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Featured Application: This review is significant to the researchers using plant-derived prod-
ucts as therapeutics. It evaluates and summarizes the most recent studies published in the last
20 years and combines the latest botanical description, pharmacological, and biomedical effects
of several popular phytonutrients as turmeric, garlic, cinnamon, graviola, and oregano, and their
active phytochemicals. Furthermore, this review provides the audience with fast, summarized
information of >250 scientific articles on some of the most utilized phytonutrients worldwide, of
which much tertiary literature is found without the support of robust, reproducible
scientific data.

Abstract: Phytonutrients are plant foods that contain many natural bioactive compounds, called phy-
tochemicals, which show specific biological activities. These phytonutrients and their phytochemicals
may play an important role in health care maintaining normal organism functions (as preventives) and
fighting against diseases (as therapeutics). Phytonutrients’ components are the primary metabolites
(i.e., proteins, carbohydrates, and lipids) and phytochemicals or secondary metabolites (i.e., phenolics,
alkaloids, organosulfides, and terpenes). For years, several phytonutrients and their phytochem-
icals have demonstrated specific pharmacological and therapeutic effects in human health such
as anticancer, antioxidant, antiviral, anti-inflammatory, antibacterial, antifungal, and immune re-
sponse. This review summarizes the effects of the most studied or the most popular phytonutrients
(i.e., turmeric, garlic, cinnamon, graviola, and oregano) and any reported contraindications. This
article also presents the calculated physicochemical properties of the main phytochemicals in the
selected phytonutrients using Lipinski’s, Veber’s, and Ghose’s rules. Based on our revisions for
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this article, all these phytonutrients have consistently shown great potential as preventives and
therapeutics on many diseases in vitro, in vivo, and clinical studies.

Keywords: phytonutrients; phytochemicals; turmeric; garlic; cinnamon; graviola; oregano; Lipinski’s
rule of 5; Veber’s rules; Ghose filter

1. Introduction

For centuries, plants have been considered a significant source of medicinal nutrients
and compounds. Historical findings have reported the use of plants by our ancestors to
treat numerous diseases [1–3]. Consequently, it has been a quest for many individuals to
search for herbal supplements and natural therapies to attend to their healthcare needs,
prevent diseases, and support their nutrition. Plants produce a large variety of metabolites.
Primary metabolites (i.e., innate proteins, lipids, and carbohydrates) are directly involved in
their intrinsic metabolic pathways in processes such as normal growth, development, and
reproduction. In contrast, secondary metabolites, also known as phytochemicals, confer a
selective advantage to the plants, despite not being involved in their main metabolic path-
ways [4]. These phytochemicals are classified into four main chemical groups: phenolics,
alkaloids, organosulfides, and terpenes [5]. Phenolics are the biggest group subdivided into
seven groups: curcuminoid, stilbenes, tannins, flavonoids, phenolics acids, lignans, and
coumarins [6]. Figure 1 shows a summary of the phytonutrients’ metabolite composition.

Based on this definition of secondary metabolites, phytonutrients can be considered as
whole-plant extracts containing one or more phytochemicals. Since one of the functions of
such secondary metabolites is to protect the plant organism from pests and diseases, it is not
surprising that many of them show activity against human ailments. The scientific literature
contains strong evidence supporting healthy diets rich in phytonutrients correlated with
the prevention of chronic diseases, preventive medicine being one of the most important
types of health care, if not the most [7–12]. However, the ingestion of plant-derived foods,
also known as “superfoods,” or phytonutrients, in order to take advantage of its therapeutic
properties is well under debate. This debate is mainly due to the heterogeneity in the
properties of these plant extracts (phytonutrients) compared to the results in their isolated
bioactive compounds (phytochemicals).

When we consume superfoods, the first feature altering their biological effect is during
the food preparation, possibly inducing chemical decomposition and thermal denaturation
of most metabolites, including phytochemicals [13,14]. Secondly, the different physio-
logical barriers in the digestion process through the gastrointestinal tract determine all
nutrients’ absorption, bioavailability, and delivery [15]. Multiple research groups have
demonstrated the activity of the plant extract being higher when compared to the pure
isolated phytochemical when orally administrated [16]. This difference is largely due to
the low bioavailability and low absorption of these isolated natural compounds, which
is explained by their poor solubility [16–18]. To overcome this pharmacokinetic problem
and study the therapeutic potential of the pure phytochemicals, it is recommended to
use other administration routes or develop improved delivery systems [19,20]. However,
some researchers have found that synergistic interactions between the mixture of pri-
mary and secondary metabolites in phytonutrients create a natural behavior of micellar
nanoparticles [21,22]. These results expose one of the least investigated properties of
plant extracts.

The development of these intrinsic micelles in the extract significantly increases the
successful delivery and high absorption of the phytochemical molecules [23]. On the other
hand, if the phytochemical concentration in the herbal extract is extremely low, its bioactiv-
ity would be underestimated. Furthermore, the metabolites concentration, composition,
and quality from batch to batch in these extracts are considerably heterogeneous [24]. These
inconsistencies make extracts challenging to fulfill the high homogeneous consistency and
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the reproducibility required to study their therapeutic activity analytically, even when peo-
ple claim their medicinal effect [5]. Thus, for the development of new drugs, isolated active
phytochemicals are preferred over crude extracts. Fortunately, basic and clinical research
studies of pure phytochemicals have continued for decades and have given important
therapeutic outcomes. Because of these results, almost half of the drugs available in the
market are naturally derived compounds [25], showing the pertinence to our review.
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for their normal metabolic functioning and secondary metabolites (i.e., phytochemicals), primarily to protect them from
predators. These phytochemicals are classified into four main chemical groups: phenolics, alkaloids, organosulfides, and
terpenes. Phenolics are the biggest group subdivided into seven subgroups: curcuminoid, stilbenes, tannins, flavonoids,
phenolics acids, lignans, and coumarins. 3D structures were visualized using PubChem [26] ball-and-stick model.

This comprehensive review summarizes the most recent studies published in the last
20 years and combines the latest botanical description, pharmacological, and biomedical
effects of several popular phytonutrients as turmeric, garlic, cinnamon, graviola, and
oregano, and their active phytochemicals. We emphasized the biomedical areas of the
anticancer, antioxidant, antiviral, anti-inflammatory, antibacterial, antifungal, and immune
response presented by the mentioned phytonutrients. Besides, special attention is given to
potential contraindications found while consuming these phytonutrients/phytochemicals
alone or in combination with conventional medicine. After all, the notion of phytonutrients
impacting the health status of individuals, in a preventive or therapeutic way, remains an
attractive topic for the public, particularly regarding food with tangible health benefits to
their diets.

2. Phytonutrients

In the last 20 years, researchers’ interest in natural products has grown in search of
alternatives for disease prevention and therapies. In this review, we looked for the health
benefits of the selected phytonutrients demonstrated by scientific studies. Furthermore, we
constructed Table 1 to show the results of the theoretical calculations of the physicochemical
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properties or “drug-likeness” relevant for gastrointestinal tract absorption of the main
phytochemicals in five phytonutrients: turmeric, garlic, cinnamon, graviola, and oregano.
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Table 1. Theoretical calculations of the physicochemical properties for the main phytochemicals of the selected phytonutrients.

Phytochemical
Compound

Name

Empirical
Formula/Structure

MW
(Da) HBA/HBD/RB Log P Log D A (cm3) PSA

(Å2)

GI
Absorption/L-
RO5, GF, and
VR Violations

Turmeric

Curcumin
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Table 1. Cont.

Phytochemical
Compound

Name

Empirical
Formula/Structure

MW
(Da) HBA/HBD/RB Log P Log D A (cm3) PSA

(Å2)

GI
Absorption/L-
RO5, GF, and
VR Violations

Garlic

Alliin
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144.3 0/0/1 2.2  2.7  45 50.6 

Low/ 

TNA < 20 

MW < 160 

Cinnamon 

(E)-Trans-

Cinnamaldehyde 

C9H8O 

132.2  1/0/2 2.1  1.8  42 17.1 

Low/ 

TNA < 20 

MW < 160 

(E)-Cinnamyl Acetate 

C11H12O2 

176.2  2/0/4 2.6  2.6  53 26.3 High/0 

132.2 1/0/2 2.1 1.8 42 17.1
Low/

TNA < 20
MW < 160
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Table 1. Cont.

Phytochemical
Compound

Name

Empirical
Formula/Structure

MW
(Da) HBA/HBD/RB Log P Log D A (cm3) PSA

(Å2)

GI
Absorption/L-
RO5, GF, and
VR Violations
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Table 1. Cont.

Phytochemical
Compound

Name

Empirical
Formula/Structure

MW
(Da) HBA/HBD/RB Log P Log D A (cm3) PSA

(Å2)

GI
Absorption/L-
RO5, GF, and
VR Violations
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Table 1. Cont.

Phytochemical
Compound

Name

Empirical
Formula/Structure

MW
(Da) HBA/HBD/RB Log P Log D A (cm3) PSA

(Å2)

GI
Absorption/L-
RO5, GF, and
VR Violations
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Thymol
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MW: molecular weight; LogP: lipophilicity; LogD: lipophilicity considering ionizable groups at pH 7.4; A: molar refrac-

tivity; HBD: hydrogen bond donors, HBA: hydrogen bond acceptors; RB: rotatable bonds; PSA: polar surface area; TNA: 

total number of atoms; L-Ro5: Lipinski’s Rule of 5; GF: Ghose Filter; VR: Veber’s Rules; Predicted data of Empirical for-

mula, Structure, MW (Da), H-bond Acceptor/Donor, Log P, Log D, and A were generated using PubChem [26], ChemSpi-

der [27], ACD/Labs Percepta Platform-PhysChem Module [28] and US Environmental Protection Agency’s EPISuite™ 

[29]; Favorable properties or “drug-likeness” for GI tract absorption are predicted by the combination of L-RO5, GF, and 

VR: MW (160–500 Da); HBD ≤ 5; HBA ≤ 10; A (40–130); LogP (−0.4–5.6); RB ≤ 10: PSA < 140; TNA (20–70) [30]. 

2.1. Turmeric 

2.1.1. Botanical Description 

Turmeric, also known as Curcuma longa, is a rhizomatous herbaceous perennial plant 

that belongs to the Zingiberaceae family (ginger family). This plant is highly branched with 

long aromatic leaves arranged in two rows. Turmeric flowers have colors ranging from 

white, green, yellowish, and purple-red [31]. Curcuma plants are wildly cultivated in 

Southeast Asia and the Indian region, where various parts are used mainly for herbal me-

dicinal applications, dietary supplements, and cuisine purposes [32,33]. An essential part 

of turmeric used as a spice and herbal supplement is the rhizome, which is adjacent to the 

plant’s roots. Turmeric powder has a pungent taste and distinctive yellow/orange color 

due to pigments and curcuminoids phytochemicals in the rhizome [34]. Furthermore, pri-

mary metabolites (e.g., proteins and fats) and phytochemicals concentration dictate other 

physical properties and the color intensity of the turmeric powder, depending on factors 

such as the type of soil, crop fertilizers, and pH [35]. 

2.1.2. Phytochemicals 

Turmeric’s therapeutic properties may include a wide variety of conditions found in 

the literature, where most of them come from the bioactive compounds in its rhizome. For 

years, different research groups have shown that turmeric is extraordinarily rich in valu-

able phytochemicals with pharmacological properties including polyphenols (e.g., curcu-

minoids), terpenes (e.g., ar-, α- and β-turmerone, α-zingiber, and β-sesquiphellandrene), 

flavonoids, coumarins, saponins, tannins, and steroids [36–38]. The principal curcumi-

noids are curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin 

[32,39,40]. Curcumin is considered the major bioactive phytochemicals from turmeric and 

is around 5% of the rhizome. Other bioactive compounds found in essential turmeric oils 

134.2 0/0/1 4.0 4.1 45 0 Low/
MW < 160
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of 5; GF: Ghose Filter; VR: Veber’s Rules; Predicted data of Empirical formula, Structure, MW (Da), H-bond Acceptor/Donor, Log P, Log D,
and A were generated using PubChem [26], ChemSpider [27], ACD/Labs Percepta Platform-PhysChem Module [28] and US Environmental
Protection Agency’s EPISuite™ [29]; Favorable properties or “drug-likeness” for GI tract absorption are predicted by the combination of L-RO5,
GF, and VR: MW (160–500 Da); HBD ≤ 5; HBA ≤ 10; A (40–130); LogP (−0.4–5.6); RB ≤ 10: PSA < 140; TNA (20–70) [30].

2.1. Turmeric
2.1.1. Botanical Description

Turmeric, also known as Curcuma longa, is a rhizomatous herbaceous perennial plant
that belongs to the Zingiberaceae family (ginger family). This plant is highly branched
with long aromatic leaves arranged in two rows. Turmeric flowers have colors ranging
from white, green, yellowish, and purple-red [31]. Curcuma plants are wildly cultivated
in Southeast Asia and the Indian region, where various parts are used mainly for herbal
medicinal applications, dietary supplements, and cuisine purposes [32,33]. An essential
part of turmeric used as a spice and herbal supplement is the rhizome, which is adjacent
to the plant’s roots. Turmeric powder has a pungent taste and distinctive yellow/orange
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color due to pigments and curcuminoids phytochemicals in the rhizome [34]. Furthermore,
primary metabolites (e.g., proteins and fats) and phytochemicals concentration dictate
other physical properties and the color intensity of the turmeric powder, depending on
factors such as the type of soil, crop fertilizers, and pH [35].

2.1.2. Phytochemicals

Turmeric’s therapeutic properties may include a wide variety of conditions found
in the literature, where most of them come from the bioactive compounds in its rhi-
zome. For years, different research groups have shown that turmeric is extraordinarily
rich in valuable phytochemicals with pharmacological properties including polyphe-
nols (e.g., curcuminoids), terpenes (e.g., ar-, α- and β-turmerone, α-zingiber, and β-
sesquiphellandrene), flavonoids, coumarins, saponins, tannins, and steroids [36–38]. The
principal curcuminoids are curcumin and its derivatives demethoxycurcumin and bis-
demethoxycurcumin [32,39,40]. Curcumin is considered the major bioactive phytochemi-
cals from turmeric and is around 5% of the rhizome. Other bioactive compounds found
in essential turmeric oils are aromatic-tumerones, α-santalene, and aromatic curcum-
ene [41,42]. The biomedical uses of curcumin are limited by its short half-life, low stability,
and limited bioavailability [43]. However, there are different strategies under investigation
to overcome these limitations, such as using natural enhancers and developing delivery
systems to encapsulate the curcumin [44,45]. Various studies have demonstrated that
primary and secondary metabolites in turmeric extracts may enhance the bioavailability of
curcumin in vivo [43,46]. Some other phytochemicals in combination with curcumin have
shown synergistic effects increasing its bioavailability, e.g., quercetin, genistein, terpineol,
epigallocatechin-3-gallate, and resveratrol [47,48].

2.1.3. Biomedical effects
Anticancer

Turmeric extracts and isolated curcumin have been extensively studied for cancer
applications. Since 1985, turmeric extracts have demonstrated potent cytotoxic activity
against cancer in vitro and in vivo studies [49]. Then, it also entered clinical studies for the
treatment of cancer [50]. Curcumin has been shown to diminish tumor growth effectively,
prevent tumor formation, angiogenesis, migration, and invasion by modulating several cell
signaling pathways related to adhesion molecules, cell survival proteins, growth factors,
transcription factors, cytokines, kinases, and receptors [51]. Different studies demonstrated
that curcumin downregulates cyclin D1, cyclin E, and MDM2, and upregulates p21, p27,
and p53 [52]. Due to the low bioavailability of pure curcumin, some researchers prefer to
continue studies using turmeric extracts, co-administration with other phytochemicals, or
the development of drug delivery systems. For example, Li et al. reported that turmeric
extracts (200 mg/kg) induced in vivo tumor growth inhibition and anti-metastatic effects
using colorectal CT26, HT29, and HCT116 cancer cells [53]. Furthermore, in combination
with the phytochemical quercetin, it reveals a synergistic effect against lung, skin, colorectal,
and breast cancer cells [54]. In addition, Almutairi et al. designed a model that encapsulated
curcumin in a chitosan polymer nanoparticle (115 nm) to increase its anticancer activity.
This curcumin–chitosan nanoparticle showed a sensitive release in a more acidic pH
environment, such as in cancer cells [55]. Moreover, several studies using curcumin as an
anticancer agent include possible mechanisms of action [56–60].

Antioxidant

Curcumin is an extremely potent antioxidant by inhibiting the formation of reactive
oxygen species [61]. In an in vitro study, Ak and Gülçin demonstrated the potent radical
scavenging activity of curcumin by inhibiting >95% of lipid peroxidation [62]. Yuliani et al.
investigated the antioxidant and neuroprotective effects of curcuminoids on neurons from
Sprague–Dawley rats as a potential treatment for dementia. Turmeric extract (200 mg/kg)
prevents spatial memory deficits, and its effects were comparable to the standard dementia
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medicine, citicoline [63]. In addition, Hossen et al. demonstrated the antioxidant properties
and protective effects to hepatic organs in orally supplemented rats through a combination
of curcumin (62%), flavonoids (37%), and ascorbic acid (10%). The possible mechanism of
action was through antioxidant enzyme upregulation and lipid peroxidation inhibition,
providing protective effects [64].

Antimicrobial

• Antiviral

Several studies have demonstrated that the turmeric plant and the isolated phyto-
chemical curcumin exhibited activity against a wide variety of viruses due to its potential
to interfere with different cellular signaling pathways, inhibiting virus proliferation and
viral expression [65]. The list of viruses that turmeric demonstrated activity are influenza
A, dengue, viral hemorrhagic septicemia, human immunodeficiency, herpes simplex, En-
terovirus 71, Zika, chikungunya, vesicular stomatitis, human respiratory syncytial, and
others [66]. In general, curcumin strongly inhibits virus proliferation and expression. An
in vitro study focused on the structure–activity relationship demonstrated that double
bonds in the central carbon chain enhanced the curcumin activity against type A influenza
virus by its interaction with the receptor-binding region [67]. On the other hand, in another
study, researchers claimed that the hydroxyl groups and phenyl rings of curcumin are
responsible for the antiviral effect against the herpes simplex virus [68]. Curcumin showed
an excellent inhibitory effect in the micromolar range against transmissible gastroenteritis
virus in cells in a dose-, temperature- and time-dependent manner [69]. In a very recent
systematic review, Kunnumakkara et al. explained the potential of curcumin and other
spices against SARS-COV-2 due to their anti-inflammatory properties to inhibit the cy-
tokine storm [70]. Interestingly, curcumin has demonstrated antiviral activity against the
SARS-CoV-2 by disrupting the binding of the spike protein to the ACE2 receptor and
preventing the virus from entering cells. This group also found that curcumin positively
regulates the action of the antioxidant molecule NRF2 while negatively regulating the
master inflammatory molecule HMGB1 [71]. These findings suggest that turmeric and its
main phytochemical curcumin could not only be a potential treatment but also a prevention
alternative for viral infections.

• Antibacterial

There are also reports showing the antibacterial activity of turmeric [37]. Bangun et al.
developed an alginate-based drug delivery system of turmeric extract and tested its activity
against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). The
results showed that this turmeric drug delivery system affected both strains. However,
there was more prominent growth inhibition on the Gram-positive bacteria than on the
Gram-negative [72]. Another study performed by Czernicka, and colleagues elucidated the
antimicrobial potential of turmeric extract against several Gram-positive strains (one strain
of Staphylococcus epidermidis and two strains of Bacillus subtilis), revealing that the different
fractions of this extract can inhibit bacterial growth [37]. In the same way, Shakeri et al.
confirmed that Gram-positive bacteria are more sensitive to curcumin than Gram-negative
bacteria due to their abundant hydrophilic lipopolysaccharide’s outer membrane [73].

• Antifungal

Another significant effect of turmeric is its antifungal activity. Chen et al. showed that
turmeric extracts have potent antifungal activity against 20 pathogenic fungi (e.g., Fusar-
ium verticillioides, Curvularia pallescens, Colletotrichum falcatum, Aspergillus niger, Aspergillus
terreus, Fusarium oxysporum, Fusarium moniliforme, Fusarium graminearum, Phoma wasabiae,
Alternaria alternate, Botrytis cinerea, Chaetomium olivaceum, Penicillium pallidum, Mycogone
perniciosa, and Verticillium dahlia) by disrupting the synthesis of the main components of
the fungal cell wall and interfering the protein synthesis. From this study, phytochemi-
cals in turmeric have better antifungal activity working in combination than individual
compounds [74]. Murugesh and colleagues elucidated that turmeric extracts exhibit a
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potent anticandidal effect against Candida albicans on in vitro studies [75]. In a randomized
clinical trial, researchers demonstrated that the topical administration of curcumin 5%
ointment could significantly reduce knee pain in osteoarthritis patients [76]. This finding
suggests considering turmeric topical use as a low-cost alternative with lesser side effects
considering its antifungal capacity.

Anti-Inflammatory

Turmeric also exhibited potential to treat chronic pain and joint inflammation [77]. In a
study using turmeric extracts combined with Allium hookeri extracts, researchers determined
that this co-treatment restored the altered skin membrane and inhibited white blood cells
and monocyte proliferation in inflamed skin models [78]. Bethapudi et al. demonstrated
that oral administration of turmeric extract containing 57% of the bioactive turmerosaccha-
rides significantly reduced pain and inflammation effects on an animal model (mimicking
human osteoarthritis). This turmeric extract revealed a similar analgesic effect to tramadol
on osteoarthritis pain [79]. In a recent study, Nicoliche et al. summarized the following
curcumin’s mechanisms of action against the inflammatory process: inhibition of NF-KB
(nuclear factor kappa B), MMP-1, 3, 8, 9, and 13 (matrix metalloproteinases), nitric oxide
synthase, MAPK (mitogen-activated protein kinase), MCP (monocyte chemoattractant
protein), STAT (signal transduction and activation transcription), PI3K (phosphoinositide
3-kinase), lipo-oxygenase, JAK (Janus kinase), and COX-2 (cyclo-oxygenase-2), MIP (mi-
gration inhibitory protein); also inhibition on the expression of interleukin-1, -2, -6, -8, -12
and -1β, and TNF-α (tumor necrosis factor-α); significantly improve collagen repair [80].
The study also postulated that curcumin upregulates the peroxisome proliferator-activated
receptor-γ (PPAR-γ) [81].

Immunomodulatory

As previously described here, turmeric has antioxidant, antimicrobial, and anti-
inflammatory properties leading to improved immune response. In in vivo experiments to
study graft-versus-host disease (induced after bone marrow transplantation), mice were
pretreated with curcumin (100 µg/mouse). These curcumin-pretreated mice showed an
increase in CD4+ and CD8+ cells before the transplant, preventing the disease [82]. Jian
et al. studied the effects of curcumin as a dietary supplement in the male Hu sheep model,
reporting changes in blood metabolites, antioxidant capacity, testicular development, and
immune response. After four months of dietary supplementation, the sheep improved
their reproductive system performance [83]. In vivo and clinical studies indicate that cur-
cumin can positively affect several immune cells (i.e., T lymphocyte subsets, macrophages,
dendritic cells, B lymphocytes, and natural killer cells), which diminishes the severity
of different autoimmune diseases [84]. Additional studies found promising results in
patients with several pro-inflammatory illnesses (i.e., cardiovascular disease, renal dis-
eases, arthritis, Crohn’s disease, ulcerative colitis, irritable bowel disease, pancreatitis,
peptic ulcer, gastric ulcer, oral lichen planus, vitiligo, psoriasis, acute coronary syndrome,
atherosclerosis, diabetes, lupus, acquired immunodeficiency syndrome, β-thalassemia,
biliary dyskinesia, and Dejerine-Sottas disease) [85]. Most recently, a study showed that
curcumin supports immunomodulatory responses by inhibiting the cell-mediated response
of inflammatory cytokines and, thus, mitigating progression to pneumonia and acute
respiratory distress syndrome (ARDS) after SARS-CoV-2 infection [71].

2.1.4. Contraindications

Despite the extensive evidence that reveals the beneficial effect of Curcuma longa
extract, there might be several side effects and contraindications associated with its use.
Previous studies reported that turmeric extract could increase bile secretion, triggering
biliary colic and predisposing patients to have gallstones [86]. In addition, a high dose of
turmeric supplementation in a 38-year-old man was related to inducing atrioventricular
block, which disappeared once the supplementation was discontinued [87]. We must
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emphasize that this patient took 20–30 pills of curcumin supplement, 75 mg each, twice per
day, when the physician’s recommendation was to take only ten capsules per day, with at
least four times being the recommended dosage. Furthermore, turmeric supplementation
may increase the risk of bleeding in combination with anticoagulant drugs [88]. Moreover,
turmeric extracts decreased insulin resistance in diabetic patients due to their hypoglycemic
effect [89]. Due to curcumin’s iron chelating property, it is not recommended to patients
with iron deficiency [90].

2.2. Garlic
2.2.1. Botanical Description

Central Asia is considered the home of garlic (Allium sativum), a member of the
Amaryllidaceae family, even though it has been farmed for a long time worldwide. Garlic
is a perennial plant that produces edible bulbs from a tall stem of 25–70 cm and can be
grown in mild climates [91]. Garlic bulbs are composed of 10–20 cloves, and those who
have flowers are hermaphrodites (some varieties do not produce flowers) [92]. Its leaves
and cloves have been used as a spice, food additive, and in traditional medicine for a long
time [93]. Garlic has two major subspecies: hardneck (produces flower stalks and results
in a bulb circle of 6–11 cloves) and softneck (produces no flowers, and the bulb circle can
result in 24 cloves [94,95]. Garlic’s cultivars are divided into eight subtypes (rocambole,
marble purple, purple stripes, porcelain, glazed purple stripe, Asiatic, creole, and turban)
for hardneck and into two subtypes (artichoke and silverskin) for softneck [95]. Alliums,
such as garlic, produce a pungent odor when crushed. Interest in the potential benefits of
this plant originates in antiquity (up to 5000 years ago). It is one of the earliest documented
examples of plants used for health maintenance and treatment of disease [96].

2.2.2. Phytochemicals

Garlic has various phytoconstituents, including alkaloids, saponins, flavonoids, tan-
nins, phenolics, terpenoids, and organosulfides [97]. In addition, garlic is considered a
good source of vitamins and minerals, including vitamin B1, B6, C, manganese, copper,
phosphorus, selenium, and calcium [98]. Garlic’s main phytochemicals are organosulfides
(sulfur-containing compounds), including allicin, alliin, ajoenes (E-ajoene and Z-ajoene),
sulfides (diallyl sulfide, diallyl disulfide, diallyl trisulfide), 2-Vinyl-4H-1,3-dithiin, and allyl
methyl sulfide [99]. These organosulfides are produced in garlic cloves [97]. Allicin is the
primary bioactive phytochemicals present in the aqueous extract of garlic and is also respon-
sible for the characteristic odor of garlic [94]. Thus, enzyme alliinase converts allicin to alliin
when the garlic cloves are sliced/crushed [100,101]. For this reason, several studies have
shown that crushed fresh garlic can deliver most of its active phytochemical [99,102,103].
As allicin is chemically unstable, it rearranges into the stable phytochemical ajoene (E-
and Z-) [104]. Allyl sulfides are most often found in garlic oil, and vinyl-4H-1,3-dithiin is
mainly found in stir-fried garlic and garlic oil [105,106].

2.2.3. Biomedical effects
Anticancer

Interestingly, phytochemicals such as garlic-derived allicin have been combined with
commonly used anticancer drugs to enhance the therapeutic effect of current treatments.
For example, an experiment performed by T, igu et al. showed that a combination of the
anticancer drug, 5-fluorouracil with allicin, hindered colorectal (DLD-1) and lung cancer
(SK-MES-1) cell migration and proliferation in vitro [107]. Petrovic et al. studied the
effectiveness of intraperitoneal injections of ethanolic homemade garlic extract against an
aggressive breast cancer tumor in BalB/c mice. The results showed that, after 28 days
of treatment, cancer growth was delayed by 30% compared with untreated mice [108].
In another study, Tanaka et. al, led a randomized double-blinded study on 51 patients
with colorectal adenomas that utilized high-aged garlic extract (2.4 mL/day) and low-
aged garlic extract (0.16 mL/day) for 12 months. At least one adenoma decreased by 50%
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(>6 months of uptake) in the high-aged garlic extract group, while there was no decrease in
the low-aged garlic extract group [109]. Finally, a recent meta-analysis of epidemiological
articles using a total of 11 clinical trials and 12,558 cases concluded that garlic intake could
reduce the risk of colorectal cancer [110], coinciding with previous studies [111], while
another previous meta-analysis limited to men showed no correlation [112]. These studies
show that broader investigations with increased sample size are necessary to clarify the
result discrepancies from several epidemiological studies.

Antioxidant

Garlic’s phytochemicals also promote an antioxidant effect. The antioxidant properties
of garlic might be associated with two of its main phytochemicals, alliin, and allicin. Bhatt
and Patel et al. prepared 900 mg of cooked versus raw garlic and incubated these samples
with gastric enzymes. These results showed that cooked garlic lost 90% of phenolic content,
leading to less antioxidant activity due to heat (evaporation of active compound) than
raw garlic [113]. Lei et al. demonstrated that the scavenging activity of black fermented
garlic ethanolic extract is concentration-dependent. This study also showed that this
garlic extract increased the mean longevity of flies (Drosophila melanogaster) compared
to controls [114]. In a more translational scenario, a randomized, double-blind clinical
trial on seventy women with rheumatoid arthritis evaluated the effects of garlic in pain
mitigation. Patients received 1000 mg of garlic for a total of 8 weeks. Results showed
that pain after activities decreased in the garlic group compared to the placebo. This
effect from garlic was attributed to a decrease in oxidative stress, a common feature in this
disease [115]. However, there are mixed results in the literature about the oxidative stress
reduction mechanism.

Antimicrobial

• Antiviral

Several studies have shown the antiviral effect of garlic. Pre-clinical studies elucidated
that garlic and its organosulfides phytochemicals have great activity against several human
and animal viruses by inhibiting viral RNA polymerase, reverse transcriptase, and down-
regulation of the extracellular-signal-regulated kinase/mitogen-activated protein kinase
signaling pathway [116]. The variety of viruses attacked by garlic are adenovirus [117];
SARS-CoV-1 [118]; dengue [119]; herpes simplex [120] influenza A, B, and H1N1 [121,122];
hepatitis [123]; HIV [124]; and rotavirus [125]. Furthermore, in a very recent study, essen-
tial garlic oil was found to be acting on the angiotensin-converting enzyme 2 (ACE2) and
largely on the main protease of SARS-CoV-2 (PDB6LU7). This activity is crucial to diminish
the impact of the host receptor of SARS-CoV-2, and this study proposes that garlic oil active
compounds can be used as a COVID-19 preventive treatment [126].

• Antibacterial

The antibacterial effect of garlic was analyzed in vitro using fresh garlic juice in agar
plates against E. coli, P.mirabilis, K.pneumoniae, S.aereus, and P.aeruginosa. The results showed
a dose-dependent inhibition in all bacterial strains exposed to a garlic concentration higher
than 10% [127]. In another study, two different aqueous garlic extracts (from Allium sativum
and Allium tuberosum) were tested in rats infected with one penicillin-sensitive (ATCC
25923) and one methicillin-resistant (ATCC 33592) S. aureus. The two species of garlic were
administered orally at 100 and 400 mg/kg) every 6 hours for 24 hrs. Results showed that
both garlic extracts could reduce the infection but not against the resistant strain [128].
Several in vitro studies demonstrated the antibacterial effect of fresh garlic extract on E. coli,
Klebsiella pneumoniae, Proteus mirabilis, P. aeruginosa, and S. aureus [127], and also against
multidrug-resistant E. coli, P. aeruginosa, K. pneumoniae, Serratia marcescens, and methicillin-
resistant S. aureus [129]. In a clinical trial that involved 15 patients with Helicobacter pylori,
the results showed that the urease breath test to detect H. pylori was lower in patients who
took 3 g of garlic cloves twice a day, demonstrating its antimicrobial effect [130].
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• Antifungal

Various studies have discussed the antifungal effect of garlic. Li et al. showed that gar-
lic oil had an inhibitory effect against Candida albicans at a concentration of 0.35 µg/mL [131].
Aala et al. performed an experiment that evaluated the structural characteristic of Trichophy-
ton rubrum in response to garlic and allicin aqueous extracts. The results showed that the
allicin extract was more effective in impeding the growth of fungal cells by changing fungi
morphology [132]. Another in vitro study indicated that 0.125 and 0.0313 % of garlic oil
had a strong antifungal activity by penetrating hyphae cells and destroying their organelles
against Penicillium funiculosum [133].

Anti-Inflammatory

The anti-inflammatory effect of garlic was studied by several research groups. Overall,
the studies agreed on the antioxidant and anti-inflammatory properties of garlic. However,
the results for the mechanisms activated/inhibited by the phytonutrients themselves and
their phytochemicals are diverse. We understand that this could be possible due to different
garlic preparations and also by the “double-edged sword” of nitric oxide. For example, in
an in vitro study, Lee and coworkers showed garlic’s anti-inflammatory activity at µM con-
centrations. They demonstrated that garlic’s organosulfides Z- and E- ajoene and analogs
inhibited nitric oxide/prostaglandins and nitric oxide synthase/cyclooxygenase, the phos-
phorylation of p38 mitogen-activated protein kinases, and, also, the expression of the
following pro-inflammatory cytokines: tumor necrosis factor-α, interleukin-1β, and−6 in a
lipopolysaccharide-induced macrophage cell line [134]. In a double-blind clinical trial study,
anti-inflammatory effects in 40 peritoneal dialysis patients were investigated by administer-
ing a garlic extract twice daily for 8 weeks. The results demonstrated that garlic diminished
inflammatory markers in end-stage renal disease patients, specifically interleukin-6, C-
reactive protein, and erythrocyte sedimentation rate in the treated group [135]. On the
other hand, a previous in vivo study concluded that garlic inhibits platelet aggregation by
activating nitric oxide (NO) synthase and the production of NO [136].

Immunomodulatory

As previously described here, garlic induces multiple different functions, including
antioxidant, anti-microbial, and anti-inflammatory properties leading to an improvement
in the immune response. The immune response induced by the garlic phytochemical
allicin was studied in female BALB/c mice. Results showed that allicin treatment reduced
parasitaemias and enhanced pro-inflammatory mediators during malaria infection in a
dose-dependent manner [137]. In addition, Bruck et al. studied the immune response
of allicin in induced liver damage BALB/c male mouse. Results showed that allicin-
treated mice showed decreased levels of the pro-inflammatory tumor necrosis factor-
α, aminotransferases, and improved hepatic necroinflammation [138]. A randomized,
double-blind clinical trial studied the immune and inflammatory effects of 3.6-g aged
garlic extract administered daily in 51 obese adults for 6 weeks. Results showed that
patients who took the extract supplementation had less pro-inflammatory cytokines, such
as interleukin-6 and tumor necrosis factor-α [139]. In a separate study, the immune effect
of aged garlic extract supplementation was analyzed in a randomized, double-blind trial
with 120 healthy participant adults to examine the proliferation of immune cells and
the severity of symptoms during cold and flu season. Results showed that the garlic
extract induced increased levels of NK cells and γ/δ-T cells, and reduced the severity
of symptoms, days, and incidence [140]. This immune response of garlic is due to the
scavenging of oxidizing agents, thereby preventing the formation of pro-inflammatory
messengers, such as COX and LOX. In addition, one of the main mechanisms observed is
through immunomodulation of inflammatory cytokines and direct stimulation of immune
cells [141].
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2.2.4. Contraindications

There is limited data about the safety of garlic supplements [142]. Hoshino et al.
administered 40 mg of different garlic preparations to adult dogs, and his results showed
significant damage caused to gastric mucosa by raw garlic powder and gastric redness
caused by boiled garlic powder. Interestingly, no adverse effect was caused by the ingestion
of raw garlic extract [143]. In 2014, the first case of pneumonia caused by fermented black
garlic was discovered in a 77-year-old female patient who came into the hospital with short-
ness of breath and cough after taking black garlic. The patient showed health improvement
when she stopped taking black garlic [144]. In addition, the first case of drug-induced liver
injury by the mild periportal cholestatic reaction was reported in a 43-year-old patient who
suffered from hepatopulmonary syndrome following a liver transplant by taking a high
dose of Allium sativum as treatment. The patient’s liver enzymes returned to normal after
discontinuation of the treatment [142]. According to the National Institutes of Health, garlic
supplements may increase the risk of bleeding. As we mentioned before, garlic displays
strong antioxidant properties [115] that could lead to the inhibition of platelet adhesion
and aggregation [145]. Through these mechanisms, garlic intake might increase the risk of
bleeding when combined with other anticoagulants. However, this property would help
patients with cardiovascular diseases by the strong garlic antihypertensive action.

2.3. Cinnamon
2.3.1. Botanical Description

Cinnamon, appreciated for centuries for its peculiar flavor and aroma, is the dried
inner bark of Cinnamomum verum (syn. C. zeylanicum Blume), an evergreen tree native of Sri
Lanka and India. This C. verum is also commonly called “true” cinnamon or Ceylon cinna-
mon. The Cinnamomum genus, which the cinnamons are part of, belongs to the laurel family
(Lauraceae), and it includes about 250 evergreen aromatic trees and shrubs [146]. Most of
the spice sold as cinnamon in the United States, however, comes from another cinnamon
species, Cinnamonum cassia, also called Chinese cinnamon, because of its geographical
origin in the mountains of China [147]. The botanical features of C. verum are summarized
as trees (up to 50 ft) with long lance-shaped leaves, small yellow flowers organized in a
cluster, and ovoid-shaped fruits. The botanical features of C. cassia are summarized as trees
(up to 65 ft) with thin lance-shaped leaves, white flowers, axial inflorescences, and globose
drupe fruits [148].

2.3.2. Phytochemicals

Qualitative phytochemical screening of a methanolic extract from the bark of C. verum
showed the presence of all four categories of secondary metabolites. It has also been shown
that the phytoprofiles of the cinnamon extracts depend on the botanical part of the tree
used for extraction. At the same time, essential oils from the C. verum bark mainly contain
cinnamaldehyde and linalool, the flower and fruit extracts are enriched in (E)-cinnamyl
acetate, and eugenol is the main compound of leaf extracts [149,150]. The bark of the
cinnamon tree has also been reported to contain coumarin, a benzenoid lactone. C. cassia
that is particularly rich in coumarin (3462.0 mg/kg in C. cassia vs. 12.3 to 143.0 mg/kg for
C. verum) [151]. The solvent and temperature should also be carefully selected according
to the molecule one wishes to extract; for example, water is a better solvent for extracting
the phenols from C. verum than polar organic solvents at 200 ◦C [152]. For Klejdus et al.,
however, the factor for efficient extraction mainly depends on the state of the destruction
of the cinnamon cell structures during the extraction protocol [153].

2.3.3. Biomedical effects
Anticancer

In vitro and in vivo studies by Yang et al. showed that the essential oil of cinnamon
extracted from the bark of C. cassia significantly inhibits the growth of head and neck
cancer cells and tumors in mice. The antitumor activity was believed to be mediated by
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the trans-cinnamaldehyde acting as a competitive inhibitor of the epidermal growth factor
receptor (EGFR). This kinase is often mutated and overexpressed in many tumors and
regulates key cancer metabolic pathways, such as proliferation, apoptosis, angiogenesis,
and tumor invasiveness [154]. Similarly, Koppikar et al. reported that aqueous bark ex-
tract from C. cassia inhibits the growth of cervical carcinoma cells in a dose-dependent
manner (IC50 = 80 µg/mL) by apoptosis and loss of mitochondrial membrane potential.
The treated cells exhibited reduced migration potential by the downregulation matrix
metallopeptidase 2 (MMP-2) and the EGFR [155]. Furthermore, Perng et al. demon-
strated that C. verum component 2-methoxy-cinnamaldehyde had an antiproliferative effect
on human hepatic adenocarcinoma both in vitro (IC50 = 25.72 µM for 48 h) and in vivo
(10–20 mg/kg/d administration of 2-methoxy-cinnamaldehyde). The targeted metabolisms
determined by this group were similar to the previous studies (i.e., mitochondrial apoptotic
pathway) due to the activation of caspase-3 and -9, a sub-G1 phase cell-cycle arrest, and
the downregulation of nuclear factor- Kβ (NF-Kβ) [156].

Antioxidant

A study on the peripheral blood mononuclear cells of rheumatoid arthritis patients
showed that cinnamaldehyde and eugenol significantly reduced the levels of pro-
inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6. Addition-
ally, these patients showed enhanced activity of superoxide dismutase, glutathione per-
oxidase, and catalase enzymes, suggesting an antioxidant effect [157]. In the same way,
Davaatseren et al. demonstrated that trans-cinnamaldehyde diminishes the production
of nitric oxide and reactive oxygen species in macrophages [158]. Furthermore, cinnamon
capsules were orally administered for 12 weeks in a small controlled clinical trial to women
with polycystic ovary syndrome. This study demonstrated that cinnamon improved the
antioxidant status and lipid profile of these patients by decreasing serum levels of malondi-
aldehyde (derived from lipid peroxidation), total cholesterol, triacylglycerol, and increasing
high-density lipoproteins [159].

Antimicrobial

• Antiviral

In vitro studies concluded that essential oil extracts from the leaves of C. verum extract
had an antiviral effect in cells infected with influenza type A (H1N1) [160]. Similarly, a
study by Moshaverinia and colleagues suggests that a hydroalcoholic extract of C. verum
at 1 mg/mL significantly reduces the viral titer of the human herpes simplex virus type
1 -infected cells [161]. Furthermore, in silico studies by Kulkarni et al. suggest that
cinnamaldehyde possesses a strong affinity to the S1 receptor binding domain of the spike
(S) glycoprotein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Cinnamaldehyde could therefore be an efficient pharmacological agent to inhibit the entry
of the virus into the host cells [162].

• Antibacterial

Ahmed et al. showed that aqueous, methanolic, and acetone extracts from C. verum
bark exerted significant antibacterial effects on S. aureus, P. aeruginosa, and E. coli. The
inhibitory effect of the extracts was believed to be mediated by cinnamaldehyde [163]. Fur-
thermore, in an in vivo study conducted on aquatic pathogens in zebrafish,
Faikoh et al. concluded significant antimicrobial effects of liposome-encapsulated cin-
namaldehyde in fish infected by A. hydrophilia, V. vulnificus, S. agalactiae, V. parahaemolyticus,
and V. alginolyticus. The antimicrobial activity of cinnamaldehyde was associated with
a decrease in the expression of pro-inflammatory interleukins, i.e., -1β, -6, -15, and an
increase in anti-inflammatory interleukin-10 [164].

• Antifungal

In a 2019 study, Kowalska et al. demonstrated the antifungal properties of 1% (v/w)
aqueous C. verum bark after a 6-day treatment against Botrytis cinerea, the mycelium
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responsible for the grey mold disease in tomato plants [165]. Furthermore, cinnamon
seems to inhibit the growth of the microorganisms of the Candida family, which are re-
sponsible for most of the fungal diseases in humans. In a clinical trial study, Wang et al.
showed that an oil extract from C. verum significantly inhibited the growth of three species
of C. albicans (minimum inhibitory concentration (MIC) = 0.064 mg/mL), C. tropicalis
(MIC = 0.129 mg/mL), and C. krusei (MIC = 0.129 mg/mL) [166]. Additionally, a study
conducted on guinea pigs suggests that topical treatments with methanolic extracts of
C. verum inhibit the growth of M. canis and T. mentagrophytes, two fungi involved in skin
infections in animals and humans [167].

Anti-Inflammatory

A study conducted in an in vitro human skin model for chronic inflammation and
fibrosis suggests that a cinnamon concentration of 0.0012% (v:v) significantly inhibits the ex-
pression of genes involved in the inflammation and immune DNA damage responses [168].
The authors attributed the effect to cinnamaldehyde and cinnamyl acetate, the two main
chemical compounds present in the extract. Likewise, Gunawardena et al. have demon-
strated that C. verum and C. cassia extracts inhibited the release of pro-inflammatory nitric
oxide molecule and tumor necrosis factor protein in activated macrophages. From these
results, the ethanolic extract from C. verum showed more activity than the aqueous ex-
tract (IC50 = 36.4 and 122 µg/mL, respectively). The phytochemicals with more potent
anti-inflammatory effects were E-cinnamaldehyde and o-methoxycinnamaldehyde [169].
Furthermore, in an in vivo study, 4.5 mL/kg of the ethanolic cinnamon extract was orally
administered to a mouse model for colitis. The treated mice exhibited significantly en-
hanced resorption of their colon fibrotic tissues and reduction in the fibrotic score associated
with a decrease in the expression of extracellular matrix proteinases [170].

Immunomodulatory

As previously described, cinnamon has antioxidant, antimicrobial, and anti-
inflammatory properties leading to improved immune response. Several studies have con-
cluded that the phytochemicals present in cinnamon extracts inhibit the immune response
associated with allergies. Mast cells, key effectors in allergic diseases, are considered
promising therapeutic targets. Hagenlocher et al. have shown that cinnamon extracts
decrease the release and expression of pro-inflammatory mast cell mediators such as β-
hexosaminidase; cytokines CXCL8; and chemokine ligand 2, 3, and 4. From this study,
the anti-allergic properties are believed to be mediated by cinnamaldehyde [171]. Similar
results have been found in human and murine models for allergic inflammation. Cin-
namon extracts significantly inhibited the allergen-specific T-cell proliferation as well as
TH1 and TH2 cytokine production [172]. Recent studies have also shown the possibility
of cinnamon application in COVID-19 symptoms reduction and as preventive treatment
through immune system strengthening [173]. However, further research should focus on
the safety and route of cinnamon administration to maximize the therapeutic effects.

2.3.4. Contraindications

While cinnamon possesses a large spectrum of medicinal properties, its regular con-
sumption can also lead to adverse health effects. Due to its cellulose fiber composition,
which does not dissolve or biodegrade in the lungs, cinnamon inhalation or its dry con-
sumption can trigger a hypersensitive airway and irritate mucous membranes in the
lungs [174]. Due to the apoptotic effect of the cinnamon component cinnamaldehyde
on B- and T-cells, the consumption of cinnamon is contraindicated in patients under an
immunotherapy treatment [175]. The consumption of cinnamon supplements should be
avoided during pregnancy since cinnamon can lead to uterine contractions, miscarriage, or
premature labor [176]. Importantly, studies conducted both in vitro and in vivo suggest
that the toxic compound coumarin, found abundantly in C. cassia, and less in ceylon cin-



Appl. Sci. 2021, 11, 8477 19 of 36

namon (~250 times less), is a potential carcinogen to individuals with mutations of the
cytochrome P450 2A6 [177].

2.4. Graviola
2.4.1. Botanical Description

A member of the Annonaceae (Custard-apple family), Annona muricata, commonly
known as soursop, graviola, paw-paw, or “guanabana”, is a tree native to Central America
and West Indies that is abundant at altitudes lower than 900 m above sea level. It is
cultivated in tropical and subtropical climates in countries such as Angola, Brazil, Colombia,
Costa Rica, Puerto Rico, India, and Venezuela [178]. The graviola tree is mainly appreciated
for its edible fruit. Still, its parts (leaves, fruit, bark, root, etc.) have been commonly
used in traditional pharmacopeia in the form of macerations, decoction, or as a topical
medication [179,180]. While the graviola tree can grow in a large variety of soils, it prefers
deep soils with good oxygenation [178]. Botanically speaking, its leaves are large and
obovate to elliptically shaped, are green on top, and paler under the top with short petioles
and a pungent smell. The tree produces yellow-greenish flowers and lags about two
years in producing heart-shaped fruits. It usually bears fruits yearly from that point on
(12–24 per year) and can produce up to 50 fruits from its fifth year [181].

2.4.2. Phytochemicals

More than two hundred (>200) bioactive compounds have been isolated from the
leaves, seeds, root, bark, fruit, and fruit peel of the graviola tree [180]. Most frequently
identified are alkaloids, phenolics, and terpenoids [182,183]. Acetogenins are considered
the main bioactive compound in the Annonaceae family, with over 120 acetogenins identified
from the root, leaves, stems, fruit pulp, and the seed of the family members [184,185].
Acetogenins are a particular class of secondary metabolites that could be considered part of
the phenolics integrating polyketides and polyethers found exclusively in the plants of the
Annonaceae family [186]. The structure of acetogenins is composed of a long carbon chain
(35–38 carbons) as a fatty acid derivative. Graviola leaves contain key medically relevant
polyphenolics compounds, including quercetin, rutin, and gallic acid [187–189]. The leaves
of graviola also contain close to eighty (80) essential oils, including bioactive sesquiterpenes,
and compounds such as potassium; calcium; zinc, phosphorus; magnesium; carbohydrates;
vitamin A, B, and C; phytosterol; and calcium oxalate [190,191].

2.4.3. Biomedical Effects
Anticancer

Graviola anticancer activity has been extensively studied, and the cytotoxicity of graviola
has been reported for several cancer types e.g., breast, colorectal, skin, head and neck, lung,
liver, pancreatic, prostate cancer, and leukemia [178,192–194]. Most of the antiproliferative
properties of the extracts are suggested to be mediated by the graviola acetogenins. The
acetogenins exert an inhibitory activity on the NADPH mitochondrial complex 1, a component
of the energy transport chain, which is crucial to the synthesis of high quantities of ATP in
cancer cells [193,195,196]. Acetogenins have also been shown to target several critical cancer
metabolic pathways by inhibiting the Na+/K+ ATPase pump and the hypoxic and glycolytic
pathways, inducing apoptosis and cell cycle arrest [196–198].

Antioxidant

Studies conducted in vitro and in vivo suggest that graviola contains antioxidant
compounds that act as free-radical scavengers and increase the activity of the antioxidant
enzymes superoxide dismutase and catalase and downregulate the function of mitochon-
drial NADPH oxidase complex I [199–201]. The leaf and the fruit pulp of graviola are the
parts of the tree with the highest antioxidant properties [182]. The antioxidant activity of
graviola is believed to be mediated by the following phenolic phytochemicals: quercetin,
gallic acid, and graviola leaf polysaccharides [202,203].
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Antimicrobial

• Antiviral

It has been suggested that the phytochemicals polyphenolics in graviola exert some
antiviral activity against RNA and DNA viruses [189,204]. A study by Wahab et al. showed
that pretreating monkey kidney epithelial cells with a graviola leaf extract 24 h prior
to infecting them with the dengue virus serotype 2 inhibited the virus replication. The
treatment also increased the survival of the dengue-infected cells [205]. A recent clinical
study conducted by Le Donne et al. investigated the antiviral properties of graviola on
human papillomavirus (HPV)-infected patients who were supplemented with ellagic acid
and graviola extract twice a day for six months. Results showed a 74% HPV clearance in
treated patients compared to the 25% clearance for the placebo group [206]. Furthermore,
recent in silico studies suggest that rutin, a phytonutrient abundant in graviola, could act as
strong ligands and inhibit the function of proteins of the SARS-CoV and SARS-CoV-2 virus,
thus suggesting potential therapeutic benefits against the COVID-19 infection [207,208].

• Antibacterial

Graviola leaf extracts have been shown to exert in vitro antibacterial activity against
oral pathogenic strains such as S. mutants, S. mitis, P. gingivalis, P. intermedia, P. intermedia,
and C. albicans [209,210]. An in vivo study conducted in albino rats demonstrated the effi-
ciency of graviola unripe fruit extracts to inhibit the growth of S. typhi [211]. Furthermore,
aqueous leaf extract and fruit-skin ethanolic graviola extracts showed a strong antibacte-
rial effect against K. pneumoniae, S. aureus, and P. aeruginosa bacteria, i.e., the pathogens
responsible for respiratory infections in the human immunodeficiency virus (HIV/AIDS)
patients [212].

• Antifungal

We did not find studies testing the antifungal activity of any graviola extract. How-
ever, we found studies evaluating this property in some of graviola’s phytochemicals.
In 2017, a research group found that gallic acid has in vitro antifungal activity against
dermatophyte strains (between 43.75 and 83.33 µg/mL), and Candida strains (C. albicans
MIC = 12.5 µg/mL, and Trichophyton rubrum MIC = 43.75 µg/mL) by inhibiting the er-
gosterol synthesis. They also confirmed this activity after in vivo studies administrating
80 mg/kg d of gallic acid [213]. In another study, researchers found that quercetin induces
apoptosis in Candida albicans through mitochondrial dysfunction by increasing intracellular
magnesium [214].

Anti-Inflammatory

The anti-inflammatory properties of graviola have been extensively studied in vitro
and in vivo [215]. Cercato et al. reported that a topical application of a graviola leaf extract
(0.3, 1, or, 3 mg/ear) significantly reduced ear edema and myeloperoxidase activity in
Swiss mice with 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation.
The authors were also able to show that the anti-inflammatory effect of the extract was
associated with a reduction in the total amount of hydroperoxides and with modulation
of catalase antioxidant activity [216]. While studying the anti-inflammatory response in
lipopolysaccharide (LPS)-stimulated murine macrophage cell line RAW264.7 treated with
graviola ethanolic leaf extracts, Laksmitawati et al. reported a downregulation in pro-
inflammatory protein markers, such as tumor necrosis factor-alpha (TNF-α), interleukin-
1β, interleukin-6, in the treated macrophages cells compared to untreated controls [217].
Furthermore, graviola aqueous extract suppresses nitric oxide production [218]. Similarly,
an in vivo study conducted in rodents by Ishola et al. showed that the administration of a
lyophilized graviola fruit extract inhibits the activity of the pro-inflammatory biomarkers
cyclooxygenase (COX)-1 and COX-2 in a dose-dependent manner [219].
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Immunomodulatory

As previously described, the specific bioactive constituents responsible for the ma-
jor antioxidant, anti-inflammatory, and antimicrobial properties of graviola include dif-
ferent classes of annonaceous acetogenins (metabolites and products of the polyketide
pathway), alkaloids, flavonoids, and sterols. Several studies have reported that graviola
possesses immunomodulatory properties. For example, a study conducted in rodents by
Umayra et al. shows that administration of an ethanolic graviola leaf extract boosts
the immunological response through the activation of phagocytic cells [220]. Further-
more, an immune-enhancing activity of graviola leaf extracts has been observed in RAW
264.7 macrophage cells in vitro, a phenomenon which is believed to be mediated by the
activation of the mitogen-activated protein kinase (MAPK) pathways [221].

2.4.4. Contraindications

Studies from patients of the French West Indies, whose diet is rich in graviola, showed
the development of a type of Parkinsonism resistant to the common anti-parkinsonism
drug to treat tremors, levodopa [192]. This observation must lead scientists to further
study if the acetogenins and alkaloids present in the graviola fruit could be toxic to brain
cells, specifically dopaminergic neurons, which are the main cells affected in Parkinson’s
disease. In general, patients with neurological ailments should avoid the consumption of
graviola supplements. Given that graviola is already widely used in traditional medicine,
it could potentially be used against many health conditions if properly tested in further
clinical studies. In conclusion, the benefits and side-effects of graviola should be carefully
evaluated on a case-by-case basis.

2.5. Oregano
2.5.1. Botanical Description

The term oregano refers to a group of several plant genera, including Thymbra, Thymus,
Coridothymus, Satureja, and Origanum, containing a high amount of the phytochemical
carvacrol in their essential oils. The genus Origanum consists of 43 species. Origanum
vulgare (O. vulgare), commonly named “oregano”, is the name of the aromatic plant used as
a condiment herb in Mediterranean cuisine [222–224]. O. vulgare size is usually 20–80 cm;
its 1–4 cm leaves are dark green, with 2-mm bell-shaped calyx purple flowers arranged in
erect spikes [225–227]. Like other aromatic plants, the oregano plant produces essential
oils as secondary metabolites in response to various infectious agents, UV light, and even
oxidative stress. Oregano essential oils (OEOs) are usually extracted from the plant leaves
and flowering tops. OEOs are famous for their medicinal value and are traditionally used
in Turkey to cure diseases such as cough, chronic cold, wounds, gastrointestinal disorders,
and skin problems in humans and domestic animals [228].

2.5.2. Phytochemicals

The main bioactive compounds present in the OEOs are the aromatic oxygenated
monoterpene thymol (5-methyl-2-(1-methylethyl) phenol) and its constitutive isomer car-
vacrol (5-isopropyl-2-methylphenol, 2-p-cymenol). The ratio of thymol/carvacrol varies ac-
cording to the oregano plant’s geographical location [229]. Both compounds are lipophilic,
volatile, highly soluble in ethanol, and possess low densities [228,230–232]. Other bioac-
tive oregano phytochemicals include o-cymene (2-Isopropyltoluene), apigenin (4′,5,7-
trihydroxyflavone), and luteolin (7,3′,4′,5-tetrahydroxyflavone) [233,234]. Due to their low
general toxicities, the two main chemicals of O. vulgare, thymol and carvacrol, have been
approved as food additives by the Food and Drug Administration (FDA) [235].

2.5.3. Biomedical Effects
Anticancer

The antiproliferative/anticancer properties of oregano have been documented in vitro
and animal models for cancers. A recent study by Spyridopoulou et al. showed that
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OEO exerts dose-dependent cytotoxicity against breast cancer (MCF-7), colon cancer cells
(HT-29), melanoma (A375), and hepatocellular carcinoma (HepG2) cells, with respective
IC50 values of 0.35, 0.35, 8.90, and 10.0 mg/mL. The authors also showed that the treatment
of HT-29 cells with 50 mg/mL of OEO correlated with an attenuated migration and an
induced apoptosis-related morphological change in HT-29 cells. Furthermore, the oral ad-
ministration of OEO for 13 days (0.370 g/kg b.w/day) proved to inhibit the growth of CT26
colon tumors in vivo in BALB/c mice [236]. Another study by Coccimiglio reports that an
ethanolic leaf extract of O. vulgare promotes the death of A549 human lung carcinoma in
a dose-dependent manner (IC50 = 14.0 µg/mL) [237]. The antiproliferative properties of
oregano are believed to be mediated by thymol and carvacrol, which possess antioxidant
characteristics while being non-mutagenic to cells [237–239]. The anticancer properties of
thymol were evidenced in in vitro and in vivo models for colorectal cancers [240,241]. One
astonishing property of carvacrol is its potential to specifically target cancer cells while
being less toxic to normal cells [242]. Furthermore, carvacrol seems to exert a modulatory
effect on the toxicity of cisplatin in vitro, a property that could be exploited for reducing
the side-effects associated with classical cisplatin-based antitumor treatments [239].

Antioxidant

An in vitro study by Gavaric et al. showed that OEO possessed a robust antioxidant
activity (IC50 = 0.2 µg/mL). While thymol and carvacrol were the components accounting
for the antioxidant properties of oregano, the antioxidant activities of the two compounds
were much inferior to the one observed for the whole extract with (IC50 = 70–80 mg/mL
for thymol and carvacrol). The authors concluded that thymol, carvacrol, and other
extract phytocompounds acted in synergy to promote the scavenging of free radicals [243].
According to a study conducted on the human colon carcinoma intestinal Caco-2 cell line,
thymol, carvacrol, and their mixture seem to exhibit double-edged anti- or pro-oxidant
effects, depending on the concentration at which they are administered (pro-oxidants at
sub-cytotoxic concentrations vs. antioxidants at higher concentrations) [244].

Antimicrobial

• Antiviral

An in vitro study conducted on simian Vero cell line CCL-81 showed that thymol,
carvacrol, and p-cymene (all major components of oregano oils) possess antiviral properties
against the human herpes simplex virus type 1 with respective IC50 values of 0.002%,
0.037%, and >0.1%. The antiviral properties of the three compounds are believed to be
correlated to their ability to interfere with the viral membrane fusion mechanism during
the adsorption phase of the virus [245]. Furthermore, an in vitro study by Sánchez and
Aznar have reported a dose-dependent titer inhibition of the feline calicivirus and the
murine norovirus by thymol, in the 1–2% (v:v) range concentrations [246].

• Antibacterial

Thymol and carvacrol have been shown to exert antibacterial activities against Gram-
positive and Gram-negative bacteria [247]. In studies using thymol concentrations ranging
from 26.5–52.9 mg/cm2 showed potent inhibitory activity against the S. aureus, B. subtilis,
E. coli, and Salmonella enteritidis [248]. Studies performed by Du et al. showed the following
results: strong antibacterial activity of the OEOs, thymol, and carvacrol against E. coli,
C. perfringens, and Salmonella strains. They also performed in vivo studies in 448 male
broiler chicks by oral gavage using OEO. They found that OEO alleviated intestinal lesions
and decreased E. coli populations [249]. In another study, oregano oil showed great
antibacterial activity against the following multidrug-resistant bacteria: three Acinetobacter
baumannii, three Pseudomonas aeruginosa, and four methicillin-resistant Staphylococcus aureus
with inhibitory concentrations ranging from 0.08–0.64 mg/mL [250]. Another in vitro study
showed that the use of OEO and carvacrol could curve Group A streptococci erythromycin-
resistant bacterial infections [251].



Appl. Sci. 2021, 11, 8477 23 of 36

• Antifungal

The in vitro antifungal properties of OEO, thymol, and carvacrol in the 40–350 mg/mL
ranges have been reported in several studies against plant pathogenic fungi Colletotrichum
acutatum and Botryodiplodia theobromae [252]; Penicillium digitatum and Penicillium italicum [253];
food-relevant fungi Cladosporium spp. and Aspergillus spp. [254]; longan pathogens, La-
siodiplodia spp., Phomopsis spp., Pestalotiopsis spp. and Geotrichum candidum [255]; and against
Fusarium verticillioides and Rhizopus stolonifera [256]. Furthermore, an in vivo study conducted
in Caenorhabditis elegans suggests that thymol possesses antifungal activity against Candida
albicans, the most prevalent cause of fungal infections in humans [257].

Anti-Inflammatory

OEOs possess a strong anti-inflammatory activity, a property that is proposed to be
mediated by its main active compounds: thymol and carvacrol. The impact of the OEOs on
14 protein biomarkers was closely related to the inflammatory response. The results show
dose-dependent inhibition of the expression of all the proinflammatory and remodeling
biomarkers studied: monocyte chemoattractant protein 1 (MCP-1), vascular cell adhesion
molecule 1 (VCAM-1), intracellular cell adhesion molecule 1 (ICAM-1), interferon gamma-
induced protein 10 (IP-10), interferon-inducible T-cell alpha chemoattractant (I-TAC),
monokine induced by gamma interferon, collagen I, collagen III, epidermal growth factor
receptor (EGFR), matrix metalloproteinase 1 (MMP-1), plasminogen activator inhibitor
1 (PAI-1), tissue inhibitor of metalloproteinase (TIMP) 1 and 2, and macrophage colony-
stimulating factor (M-CSF) [258]. The anti-inflammatory activity of thymol was also
reported in vivo in BALB/c mice affected by LPS-induced endometritis [259].

Immunomodulatory

Recent investigations cited in previous sections have demonstrated that oregano has
potent antioxidant, antimicrobial, and anti-inflammatory properties, leading to an im-
proved immune response. Oregano’s immunomodulatory activity can be attributed to
thymol by its ability to modify the secretion of cytokines, probably through the regulation
of NF-κB, but also through the MAPK signaling pathway, or through their ability to affect
the cellular expression of iNOS and the secretion of prostaglandins [260]. De Santis et al.
studied the immunomodulatory effects of several 50% (v/v) hydroalcoholic O. vulgare
extracts on human-derived dendritic cells type-1 and type-2 macrophages infected with M.
bovis Bacille Calmette–Guérin. The authors showed that the hydroalcoholic extract stimu-
lated the anti-mycobacterial innate immunity and limited the inflammatory response in all
the tested cell types [261]. On the contrary, Gholijani et al. showed that intraperitoneal in-
jections of 80 mg/kg of thymol or carvacrol in BALB/c mice trigger an immunosuppressive
response, a property that could be exploited for treating autoimmune diseases [262].

2.5.4. Contraindications

As detailed in this review, O. vulgare offers a wide range of medicinal benefits. In
addition, Schönknecht et al. concluded that including primrose and thymol in combina-
tion with conventional therapy could alleviate cough and dyspnea in upper respiratory
tract infections [263]. However, in a study of several decades ago, thymol and carvacrol
have been shown to induce dose-dependent structural chromosomal aberrations in Rattus
norvegicus, when consumed at doses over 40 mg/kg, despite being non-toxic at low to
moderate doses [264]. Although all the studies mentioned here cited oregano, more robust
studies are needed to have a profound evaluation of its efficacy.

3. Discussion

Phytochemicals are vital cofactors with powerful effects on the body, helping it regain
functionality. As shown in this review, even though phytochemicals may have different
mechanisms of action and different levels of effectiveness in the body, there are overlap-
ping aspects such as antioxidant, anti-inflammatory, and corrective metabolic effects that
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produce various positive physiological impacts favoring the healthy state. The physiologic
modulation induced by these phytonutrients and their phytochemicals produces functional
changes that support repair mechanisms necessary to achieve the homeostasis or balance
known as health.

The physicochemical properties calculated for the main phytochemicals in the phy-
tonutrients studied in this review are based on the combination of Lipinski’s, Ghose’s, and
Veber’s rules (L-Ro5, GF, VR), described as an approximation for the pharmacokinetics
of a molecule in the body [30]. Thus, a molecule whose structure falls out of the range of
these rules is predicted to have poor absorption or permeation through the gastrointestinal
system and low systemic bioavailability.

From the evaluation of 25 phytochemicals through the mentioned parameters
(Table 1), 23 of them fulfill the requirements of L-Ro5 (HBD ≤ 5, HBA ≤ 10, MW ≤ 500,
logP ≤ 5) and VR (RB ≤ 10, PSA ≤ 140), while 2 (annonacin/acetogenin and rutin from
graviola) violated more than one parameter. Per GF, the compounds should meet the fol-
lowing: MW (160–480), logP (−0.4–5.6), A (40–130), and TNA (20–70). Accordingly, 13 phy-
tochemicals (curcumin, demethoxycurcumin, bisdemethoxycurcumin, and α-turmerone
from turmeric; alliin, allicin, and z-ajoene from garlic; (E)-cinnamyl acetate and eugenol
from cinnamon; benzylisoquinoline, coumaric acid, and caffeic acid from graviola; and
apigenin and luteolin from oregano) comply with Ghose’s rules.

Considering GI tract absorption (Figure 2a), 54% of all phytochemicals studied in
this review (curcumin, demethoxycurcumin, bisdemethoxycurcumin, α-turmerone, alliin,
z-ajoene, (E)-cinnamyl acetate, eugenol, coumaric acid, caffeic acid, apigenin, and luteolin)
met all rules and, thus, have a higher probability of being highly absorbed. Based on L-Ro5,
GF, and VR, all described turmeric’s phytochemicals belong to highly absorbed compounds
(100%) compared to garlic, cinnamon, oregano (40%) (Figure 2b,c,d,f); and graviola (50%)
(Figure 2e).

Graviola’s phytochemicals, annonacin/acetogenin, and rutin violate most of the “drug-
likeness” rules. For example, annonacin/acetogenin complies with only 50% L-Ro5 and
VR and violates 100% of the GF. For rutin, the compliance for L-Ro5 was 25%, GF was
25%, and VR was 50%. Thus, it is predicted that annonacin/acetogenin and rutin have the
lowest probability of absorption in the GI.

Other researchers have proposed that the lipophilicity, considering the ionizable
groups at pH 7.4 (LogD), is much more important for physiological absorption or perme-
ation [265]. Thus, compounds that fall below 1 and above 5 for LogD are less likely to
be absorbed. Based on this, alliin from garlic; protocatechuic acid from cinnamon; and
annonacin/acetogenin, cinnamic acid, coumaric acid, caffeic acid, and rutin from graviola
fall out this LogD range.

However, the predictions of these rules are also based on molecules passively trans-
ported into the cells. This means that L-Ro5, GF, and VR do not take into consideration
actively transported substrates by biological transporters (e.g., cellular receptors or chan-
nels) [266]. On the contrary, we understand that many therapeutic compounds are actively
transported in the organism, especially plant-based compounds. Due to this, other studies
have shown that most of the violators of these rules are natural products [267].
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4. Conclusions

All the phytonutrients mentioned in this review article, when used properly, have
demonstrated a large variety of health benefits. Yet, a medical evaluation is needed
before making any decision on utilizing phytonutrients and phytochemicals regularly
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or in combination with another pharmacological treatment. Although the biomedical
properties of turmeric, garlic, cinnamon, graviola, and oregano in vitro and in vivo have
shown mostly positive effects, there is a critical need for well-designed studies in humans
to gain a better understanding of their physiological activities and underlying mechanisms
in the human body.
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