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Abstract: It is difficult to guarantee optimality using the sampling-based rapidly-exploring random
tree (RRT) method. To solve the problem, this paper proposes the post triangular processing of the
midpoint interpolation method to minimize the planning time and shorten the path length of the
sampling-based algorithm. The proposed method makes a path that is closer to the optimal path
and somewhat solves the sharp path problem through the interpolation process. Experiments were
conducted to verify the performance of the proposed method. Applying the method proposed in this
paper to the RRT algorithm increases the efficiency of optimization by minimizing the planning time.

Keywords: robot path planning; RRT; midpoint interpolation; triangular rewiring; path smoothness

1. Introduction

Recent path planning research for the robot has encompassed a wide range of
topics [1,2]. Path planning is an important capability for autonomous mobile robots. A
robot must be able to identify a path from its current position to its destination in order
to move successfully. A mobile robot must be able to discover an optimal or sub-optimal
collision-free path in the environment from the starting position to the destination [3].

Path planning is the formulation of a route for a mobile robot to proceed from a starting
point to a destination point in Euclidean space as efficiently as possible while avoiding both
static and dynamic obstacles and maintaining optimality, clearance, and completeness [4].
An optimal path is one with the ideal path length, a clear path is one without obstacles for
the mobile robot to collide with, and a complete path is one in which the robot can move
from the start point to the destination point without colliding with obstacles.

Furthermore, it is indeed possible for the robot to be able to optimize its path by
determining the quickest and safest path to its destination point in order to save time and
energy. However, an algorithm that generates the optimal path increases the computation,
and an algorithm that quickly generates a path does not guarantee the optimal path [5].

It is difficult to ensure optimality with the sampling-based rapidly-exploring random
tree (RRT) algorithm [6]. As shown in Figure 1a, the RRT algorithm is a path planning
algorithm that involves repeatedly adding a randomly sampled position as a child node in
a tree with the starting point as the root node until the destination point is reached. The
tree extends out in the shape of a stochastic fractal, as shown in Figure 1b, and has an
algorithm used to locate the destination point.

The RRT algorithm and other sampling-based algorithms [7,8] offer the benefit of
planning a path in a shorter time with less computing than traditional path planning
algorithms like the visibility graph- [9], cell decomposition- [10], and potential field-based
algorithms [11]. On the other hand, it does not ensure optimality and has the drawback of
having probabilistically assured completeness. The latter is also known as probabilistic
completeness [12], which implies that completeness is assured when the number of random
samples is infinite but not always when the number of random samples is limited. The
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goal of this research is to enhance the RRT algorithm, which ensures completeness and
performs better than the related algorithms.
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through waypoints q1, q2, q6 to destination qgoal (qi is a point on the path); (b) process of finding destination point by
stochastic fractal shape from the root node (S) as a starting point.

To solve these problems, the main idea of the proposed post triangular processing
of midpoint interpolation method is effective in path planning algorithms that do not
guarantee optimality, such as the RRT algorithm that has a locally piecewise linear shape
and can be used as a post-processing method after a path has been planned using one of
these algorithms. It may also be used for different route planning methods since it is a
post-processing technique that has no impact on calculation time.

The sampling-based path planning algorithm’s primary strength is the fast planning
speed based on the small amount of computation compared to the traditional path planning
algorithms [7].

Performance verification using simulation in various environments and mathematical
modeling were used to validate the performance of the proposed method in this paper.
The case in which the proposed algorithm is applied to the sampling-based path planning
method and the case in which it is not applied are compared through simulation. Here, the
planning time and path length of the first complete path to reach a destination point from a
starting point are evaluated.

This paper is organized as follows: Section 2 reviews some related works. Section 3
introduces the proposed post triangular processing of the midpoint interpolation method.
Various experimental environments are constructed for path planning in Section 4 to exam-
ine the effectiveness and improvements of the proposed method. Finally, the conclusions
are presented in Section 5.

2. Related Works

In this section, we introduce the previous works about the RRT algorithm in Section 2.1
and the Triangular Rewiring Method for the RRT Algorithm in Section 2.2, respectively.

2.1. RRT

This section shows the pseudocode of the RRT algorithm used in the experiment of
this paper that was designed based on [6] in which the RRT algorithm was proposed. In
1998, LaValle proposed the RRT algorithm, which is a representative sampling-based path
planning algorithm [6]. It is designed to have many degrees of freedom and is useful for
planning a path under non-holonomic constraints.

As shown in Figure 2, when a random sample is generated in the configuration
space, the node nearest to the position of the random sample is identified among the nodes
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constituting the tree with the starting point as the root node. A new node is generated at the
random sample position and inserted into the tree if the random sample position is nearer
than the step length. The process of tree extension is repeated until the destination point
is reached. The RRT algorithm implemented for the proposed method and comparison
experiment is Algorithm 1.

Algorithm 1 Pseudocode of RRT Algorithm

Input:
qstart ← start point
qgoal ← goal point
λ← step length
C← position set of all (measured) boundary points in all (known) obstacles
N← number of random samples
Output:
R← result of path R
Initialize:
T← Null tree<node, edge>
Procedure RRT
Begin
1 T← Insert root node<qstart> to T
2 While n← 0 To N Do
3 Generate n-th random sample
4 qrand ← position of n-th random sample
5 qnear ← position of the nearest node in T from qrand
6 If not isInside(qnear, qrand, λ) Then

7
qnew ← intersection point between line segment connecting qrand and qnear,

and circle with radius λ centered at qnear
8 Else qnew ← qrand
9 If not isTrapped(qnew, qnear, C) Then
10 T← Insert node<qnew> and edge<qnew, qnear> to T
11 If isInside(qnew, qgoal, λ) Then
12 T← Insert node<qgoal> and edge<qnew, qgoal> to T
13 P← path from last inserted node{qgoal} to root node{qstart} in T
14 If [length of R] > [length of P] Then R← P
15 T← Delete node<qgoal> and edge<qnew, qgoal> from T
End
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Figure 2. Process of the RRT algorithm: When creating the new node qnew at a position separated by
step length λ in direction of random sample position (qrand) based on qnear node (position) closest to
random sample position (qrand) in tree T with starting point qstart as the root node.

In order to overcome the limitations on optimality and convergence time [6], RRT-
Connect can find a connected path more quickly by setting the start point and the destina-
tion point as the root of a separate tree, and further expanding the two trees alternately [7].
Rapidly-exploring Random Tree Star (RRT*) [13] was developed to overcome the limitation
that the path generated from RRT does not guarantee convergence to the optimal path.
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Informed-RRT* that can find a connected path quickly by enhancing the sampling probabil-
ity inside the elliptical region with the start point and the destination point as the respective
focal points [14]. The RRT*-Connect algorithm combines the advantages of RRT-Connect
and RRT* [15]. RRT*-Smart [16], Quick-RRT*[17], and the proposed algorithm in [8] can
show closer optimality by finding and connecting linearly connectable ancestor nodes to
random samples through triangular inequality in the process of adding random samples.

2.2. Triangular Rewiring Method for the RRT Algorithm

This section shows the principle and pseudocode of the Triangular Rewiring Method
for the RRT algorithm.

The triangular rewiring method is used to rewire the component based on the trian-
gular inequality concept [8]. The triangular inequality-based RRT algorithm is a rewiring
of the RRT method that is based on the concept of triangular inequality between nodes in
path planning; thus, it is closer to the optimum than the RRT.

The triangular rewiring method not only can find a better initial solution but also can
converge to a better solution rapidly.

The pseudocode for the triangular rewiring method is shown in Algorithm 2. This
iterative process continues until no qancestor exists (when no parent node exists for the
previous qancestor, i.e., when qancestor is qstart) or an obstacle exists between qchild and qancestor.
The method for triangular rewiring is as follows: the node with the position qparent and
the edge connecting the qchild and qancestor nodes are deleted. After the edge is deleted, the
qancestor node is updated with the qparent node, and the parent node of the qancestor is updated
with the qancestor node. The existing qparent node is then deleted. Then, the Trapped method
is used to check if it collides with an obstacle between the qchild node and the updated qparent
node. Then, in tree T, the last created qparent is inserted as the parent node of qchild.

Algorithm 2 Pseudocode of Triangular Rewiring Method for RRT Algorithm

Input:
qchild ← Position {qnew/qnewA/qnewB}
qparent ← Position qnear
T← Tree {Tmerged/Ta/Tb}
C← Position Set C
Output:
{Tmerged/Ta/Tb}← Result of T
Begin triangular Rewiring Procedure
1 qancestor ← Position of Parent Node of qparent in T
2 If Not isTrapped(qancestor, qchild, C) then
3 T← Delete Node<qparent>, Edge<qparent, qchild> and Edge<qparent, qancestor> from T
4 qparent ← qancestor
5 qancestor ← Position of Parent Node of qancestor in T
6 While Not qancestor = Null do
7 If Not isTrapped(qancestor, qchild, C) then
8 T← Delete Node<qparent> and Edge<qparent, qancestor> from T
9 qparent ← qancestor
10 qancestor ← Position of Parent Node of qancestor in T
11 Else
12 Break
13 T← Insert Edge<qparent, qchild> to T
14 Else
15 T← Insert Node<qchild> and Edge<qchild, qparent> to T
End triangular Rewiring Procedure

3. Proposed Post Triangular Processing of the Midpoint Interpolation Method

The proposed post triangular processing of the midpoint interpolation method can be
applied to path planning algorithms that do not guarantee optimality, such as the RRT algo-
rithm, and rewiring and midpoint interpolation based on the triangular inequality principle.
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The assumptions of the proposed method are as follows:

1. The destination point may change gradually over time, but there is only one start
point and one destination point for each tree.

2. If the mobile robot cannot perform the omnidirectional motion, local planning or
kinodynamic planning is performed separately on the path planning result.

The basic principle is that the node serving as a waypoint in the planned path checks
whether an obstacle collides with its own grandparent node, and if it is free from obstacle
collision, the grandparent node rewires to the parent node. If it is not free from obstacle
collision, as shown in Figure 3, the locally piecewise linear path created between the
node, its parent node, and its grandparent node is made a more optimal path through the
interpolation process. In this process, a new node is interpolated into the path and deviates
from the piecewise linear path, so it has the advantage of being able to somewhat solve
the sharp path problem (the problem facing a mobile robot that has kinematic constraints
because the slope is not smooth).
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This post triangular processing of the midpoint interpolation method was designed
based on the polygon approximation algorithm [18,19], so, as shown in Figure 4, the path
is calculated through a constant value called ε (the threshold of minimum clearance) (ε > 0).
It determines how closely the obstacle is approximated or, in other words, how close to the
optimal path it is. Here, in Figure 4, d follows Equation (1):

dn(qi) =

{
(dn−1(qi))/2, n > 0(

2
√

s(s− α)(s− β)(s− γ)
)

/γ, n = 0
(s = (α + β + γ)/2) (1)
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Here, ξ() is a function that receives the node as a variable and returns the par-
ent node of that node. The n-squared (n ≥ 0) of the ξ() function can be expressed as

ξn(qi) :=

n︷ ︸︸ ︷
(ξ ◦ ξ ◦ . . . ◦ ξ)(qi), and if n is 0, ξ0(qi) := qi holds.

For the waypoint qi, the value of d decreases by 1/2 as interpolation proceeds (n).
The initial value d0 is the height of the triangle formed by the three line segments α, β,
and γ (γ < α + β), and the value of dn becomes (dn−1)/2. Based on qi, let α be the line
segment from itself to the parent node, β be the line segment from the parent node to the
grandparent node, and γ be the line segment from itself to the grandparent node. This d
value serves as a measure to confirm the clearance of the obstacle compared to ε. This is
because the smaller the d, the closer the path is to the obstacle.

Equation (1) converges to 0 when n becomes infinitely large in dn, so epsilon receives
only a value greater than 0 (positive number) from the user. ε is always greater than dn
when n is infinitely large. i.e., d is always smaller than epsilon at some point when n
becomes infinitely large. This can be expressed as Equations (2) and (3) as follows:

lim
n→∞

dn(qi) = lim
n→∞

dn−1(qi)

2
= lim

n→∞

d0(qi)

2n = lim
n→∞

C
2n = 0, (2)

∴ lim
n→∞

dn(qi) = 0 , ε > 0→ ε > lim
n→∞

dn(qi). (3)

However, since optimality and clearance are opposite attributes, the closer ε is to 0
as shown in Figure 5, the more similar the path or path length is to the visibility graph,
but it is not a smooth path [20]. The farther away it is from 0 (within a significant value
where the path is modified), the farther it is from the optimum, but a smooth (kinetic) path
is made, so ε should be set to a suitable value according to the environment.
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The following Algorithm 3 shows the pseudocode of the proposed post triangular
processing of the midpoint interpolation method. It is mainly composed of the post
triangular function (Algorithm 4) and interpolation function (Algorithm 5).

The input values of the post triangular processing of the midpoint interpolation
method consist of the path R planned through a path planning algorithm, such as the
RRT algorithm, the obstacle area information C, and the threshold value ε of the mini-
mum clearance.

The fmodify is a variable that determines whether the input path R has been modified
by this method, and if the path is modified even once, the entire process is repeated. If the
path modification does not occur in the process of repeating, the algorithm is terminated. t
refers to the index of the currently focused waypoint of R. That is, if t is 0, it is the starting
point, which is the first point of R.
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Algorithm 3 Pseudocode of Proposed Post Triangular Processing of Midpoint Interpolation Method

Input:
R← path from {RRT/ . . . }
C← position set of all (measured) boundary points in all (known) obstacles
ε← threshold value of minimum clearance
Output:
R←modified path R
Initialize:
fmodify ← true
Procedure postTriProcOfMidInterpolation
Begin
1 While fmodify Do
2 fmodify ← false // is the path modified
3 t← 0 // index of the currently focused point
4 qchild ← first point in R
5 qparent ← next point of qchild in R
6 While not [qparent is the last point in R] Do
7 qancestor ← next point of qparent in R
8 If not isTrapped(qchild, qancestor, C) Then
10 R← postTriangular(R, ε, t, fmodify)
11 Else
12 R← interpolation(R, C, ε, t, fmodify)
13 qchild ← t-th point in R
14 qparent ← next point of qchild in R
End

In R, when the first focusing point is qchild, the next point of that point qchild is qparent, and
the next point of that point qparent is qancestor. It is determined whether the distance between
qchild and qancestor is free from obstacle collision (isTrapped() function). If it is free from
collision, it is called postTriangular(); otherwise, it is called interpolation(). postTriangular()
connects qchild and qancestor as in the triangular rewiring method [8], and the qparent between
them is deleted from the path. interpolation() finds (interpolates) the points between
qchild and qparent and between qparent and qancestor that are free from obstacle collision when
connected and rewires qchild, qancestor, and those two points are found. If R and t are updated
due to postTriangular() or interpolation(), qchild (the t-th waypoint of R), qparent, and qancestor
are updated accordingly. If qparent is the last point in R, fmodify is checked. Otherwise, the
above process is repeated for the updated qchild and qancestor.

Here, path modification by postTriangular() deletes the waypoints and makes a more
optimal path but has the effect of sharpening the path shape, and path modification by
interpolation() creates a new waypoint between the waypoints. Adding/inserting has the
effect of making a more optimal path while also smoothing the path shape. Of course, due
to the effect of making a more optimal path, path modification by postTriangular() is more
efficient than that by interpolation().

The input values of postTriangular() of the post triangular processing of the midpoint
interpolation method consist of the path R, the focusing point index t, and the path
modification fmodify from the post triangular processing of midpoint interpolation method.

Rewiring is performed on the t-th waypoint qchild of R, the next point qparent, and the
next point qancestor of that point again. First, the path between qchild and qparent and the path
between qparent and qancestor are deleted. Then the path is inserted between qchild and qancestor.
Finally, fmodify returns “true” because the path has been modified. Here, Path <A, B> means
a partial path from Waypoint A to Waypoint B in the complete path.
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Algorithm 4 Pseudocode of Proposed Post Triangular Function

Input:
R← path R from postTriProcOfMidInterpolation
t← point index t from postTriProcOfMidInterpolation
fmodify ← boolean fmodify from postTriProcOfMidInterpolation
Output:
R←modified path R
fmodify ← result of boolean fmodify //return by reference
Procedure postTriangular From postTriProcOfMidInterpolation
Begin
1 qchild ← t-th point in R
2 qparent ← next point of qchild in R
3 qancestor ← next point of qparent in R
4 R← Delete path<qchild, qparent> and path<qparent, qancestor> from R
5 R← Insert path<qchild, qancestor> to R
6 fmodify ← true
End

The goal of the proposed post triangular processing of midpoint interpolation method
is to find an interpolation point (mF(q0), mF(q1)) free from obstacle collisions between
waypoints (q0~q1, q1~q2) while descending in the direction of the midpoint (q1), as shown
in Figure 6 in the interpolation process.
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q1 of path and midpoint mF(q1,1) of q1, q2 are not free from obstacle collision; (b) midpoint mF(q0,2) of interpolation point
mF(q0,1), q1 and midpoint mF(q1,2) between q1, interpolation point mF(q1,1) is free from obstacle collision.

However, the interpolation point mF follows Equation (4):

mF(qi, k) =

{ (
mF(qi ,k−1).x+ζ(qi).x

2 , mF(qi ,k−1).y+ζ(qi).y
2

)
, k > 0

qi, k = 0
(4)

When the k-th interpolation point of the interpolation point qi is mF(qi,k), the 0-th
interpolation point becomes itself qi, and the first interpolation point is the midpoint of qi
and the point ξ(qi) next to qi, and the second interpolation point becomes the midpoint of
mF (qi,1) and ξ(qi). That is, mF(qi,k) (k > 0) becomes the midpoint between mF(qi,k − 1) and
ξ(qi). The following Algorithm 5 shows the pseudocode of interpolation() of the proposed
post triangular processing of the midpoint interpolation method.
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Algorithm 5 Pseudocode of Proposed Interpolation Function

Input:
R← path R from postTriProcOfMidInterpolation
C← position set C from postTriProcOfMidInterpolation
ε← threshold value ε from postTriProcOfMidInterpolation
t← point index t from postTriProcOfMidInterpolation
fmodify ← boolean fmodify from postTriProcOfMidInterpolation
Output:
R←modified path R
t← updated point index t // return by reference
fmodify ← result of boolean fmodify // return by reference
Initialize:
qchild ← t-th point in R
qparent ← next point of qchild in R
qancestor ← next point of qparent in R
Procedure interpolation From postTriProcOfMidInterpolation
Begin
1 d← altitude of the triangle consisting of qchild, qparent, and qancestor with base <qchild, qancestor>
2 ma ←midpoint between qchild and qparent
3 mb ←midpoint between qparent and qancestor
4 While true Do
5 If d >= ε Then
6 If not isTrapped(ma, mb, C) Then
7 R← Delete path<qchild, qparent> and path<qparent, qancestor> from R
8 R← Insert path<qchild, ma>, path<ma, mb>, and path<mb, qancestor> to R
9 fmodify ← true
10 Break
11 Else
12 d← d / 2
13 ma ←midpoint between ma and qparent
14 mb ←midpoint between mb and qparent
15 Else
16 t← t + 1
17 Break
End

The input values of interpolation() of the post triangular processing of midpoint in-
terpolation method consist of the path R, the obstacle area information C, the focusing
point index t, and the path modification fmodify from the post triangular processing of the
midpoint interpolation method.

From the t-th waypoint qchild of R, the next point qparent, and the next point qancestor of
that point, the height d of the triangle is obtained, ma is the midpoint of qchild and qparent,
and mb is the midpoint of qparent and qancestor. If the path between ma and mb is free from
obstacle collision (isTrapped()), the path between qchild and qparent is deleted, and the path
between qchild and ma, the path between ma and mb, and the path between mb and qancestor
are inserted. Moreover, since the path is modified, fmodify returns “true,” and the method
terminates. If the line segment between ma and mb is not free from obstacles, the value of d
decreases by 1/2, ma is updated to the midpoint of ma and qparent, and mb is updated to the
midpoint of mb and qparent. It is then determined whether ma and mb are free from obstacles
again. This repeated process proceeds until a case is found in which ma and mb are free
from obstacles or d becomes smaller than ε. If d becomes smaller than ε, the value of t is
increased by 1 and the method is terminated.

Figure 7 shows the overall flowchart of the proposed post triangular processing of
the midpoint interpolation method. Here, ξt(qgoal) denotes the t-th next waypoint from the
starting point qgoal of the path R, and ξt+n(qgoal) is the n-th next waypoint in the ξt(qgoal).
That is, there are n waypoints between ξt(qgoal) and ξt+n(qgoal). In the flowchart shown in
Figure 7, the stop condition follows the sequence:
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1. Check whether the t-th ancestor node and the (t + 2)-th ancestor node of qgoal are
collision-free (Here, when t is 0, the 0-th ancestor means itself(qgoal)).

2. If the result of Step 1 is not collision-free, compare the dk(ξt(qgoal)) value of the t-th
ancestor node of qgoal with ε.

3. If dk(ξt(qgoal)) is less than ε, the value of t is incremented by 1, and if the parent node
(t + 1) of the t-th ancestor node of qgoal after t is incremented is qstart, the algorithm is
stopped (if f is False).
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The stopping criterion of the proposed algorithm is based on ε. As shown in
Figures 4 and 7, when the value of dk(ξt(qgoal)) becomes smaller than the ε, the algorithm
stops the loop. As Equations (1) and (2) and Figure 6 show, the value dk(ξt(qgoal)) de-
creases deterministically.

4. Experimental Results

The path between the RRT in various environment maps through simulation and
the RRT algorithm to which the proposed post triangular processing of the midpoint
interpolation method is applied were used to validate the performance of the method
proposed in this paper, and the path planning results were compared.

The performance measures compared were the average values after repeating the trial
100 times (sampling position was changed for each trial) of the path length (px) and the
planning time (ms) of the first complete path (the first complete path to reach a destination
point from a starting point).

Various environment maps have been examined and used to validate the performance
of the proposed path planning algorithms in related works. Since the efficiency of the
performance measures expected during the experiment varies somewhat based on the
composition of obstacles (e.g., number, location, shape), it is important to choose which
environment map to utilize carefully.
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The four environment maps used in the experiment are shown in Figure 8. The four
environment maps were created by partially referring to the experimental environment
proposed by Han in 2017 [21]. All environment maps were 600 × 600 px in size, with a
30 px step length. The start points (S) are represented by green circles, while the destination
points (G) are represented by purple circles. Obstacles are black polygons with yellow
contours (blue in the experimental results).
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Map 1 of Figure 8a appears to be an efficient environment for validating optimality
and completeness but a weak environment for sampling-based path planning algorithms
like the RRT algorithm. Many samplings are required since the probability of finding a
solution is low. Map 2 of Figure 8b appears to be an efficient environment for validating
the optimality and completeness of the path planning algorithm. Map 3 of Figure 8c is
an environment that is efficient for validating the optimality and the planning time of the
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path planning algorithm, as it consists of obstacles (50 vertices) that approximate circles.
Map 4 of Figure 8d is an environment that is efficient for validating the optimality and the
planning time of the path planning algorithm but a weak environment for sampling-based
path planning algorithms such as the RRT algorithm.

The number of samples and planning time required increase drastically when the path
to the destination point is narrow or there are few entrances since the sampling-based path
planning algorithm depends on probabilistic completeness.

The specification of the computer used in the simulation is shown in Table 1. The
simulator used for the simulation [8] was developed based on C# WPF (Microsoft Visual
Studio Community 2019 Version 16.1.6 Microsoft .NET Framework Version 4.8.03752),
and only a single thread was used for calculations except for the visual part. Generally,
depending on the specification of the computer, the result of performance measurements,
such as planning time, may vary during the simulation.

Table 1. Computer performance for simulation.

H/W Specification

CPU Intel Core i7-6700k 4.00 GHz (8 CPUs)
RAM 32,768 MB (32 GB DDR4)

We validate the experimental results (path length, planning time) in the four environ-
ment maps in which the post triangular processing of the midpoint interpolation method
(ε: 50, 30, 10 px) is applied to the RRT algorithm and its path planning results. Since ε
requires a higher amount of computation as it gets smaller, it was set to a value close to the
30 px step length of the experimental environment.

The experimental results for each map consist of a figure and table. The figure is a
path planning result for each algorithm shown in the case of a single trial (the figure for
each algorithm is not the result of repeated trials). The table shows an average value of the
results of planning time and path length from the path planning repeated trials. There may
be a significant difference between the performance observed visually and the numerical
results in the table for one of the repeated trials. The form of the planned path for each
algorithm is shown in the figure for visual reference. Furthermore, the proposed post
triangular processing of the midpoint interpolation method is used to see whether there is
a region where the piecewise linear path is smoothed.

The path planning results are shown in Figure 9 for Map 1 among the specified
environment maps for each algorithm. In terms of appearance, the one to which the post
triangular processing of the midpoint interpolation method (ε: 10 px) was applied seems to
have a smoother slope compared to those of the other algorithms, and the path length with
the method (ε: 10 px) seems to be the shortest.
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The path planning results (average values after repeating the trial 100 times) are
shown in Table 2 for Map 1 among the specified environment maps for each algorithm.
When applying the post triangular processing of the midpoint interpolation method (ε:
10 px), the path length becomes 62% (1224/1994(%)) compared to the RRT, which is the
shortest of all the algorithms, and the planning times are all similar.

Table 2. Experimental results of Map 1 (numbers in parentheses (averages of repeating trial 100 times)
are relative ratios to RRT results (values less than 1 are counted as 1)).

Performance RRT Proposed Method
(ε: 50 px)

Proposed Method
(ε: 30 px)

Proposed Method
(ε: 10 px)

Path length (px) 1944 (100%) 1403 (72%) 1325 (68%) 1224 (62%)
Planning time (ms) 697 (100%) 698 (100%) 698 (100%) 698 (100%)
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The path planning results are shown in Figure 10 for Map 2 among the specified
environment maps for each algorithm. In terms of appearance, the one to which the post
triangular processing of midpoint interpolation method (ε: 10 px) was applied seems to
have a smoother slope compared to those of the other algorithms, and the path length with
the method (ε: 10 px) seems to be the shortest.
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Figure 10. Experimental results of Map 2: (a) RRT; (b) Proposed method (ε: 50 px) applied; (c) Proposed method (ε: 30 px)
applied; (d) Proposed method (ε: 10 px) applied.

The path planning results (average values after repeating the trial 100 times) are
shown in Table 3 for Map 2 among the specified environment maps for each algorithm. By
applying the post triangular processing of midpoint interpolation method (ε: 10 px), the
path length becomes 74% (730/986(%)) compared to the RRT, which is the shortest of all the
algorithms, and the planning time is similar to that of the RRT algorithm when the method
(ε: 50 px) is applied. However, the absolute time difference is 1 ms, which seems to be large
when the method is applied because it is an environment that requires less planning time.
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Table 3. Experimental results of Map 2 (numbers in parentheses (averages of repeating trial 100 times)
are relative ratios to RRT results (values less than 1 are counted as 1)).

Performance RRT Proposed Method
(ε: 50 px)

Proposed Method
(ε: 30 px)

Proposed Method
(ε: 10 px)

Path length (px) 986 (100%) 780 (79%) 752 (76%) 730 (74%)
Planning time (ms) 10 (100%) 10 (100%) 11 (110%) 11 (110%)

The path planning results are shown in Figure 11 for Map 3 among the specified
environment maps for each algorithm. In terms of appearance, the one to which the post
triangular processing of midpoint interpolation method (ε: 10 px) was applied seems to
have a smoother slope compared to those of the other algorithms, and the path length with
the method (ε: 10 px) seems to be the shortest.
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The path planning results (average values after repeating the trial 100 times) are
shown in Table 4 for Map 3 among the specified environment maps for each algorithm. By
applying the post triangular processing of midpoint interpolation method (ε: 10 px), the
path length becomes 82% (505/613(%)) compared to the RRT, which is the shortest of all
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the algorithms, and the planning time is the most similar to that of the method (ε: 10 px),
as it takes 16% more time than the RRT algorithm. However, the absolute time difference is
2 ms, and since it is an environment that requires less planning time, the difference appears
to be large when the method is applied.

Table 4. Experimental results of Map 3 (numbers in parentheses (averages of repeating 100 times) are
relative ratios to the RRT results (values less than 1 are counted as 1)).

Performance RRT Proposed Method
(ε: 50 px)

Proposed Method
(ε: 30 px)

Proposed Method
(ε: 10 px)

Path length (px) 613 (100%) 535 (87%) 512 (83%) 505 (82%)
Planning time (ms) 6 (100%) 7 (116%) 8 (133%) 8 (133%)

The path planning results are shown in Figure 12 for Map 4 among the specified
environment maps for each algorithm. In terms of appearance, the one to which the post
triangular processing of the midpoint interpolation method (ε: 30 px) was applied seems to
have a smoother slope compared to those of the other algorithms, and the path length with
the method (ε: 10 px) seems to be the shortest.
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The path planning results (average values after repeating the trial 100 times) are
shown in Table 5 for Map 4 among the specified environment maps for each algorithm. By
applying the post triangular processing of the midpoint interpolation method (ε: 10 px),
the path length becomes 77% (1190/1536(%)) compared to the RRT, which is the shortest of
all the algorithms, and all the planning times are similar.

Table 5. Experimental results of Map 4 (numbers in parentheses to (averages of repeating 100 times)
are relative ratios to RRT results (values less than 1 are counted as 1)).

Performance RRT Proposed Method
(ε: 50 px)

Proposed Method
(ε: 30 px)

Proposed Method
(ε: 10 px)

Path length (px) 1536 (100%) 1284 (83%) 1261 (82%) 1190 (77%)
Planning time (ms) 1752 (100%) 1753 (100%) 1753 (100%) 1753 (100%)

Consequently, the post triangular processing of the midpoint interpolation method
(ε: 10 px) performed well in the path length aspect for all maps, demonstrating that the
proposed method is efficient in terms of optimality.

5. Conclusions

In this research, the post triangular processing of the midpoint interpolation method
minimized the planning time and shortened the path length of the sampling-based algorithm.

The proposed post triangular processing of the midpoint interpolation method was
closer to the optimal path and somewhat solved the sharp path problem through the inter-
polation process. Furthermore, all path planning algorithms that plan a locally piecewise
linear path could apply the proposed algorithm. This strength has significance in that it
can be applied not only to the algorithm presented in this paper but also to various path
planning algorithms. We validated the performance of the proposed method after it was
applied to the RRT algorithm and its path planning results through simulation. It was
verified that the path length was shortened by 18–38% (average 26%) depending on the
threshold ε when applied to the RRT algorithm in the four different environment maps.
As a result, the RRT algorithm applying the proposed post triangular processing of the
midpoint interpolation method showed a more optimal path.

The proposed post triangular processing of the midpoint interpolation method is based
on a general global planning case in which a robot first discovers a global path from its
start point to its destination point before beginning to navigate. In dynamic environments,
not only local planners but also global planners must deal with kinodynamic problems in
real-time. Furthermore, the method proposed in this paper is more efficient in terms of the
optimality of robot path planning, but optimality is not guaranteed. Future work should
determine how to make a path that is closer to the optimal path.
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