this setup showed a much better performance for
P@20 (precision at 20) metric, similar to that presented in [137]. However, when facing
the more challenging data conditions of this evaluation datasets, for which the speech
scenarios are more complex, the test language differs from the training language and the
query and test word alignments are both unknown, the performance drops dramatically.

Table 13. System results of the QbE STD task for MAVIR development data.

System ID MTWV ATWV p(FA) p(Miss)

E2E + LA 0.0533 0.0491 0.00000 0.947

E2E 0.0160 −38.5775 0.00000 0.984

E2E + ZNORM 0.0000 −158.2873 0.00000 1.000

Text STD 0.0000 −0.0508 0.00000 1.000

Table 14. System results of the QbE STD task for RTVE development data.

System ID MTWV ATWV p(FA) p(Miss)

E2E + LA 0.0465 0.0465 0.00000 0.954

E2E 0.0414 −76.0473 0.00000 0.954

E2E + ZNORM 0.0000 −51.9993 0.00000 1.000

Text STD 0.3101 0.3086 0.00001 0.677

The DET curves for MAVIR and RTVE data are shown in Figures 8 and 9, respectively.
For MAVIR data, they show that the E2E + LA and the E2E systems perform the best for a
low FA ratio, and the E2E + ZNORM system performs the best for a low miss ratio. For
RTVE data, the E2E + LA system performs the best for a low FA ratio, whereas the E2E +
ZNORM system performs the best for a low miss ratio.
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Figure 8. DET curves of the QbE STD systems and the text-based STD system for MAVIR develop-
ment data.

Figure 9. DET curves of the QbE STD systems and the text-based STD system for RTVE develop-
ment data.

4.2.2. Test Data

Evaluation system results for the test data are presented in Tables 15–17 for MAVIR,
RTVE and SPARL20 data, respectively. The performance for the QbE STD systems show,
in general, the same findings as the development data. The performance obtained by the
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end-to-end systems is low, opposite to the experiments carried out on the LibriSpeech
dataset. For MAVIR and SPARL20 data, the best performance is obtained by the system
that employs target language adaptation (i.e., the E2E + LA system).

This best performance is statistically significant for a paired t-test (p < 0.001) compared
to the other QbE STD systems. For RTVE data, the best performance is for the E2E +
ZNORM system, which does not employ language adaptation. This best performance is
statistically significant for a paired t-test (p < 0.001). However, the worse MTWV perfor-
mance obtained in comparison with the E2E + LA system for these RTVE data suggests
some threshold calibration issues. This is confirmed by the results obtained by most of the
systems, whose ATWV performance is below 0, even though the MTWV performance is
above 0.

The text-based STD system (i.e., the Kaldi SGMM system in the STD task) evaluated
on the QbE STD queries significantly outperforms the QbE STD systems (p < 0.001) for all
the datasets. This suggests that the end-to-end systems for QbE STD need more research
to approximate their performance to that of text-based STD. In particular, more research
seems to be needed to adapt the system to the more realistic conditions of the evaluation,
where the query and test word alignments are unknown.

Table 15. System results of the QbE STD task for MAVIR test data.

System ID MTWV ATWV p(FA) p(Miss)

E2E + LA 0.0126 −0.1061 0.00000 0.987

E2E 0.0000 −393.5610 0.00000 1.000

E2E + ZNORM 0.0000 −38.5959 0.00000 1.000

Text STD 0.4734 0.4682 0.00006 0.466

Table 16. System results of the QbE STD task for RTVE test data.

System ID MTWV ATWV p(FA) p(Miss)

E2E + LA 0.0209 −115.7086 0.00000 0.978

E2E 0.0209 −88.3716 0.00000 0.978

E2E + ZNORM 0.0000 −16.5831 0.00000 1.000

Text STD 0.3427 0.3413 0.00002 0.639

Table 17. System results of the QbE STD task for SPARL20 test data.

System ID MTWV ATWV p(FA) p(Miss)

E2E + LA 0.0107 0.0107 0.00000 0.989

E2E 0.0306 −34.2099 0.00000 0.961

E2E + ZNORM 0.0000 −103.6805 0.00000 1.000

Text STD 0.3662 0.3583 0.00005 0.588

The DET curves are shown in Figures 10–12 for MAVIR, RTVE and SPARL20 data,
respectively. For MAVIR data, they show that the best performance for a low FA ratio is for
the E2E + LA system, whereas the text-based STD system performs the best for a low miss
ratio. For RTVE data, the best performance for a low FA ratio is for the E2E, and the E2E
+ LA systems, and the text-based STD system performs the best for a low miss ratio. For
SPARL20 data, the E2E + LA system performs the best for a low FA ratio, and the text-based
STD system performs the best for a low miss ratio.
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Figure 10. DET curves of the QbE STD systems and the text-based STD system for MAVIR test data.

Figure 11. DET curves of the QbE STD systems and the text-based STD system for RTVE test data.
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Figure 12. DET curves of the QbE STD systems and the text-based STD system for SPARL20 test data.

5. Post-Evaluation Analysis

A post-evaluation analysis for STD and QbE STD tasks was carried out in order to
provide meaningful insights from diverse query properties.

5.1. Spoken Term Detection

Post-evaluation analyses for the STD task were performed based on INL and OOL
query comparison and single-word and multi-word query comparison. Since the STD sys-
tems cannot retrieve OOV terms, the INV and OOV term comparison cannot be performed.

5.1.1. System Analysis for In-Language and Out-of-Language Queries

An additional analysis for INL and OOL queries was carried out for the STD task, and
the results are presented in Tables 18–20 for MAVIR, RTVE and SPARL20 data, respectively.
The results show in general better system performance for INL than for OOL queries
(regardless of threshold calibration issues), since the target language matches that used
for the system construction. The systems that do not employ data augmentation generally
perform better than their counterparts with data augmentation as happened in the overall
evaluation results.

Table 18. System results of the STD task for MAVIR test data for in-language (INL) and out-of-
language (OOL) queries.

INL OOL

System ID MTWV ATWV MTWV ATWV

Kaldi DNN + DA 0.0027 −0.0154 0.0000 −0.0367

Kaldi SGMM + DA 0.0517 0.0402 0.0408 0.0408

Kaldi DNN 0.4449 0.4462 0.1167 0.1075

Kaldi SGMM 0.4659 0.4598 0.1167 0.1075
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Table 19. System results of the STD task for RTVE test data for in-language (INL) and out-of-language
(OOL) queries.

INL OOL

System ID MTWV ATWV MTWV ATWV

Kaldi DNN + DA 0.0025 −0.0029 0.0000 −0.0109

Kaldi SGMM + DA 0.0062 0.0012 0.0000 −0.0075

Kaldi DNN 0.2633 0.2625 0.0727 0.0637

Kaldi SGMM 0.2584 0.2572 0.0716 0.0708

Table 20. System results of the STD task for SPARL20 test data for in-language (INL) and out-of-
language (OOL) queries.

INL OOL

System ID MTWV ATWV MTWV ATWV

Kaldi DNN + DA 0.0103 −0.0024 0.0000 −0.0087

Kaldi SGMM + DA 0.0160 0.0100 0.0000 0.0000

Kaldi DNN 0.0079 −0.0036 0.0000 0.0000

Kaldi SGMM 0.5424 0.5395 0.0625 0.0625

5.1.2. System Analysis for Single and Multi-Word Queries

An additional analysis based on single and multi-word queries was carried out for
the STD task, and the results are presented in Tables 21 and 22 for MAVIR and RTVE data,
respectively. The results show, in general, better performance for single than multi-word
queries, regardless of threshold calibration issues. The only exception is the case of the
Kaldi DNN and the Kaldi SGMM systems for RTVE data, where these systems perform
better on multi-word queries than on single-word queries.

Table 21. System results of the STD task for MAVIR test data for single-word (SING) and multi-word
(MULTI) queries.

SING MULTI

System ID MTWV ATWV MTWV ATWV

Kaldi DNN + DA 0.0028 −0.0186 0.0000 0.0000

Kaldi SGMM + DA 0.0558 0.0445 0.0000 0.0000

Kaldi DNN 0.4495 0.4509 0.1839 0.1601

Kaldi SGMM 0.4705 0.4642 0.1667 0.1667

Table 22. System results of the STD task for RTVE test data for single-word (SING) and multi-word
(MULTI) queries.

SING MULTI

System ID MTWV ATWV MTWV ATWV

Kaldi DNN + DA 0.0020 −0.0052 0.0000 0.0000

Kaldi SGMM + DA 0.0039 −0.0011 0.0000 0.0000

Kaldi DNN 0.2063 0.2063 0.3161 0.3161

Kaldi SGMM 0.2048 0.2042 0.3161 0.3161
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This discrepancy could be due to the fact that multi-word queries, on the one hand,
may be easier to detect since they are typically longer than single-word queries; however,
on the other hand, multi-word queries do convey more complex language modelling.
Depending on the database domain, one factor can affect the system performance to a
greater extent than another.

5.2. Query-by-Example Spoken Term Detection

Post-evaluation analyses for the QbE STD task rely on INL and OOL query comparison,
INV and OOV query comparison and single-word and multi-word query comparison.

5.2.1. System Analysis for In-Language and Out-of-Language Queries

An analysis based on INL and OOL queries was carried out for the QbE STD systems
and results are presented in Tables 23–25 for MAVIR, RTVE and SPARL20 data, respectively.
These results show that OOL query detection obtains, in general and particularly for the
systems that do not use language adaptation, better results than INL query detection,
except for the RTVE data. This could be due to the fact that the QbE STD systems are built
with English language, which matches the language of many OOL queries, particularly in
MAVIR and SPARL20 databases.

Table 23. System results of the QbE STD task for MAVIR test data for in-language (INL) and
out-of-language (OOL) queries.

INL OOL

System ID MTWV ATWV MTWV ATWV

E2E + LA 0.0135 −0.1105 0.0357 −0.0429

E2E 0.0000 −402.2910 0.0000 −270.0931

E2E + ZNORM 0.0000 −37.0409 0.0000 −60.5879

Table 24. System results of the QbE STD task for RTVE test data for in-language (INL) and out-of-
language (OOL) queries.

INL OOL

System ID MTWV ATWV MTWV ATWV

E2E + LA 0.0241 −111.3045 0.0058 −136.3382

E2E 0.0241 −83.7885 0.0058 −109.8395

E2E + ZNORM 0.0000 −17.5733 0.0000 −11.9447

Table 25. System results of the QbE STD task for SPARL20 test data for in-language (INL) and
out-of-language (OOL) queries.

INL OOL

System ID MTWV ATWV MTWV ATWV

E2E + LA 0.0123 0.0123 0.0000 0.0000

E2E 0.0237 −33.7965 0.0769 −36.9764

E2E + ZNORM 0.0000 −107.7061 0.0000 −76.7394

5.2.2. System Analysis for In-Vocabulary and Out-of-Vocabulary Queries

A similar analysis for the QbE STD systems was carried out for INV and OOV queries
and results are presented in Tables 26–28 for MAVIR, RTVE and SPARL20 data, respectively.
They show that INV query detection is easier than OOV query detection, since better system
performance is obtained for INV queries, regardless of threshold calibration issues. This
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could be due to the fact that OOV queries exhibit more diverse properties in terms of
occurrence rate and target language among others, which makes OOV query detection
more complex inherently.

Table 26. System results of the QbE STD task for MAVIR test data for in-vocabulary (INV) and
out-of-vocabulary (OOV) queries.

INL OOL

System ID MTWV ATWV MTWV ATWV

E2E + LA 0.0142 −0.1196 0.0000 0.0000

E2E 0.0000 −378.6430 0.0000 −510.4187

E2E + ZNORM 0.0000 −39.2731 0.0000 −33.2913

Table 27. System results of the QbE STD task for RTVE test data for in-vocabulary (INV) and
out-of-vocabulary (OOV) queries.

INL OOL

System ID MTWV ATWV MTWV ATWV

E2E + LA 0.0259 −127.9138 0.0000 −65.1443

E2E 0.0259 −97.8744 0.0000 −49.0025

E2E + ZNORM 0.0000 −18.8408 0.0000 −7.2299

Table 28. System results of the QbE STD task for SPARL20 test data for in-vocabulary (INV) and
out-of-vocabulary (OOV) queries.

INL OOL

System ID MTWV ATWV MTWV ATWV

E2E + LA 0.0164 0.0164 0.0000 0.0000

E2E 0.0388 −32.6405 0.0246 −37.1246

E2E + ZNORM 0.0000 −106.8322 0.0000 −97.8272

5.2.3. System Analysis for Single and Multi-Word Queries

An analysis for single and multi-word queries in the QbE STD task was carried out
and results are presented in Tables 29 and 30 for MAVIR and RTVE data, respectively.
They show better performance for multi-word queries than single-word queries, since
multi-word queries are typically longer than single-word queries. This produces less FAs
so that the final performance improves.

Table 29. System results of the QbE STD task for MAVIR test data for single-word (SING) and
multi-word (MULTI) queries.

SING MULTI

System ID MTWV ATWV MTWV ATWV

E2E + LA 0.0033 −0.1224 0.1667 0.1667

E2E 0.0000 −382.1081 0.0833 −584.4417

E2E + ZNORM 0.0000 −38.6250 0.0000 −38.1104
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Table 30. System results of the QbE STD task for RTVE test data for single-word (SING) and
multi-word (MULTI) queries.

SING MULTI

System ID MTWV ATWV MTWV ATWV

E2E + LA 0.0214 −116.7881 0.0000 −77.9245

E2E 0.0214 −89.5284 0.0000 −47.8828

E2E + ZNORM 0.0000 −16.9599 0.0000 −3.3951

6. Conclusions

This paper presented a multi-domain and international SoS ALBAYZIN 2020 evalua-
tion, which comprises two different tasks: spoken term detection and query-by-example
spoken term detection. The STD systems were based on the Kaldi toolkit with SGMM
and DNN acoustic models. In both cases, the systems were evaluated with and without
including a data augmentation strategy. The QbE STD task was addressed using neu-
ral end-to-end systems, which constitutes the first attempt regarding end-to-end system
construction in the SoS ALBAYZIN evaluation series.

The most important conclusion drawn from this evaluation is that multi-domain
search on speech is still challenging since the results showed a large variability when there
is a change in the domain. On the other hand, the challenging conditions of the highly
spontaneous speech in MAVIR data decreased the system performance with respect to
unseen domains (i.e., SPARL20 data) for both STD and QbE STD tasks.

Regarding query properties, it was shown that INL query detection was easier than
OOL query detection for the STD task, since the query language matched the target
language. However, for the QbE STD task, for which the systems were trained on a
different language that sometimes matched that of the OOL queries, OOL query detection
iswas comparable or even improved the system performance for INL queries.

QbE STD systems also showed better performance for INV query detection than for
OOV query detection, due to the more diverse properties of OOV queries.

Regarding single-word and multi-word query detection for the STD task, the evalua-
tion results showed that single-word query detection was, in general, easier than multi-word
query detection, since less words are needed to be detected. However, for the QbE STD
task, the opposite occurred. This could be due to differences in the system architecture
(standard ASR system vs. end-to-end system), along with the fact that longer queries typi-
cally produce less FAs on template-matching QbE STD scenarios and also in end-to-end
neural systems, such as the one presented in this evaluation.

Given the best performance for each speech domain, there is still plenty of room for
improvement. Specifically, the performance of the STD systems degrades with the data
augmentation technique. This means that more research is needed in that topic to boost
the performance. On the other hand, end-to-end systems for the QbE STD task deserve
more research to improve their performance, in particular with respect to the realistic setup
without information about query or test word alignments.

This encourages us to maintain the SoS ALBAYZIN evaluation in the next years,
focusing on multi-domain SoS and the applicability of this technology to new unseen
challenging domains. This evaluation suffered from a large decrease in the number of
participants, likely due to the adverse global situation related to the COVID-19 pandemic.
Specifically, in the next few months, we will be launching the ALBAYZIN 2022 STD
evaluation to be held in November 2022 within the IberSPEECH conference.

This new evaluation edition, for which we hope to substantially increase the number
of participants, aims to provide new domains and more challenging data (i.e., more difficult
search terms) and evaluation conditions (i.e., rank the submitted systems from weighting
the system performance according to the most challenging domain).
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Term Detection System Based on Combination of LVCSR and Phonetic Search. In Machine Learning for Multimodal Interaction;
Springer: Berlin/Heidelberg, Germany, 2008; Volume 4892, pp. 237–247.

44. Szöke, I.; Burget, L.; C̆ernocký, J.; Faps̆o, M. Sub-word modeling of out of vocabulary words in spoken term detection. In
Proceedings of the 2008 IEEE Spoken Language Technology Workshop, Goa, India, 15–19 December 2008; pp. 273–276.

45. Meng, S.; Yu, P.; Liu, J.; Seide, F. Fusing multiple systems into a compact lattice index for Chinese spoken term detection. In
Proceedings of the 33rd International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2015, Las Vegas, NV,
USA, 30 March–4 April 2008; pp. 4345–4348.

46. Thambiratmann, K.; Sridharan, S. Rapid yet accurate speech indexing using dynamic match lattice spotting. IEEE Trans. Audio
Speech Lang. Process. 2007, 15, 346–357. [CrossRef]

47. Wallace, R.; Vogt, R.; Baker, B.; Sridharan, S. Optimising figure of merit for phonetic spoken term detection. In Proceedings of the
35th International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2015, Dallas, TX, USA, 15–19 March 2008;
pp. 5298–5301.

48. Jansen, A.; Church, K.; Hermansky, H. Towards Spoken Term Discovery At Scale With Zero Resources. In Proceedings of the In-
terspeech, 11th Annual Conference of the International Speech Communication Association, Chiba, Japan, 26–30 September 2010;
pp. 1676–1679.

49. Parada, C.; Sethy, A.; Ramabhadran, B. Balancing false alarms and hits in spoken term detection. In Proceedings of the 35th
International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2015, Dallas, TX, USA, 15–19 March 2008;
pp. 5286–5289.

50. Trmal, J.; Wiesner, M.; Peddinti, V.; Zhang, X.; Ghahremani, P.; Wang, Y.; Manohar, V.; Xu, H.; Povey, D.; Khudanpur, S. The Kaldi
OpenKWS System: Improving Low Resource Keyword Search. In Proceedings of the Interspeech, 18th Annual Conference of the
International Speech Communication Association, Stockholm, Sweden, 20–24 August 2017; pp. 3597–3601.

51. Chen, C.P.; Lee, H.Y.; Yeh, C.F.; Lee, L.S. Improved Spoken Term Detection by Feature Space Pseudo-Relevance Feedback. In
Proceedings of the Interspeech, 11th Annual Conference of the International Speech Communication Association, Chiba, Japan,
26–30 September 2010; pp. 1672–1675.

52. Motlicek, P.; Valente, F.; Garner, P. English Spoken Term Detection in Multilingual Recordings. In Proceedings of the Inter-
speech, 11th Annual Conference of the International Speech Communication Association, Chiba, Japan, 26–30 September 2010;
pp. 206–209.

53. Szöke, I.; Faps̆o, M.; Karafiát, M.; Burget, L.; Grézl, F.; Schwarz, P.; Glembek, O.; Matĕjka, P.; Kontár, S.; C̆ernocký, J. BUT System
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