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Abstract: Electronic nose (E-nose) devices represent one of the most trailblazing innovations in
current technological research, since mimicking the functioning of the biological sense of smell has
always represented a fascinating challenge for technological development applied to life sciences
and beyond. Sensor array tools are right now used in a plethora of applications, including, but not
limited to, (bio-)medical, environmental, and food industry related. In particular, the food industry
has seen a significant rise in the application of technological tools for determining the quality of
edibles, progressively replacing human panelists, therefore changing the whole quality control chain
in the field. To this end, the present review, conducted on PubMed, Science Direct and Web of Science,
screening papers published between January 2010 and May 2021, sought to investigate the current
trends in the usage of human panels and sensorized tools (E-nose and similar) in the food industry,
comparing the performances between the two different approaches. In particular, the focus was
mainly addressed towards the stability and shelf life assessment of olive oil, the main constituent
of the renowned “Mediterranean diet”, and nowadays appreciated in cuisines from all around the
world. The obtained results demonstrate that, despite the satisfying performances of both approaches,
the best strategy merges the potentialities of human sensory panels and technological sensor arrays,
(i.e., E-nose somewhat supported by E-tongue and/or E-eye). The current investigation can be used
as a reference for future guidance towards the choice between human panelists and sensorized tools,
to the benefit of food manufacturers.

Keywords: electronic nose; food industry sensors; information technology; quality control; sen-
sory panel

1. Introduction

The quality of any food product is going to worsen after a period of storage time due
to various reasons, and changes in terms of safety, nutritional properties and organoleptic
characteristics (appearance, odor, flavor, color, texture) are generally observed. Shelf life
(SL), which could be considered a synonym of the duration of a consumer’s acceptance as a
function of a product’s stability, differs among foodstuffs, being dependent on inherent fea-
tures (formulation, microbial population, processing, packaging, etc.) and environmental
factors (storage conditions such as temperature, light exposure, etc.) [1,2].
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One main question is: to what extent can the modification of the quality of a product be
considered acceptable? It is prohibited to sell foods that are dangerous to health, since they
contain microorganisms or toxins or chemical contaminants; in addition, foods unsuitable
for human consumption, i.e., with sensory and/or nutritional characteristics below the
expected standard, cannot be distributed.

In this context, EU legislation (EC Regulation No. 1169/2011) established that the SL
of a food, which could be defined as the “date of minimum durability”, must be labeled
as: i) “best before” date, related to food quality, which indicates that, after that date, there
might be a decline in the organoleptic qualities of the product, but it is still safe to be
consumed without risk, preferably as soon as possible, or ii) “use by” date, related to food
safety, beyond which the food is no longer safe [3]. The manufacturer is responsible for
defining the SL duration, also through laboratory tests, even if the legislation does not
provide methods of assessment, leaving the arbitrariness of the choice to the producer.

The essential aim of an SL study is to assess the time span during which the food
quality maintains an acceptable level under specified storage conditions [4], which is a
crucial step for both the consumer and the producer, but its correct prediction may be
difficult. The quality of a foodstuff with an overestimated SL can indeed be perceived
as poor and disappointing, with consequent damage to the image of the company and
economical loss. On the other hand, an underestimated SL can generate logistic problems
with not only economic consequences but also ethical ones, due to the environmental and
social impact deriving from an excess of food waste. According to a recent estimation,
the food waste along the distribution chain spans from 25 to 50% of the worldwide food
production, with huge economic, environmental but also ethical implications [5].

Several methodologies for SL assessment are available using different approaches, all
based on the deep knowledge of food quality decay as a function of storage time [4]. The
preliminary step of an SL study requires the individuation of the most crucial chemical,
physical, or biological phenomena inducing food quality decay, in order to identify the
relevant acceptability limit. When the choice of the acceptability limit is not supported by
any regulatory indication, manufacturers must fix the acceptability limits as a function of
their strategies and quality target [4,6].

The next step is represented by the study of the quality depletion kinetics, considering
how the selected quality marker changes as a function of time during real-time SL testing
(under foreseeable storage conditions) or during accelerated SL testing (storage conditions
able to accelerate the degradations). The final step is the modeling of data, addressed to
estimating SL [4,6].

Considering food regulation, virgin olive oil (VOO) is a unique food, whose quality
categories are fixed by distinct international standards (i.e., EU legislation, Codex Alimen-
tarius and International Olive Council (IOC)), all of whom include sensory evaluation [7].

Developed in the early nineties, the “IOC Panel test” methodology (IOOC/T.20/Doc.
no. 3, 1987) for the classification of sample within a commercial category has been revised
many times over the years, to improve its performance. The first aim of this sensory
evaluation is to define VOOs’ quality grade, to identify and quantify the main perceived
off-flavors (defects), as well as their fruity scents [7].

However, sensory analysis is generally imprecise and unreproducible. Furthermore,
it is time and cost consuming, it requires trained panels and it is therefore not always
available in every context.

Analytical approaches, mainly represented by chromatographic (high-performance
liquid chromatography, gas chromatography–mass spectrometry, gas chromatography–ion
mobility spectrometry), vibrational (FTIR, MIR, NIR and Raman spectroscopy), spectro-
scopic (ultraviolet–visible, nuclear magnetic resonance, mass spectroscopy, fluorescence
spectroscopy, CO2 laser infrared optothermal spectroscopy, dielectric spectroscopy, visible
spectroscopy, ultraviolet-ion mobility spectrometry) and thermal techniques (differential
scanning calorimetry, thermogravimetric analyzer), provide a more precise indication of
olive oil composition [8,9]. However, even in these cases some important limitations are
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present: these techniques require expensive and bulky instruments, high-purity gas carri-
ers, complex and often long sample preparation and, lastly, trained personnel, therefore
limiting their use only to qualified laboratories. Additionally, the internal concentration of
specific compounds does not always provide information on the resulting organoleptic
sensation and, therefore, it cannot predict consumers’ sensory evaluation. An alternative
approach that has been proposed to overcome these drawbacks is represented by the
E-nose [10–14]. The E-nose allows fast and untrained evaluation of aroma profile, very
similar to that obtained from the human nose.

In this context, the present review sought to investigate the current trends regarding
the usage of human panels and E-nose in the specific field of VOO SL determination,
comparing the performances between the two different approaches. To better discuss the
topic, a state-of-the-art analysis about the sensory SL concept, together with the mechanism
of human olfactory determinations and E-nose functioning, were preliminary addressed,
and a short review of the recent literature about the main applications of the E-nose in the
agri-food sector was also included.

2. Review Methodology

Several electronic bibliographic databases (e.g., Web of Science, Science Direct and
PubMed) were consulted in order to achieve the highest coverage for relevant papers
published between January 2010 and June 2021. Initially, we focused our attention on
the reviews, in order to critically select the main documents recently published. Then,
starting from the documents selected in the predetermined time period, we included older
literature sources helpful to improve and widen the topic description, reaching 346 papers.
Four investigators independently evaluated the available papers, by means of predefined
eligibility criteria, resolving any disagreement by discussion. The first inclusion criterion
was represented by the relevance of the substance to our discussion about the state of the
art, regarding the use of panel test and/or E-nose for the determination of VOO quality
and SL. In the case of papers dealing with the effect of different factors (i.e., VOO quality
and SL, panel test, olfactory characterization, E-nose and chemometrics, etc.), we utilized
hierarchic approaches to opt for the fitting sections of discussion. A total of 147 papers
were selected at the end.

3. Olfactory Determinations for Food Shelf Life Assessment: Principles and
Main Issues

In sensory studies, human panelists work together as an instrument to measure,
analyze and interpret the data collected by the five senses (sight, touch, smell, taste and
hearing), and to characterize a food product during the whole production process (i.e.,
development of new product, quality control, consumer acceptability, flavor and taste
characterization) [15]. Depending on the food analyzed, official methods for sensory
analysis are defined and validated to minimize biases derived by external conditioning,
such as branding and other information that can influence consumer expectation [16].

As widely reported in the literature [4,5,17,18], the quality decay of many foodstuffs,
deriving from significant changes in their sensory features during storage, represents the
main issue to limit SL, even before any risk to the safety of consumers occurs. Indeed,
manufacturers can profitably use the information derived from sensory studies to select the
best formulation or processing conditions to slow down the quality decay during storage.

For these reasons, sensory evaluations appear of utmost importance in SL determi-
nation for a lot of food categories, even in combination with instrumental or chemical
analysis [5].

Among all the organoleptic parameters measured during panel tests, smell plays a
fundamental role in the evaluation of food quality and SL through the perception of some
specific VOCs that can be directly linked to food spoilage.

Humans and animals have all used the olfactory system to detect external risks and
take countermeasures [19–21] (i.e., identifying food safety), based on personal experience
and memory, as well as interpersonal characteristics, making the process strongly depen-
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dent upon one’s cultural background, genetics, associative learning and physiological
conditions [19,22].

Actually, the underlying mechanism of smell perception appears still far from fully
understood (see Bierling et al., 2021 [23] for a recent review). Indeed, smell appears as a
complex phenomenon involving the intrinsic properties of a volatile, but also depending
on the perceiving biological organism [24], making the investigation around it feasible
through a systems approach, with the relationships between the physical space, genetic
makeup of the organism, physiological activities and smell perception to be considered as
a whole.

In this context, some widely accepted main points related to the olfactory perception
are, until now, well defined, and can be listed below:

(i). At least two conditions have to be addressed for a molecule to be perceived as a smell:
the molecule should be volatile enough to evaporate; and the concentration of volatile
compounds must exceed the threshold of perception specific for each molecule as a
function of operating conditions adopted during tasting. Moreover, depending on its
chemical structure, a molecule must show specific solubility to pass through the nasal
mucosa (hydrophilic) as well as to bind to the olfactory receptors (hydrophobic) [23].

(ii). Intensity is correlated positively with vapor pressure (i.e., the concentration of volatile
compounds in the head space), but negatively with hydrophilicity (water solubil-
ity) [25]. Interestingly, odor discrimination seems to work independently of measuring
intensity; people who cannot characterize odorant qualities as a consequence of brain
lesions maintain their ability to determine odor intensity [23,26,27].

(iii). Limited changes in the chemical structure or functional group of a volatile compound
can significantly affect its smell. Thus, a model to predict odor expression from the
chemical structure actually cannot be completely defined, even if odorants with the
same functional group can often have similar odors [28].

(iv). As the aroma of a mixture is different from the simple sum of its components, the
whole aroma of a complex system cannot be predicted starting from the concentra-
tions and proportions of single specific volatile compounds [29,30]. In this context,
the interactions among aroma compounds in a mixture can be classified into four
types: masking effect, synergistic effect, no effect and additive action [30,31]. Even
if compounds showing different structures generally demonstrate masking actions,
while molecules with similar aroma and structure appear to be prone to present
additive action or synergistic effect, these behaviors cannot be generalized.

Starting from the above-mentioned and widely accepted evidence for the olfactory
perception mechanism, it is necessary to highlight that the complete olfactory chain is
complex and far from fully understood, possibly leading to several biases, as discussed in
the following section:

(i). Final odor perception be can directly influenced by a lot of external variables other
than the chemical composition of molecules, that can affect the relationship between
smell and chemical structure; during sniffing, the odor concentration that effectively
reaches the nostrils can be affected by nasal flow characteristics [28,32,33]; odor
perception can also be affected by pre-receptor events, such as the bond to odorant-
binding proteins or the enzymatic conversion of odorants in the nasal mucus (e.g.,
conversion to acids and alcohols of aldehydes and esters) [28,34,35]. Further, one main
issue in the prediction of the final smell expression of a specific olfactory stimulus is
that the human olfactory perception is part of a multisensory integration among all
the sensorial and social information gathered by our environment, and not a linear
analytical process of molecule detection [23].

(ii). Odorants can pass through the nasal passages (so-called orthonasal stimulation) and
via the mouth (retronasal stimulation) [24]; nasopharyngeal or nasal mucus differ
in composition; thus, aroma perception can significantly differ in orthonasal and
retronasal olfaction, because of the different solubility of volatile compounds in the
two media [36]. The perception of taste appears affected by odors over the retronasal



Appl. Sci. 2021, 11, 8453 5 of 20

pathway and vice versa; thus, gustatory and olfactory experiences are generally
blended [24,37].

(iii). As the number of odorous molecules that humans are able to distinguish appear to be
dramatically higher than the number of olfactory receptors identified till now (from
400,000 to 1 million estimated possible odorant molecules [38] vs. only 396 unique
olfactory receptors [39]), the most promising theory to represent the method of odor
identification is that a small number of olfactory receptors respond to a great number
of odorants in a combinatorial way. According to this view, the receptors can be
broadly tuned and respond to many different odorants, being most responsive to
structurally similar odorants, or narrowly tuned, responding to a small group of
odorants [28,40].

(iv). The polymorphism of olfactory receptors represents the molecular basis of the extreme
variability widely detected at genetical and physiological levels in the human olfaction
perception for both specific sensitivity and general olfactory acuity, with sensitivity
varying by several orders of magnitude between individuals [28,41].

(v). The difficulty called the “tip-of-the-nose phenomenon” [24] suggests that olfaction is
often an unconscious process [32], during which humans are able to recognize smells,
but they often have problems labeling them linguistically. This is likely the reason
why defining smell based on olfactory perception is not intuitive and needs the recall
to a visual or tactile aspect [42,43].

(vi). The close anatomic relationships between the systems deployed for olfaction and
for emotion [44] account for the important links found between these two func-
tions [45–49]. More than any other sensory modality, olfaction is like emotion in
attributing positive (appetitive) or negative (aversive) valence to the environment. To
objectively and quantitatively assess the physiological response to olfactory stimu-
lation, a reasonable solution, merging acceptability, affordability and reliability, and
providing useful information about the physiological reactions to odorous stimuli, is
represented by the assessment of biomedical signals triggered by the activity of the
autonomic nervous system (ANS), including electrocardiogram (ECG) and galvanic
skin response (GSR), already studied in relation to the olfactory assessment [49–51].
Such signals can be acquired in a completely non-invasive manner using wearable
sensors, as demonstrated in several works published to date [49–51]. Those signals,
captured non-invasively via lightweight, affordable devices, can be particularly use-
ful to objectively estimate the degree of emotional response to sensory stimuli in an
individual.

4. E-Nose: Principles and Main Agri-Food Applications

In the past (up to the 1990s), sensory analysis was generally used to detect the different
olfactory traits of many agri-food products, but it was often imprecise, not reproducible
and too subjective. Hence, human senses, including the sense of smell, as discussed above,
are influenced by physical and mental status and also by different exogenous factors.
Therefore, sensory analysis was often coupled and compared with analytical instruments
(e.g., gas chromatography). However, the latter requires time, expertise and expensive
machinery [52]. Furthermore, this kind of analytical approach often requires sample
preparation, which is complex and time consuming, and it is not always compatible with
the modern food industry, which requires an easy and rapid detection tool for food quality
evaluation. To overcome the above-mentioned drawbacks, in recent years, tools somewhat
mimicking the biological sense of smell, namely the E-nose, have become some of the most
used instruments in the food industry.

Commonly, thanks to the technological capabilities of the sensing part (the sensor array
constituting the device), the E-nose is somewhat able to transform volatile compounds con-
tained within a biological matrix or in the environment into some detectable—often digital—
electronic signal, which is, in turn, properly analyzed, mostly during post-processing, to
extrapolate a possible pattern of some significance for the given analysis. Under such
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premises, it becomes clear that the main part constituting an E-nose tool, and that can be
customized upon the desired application, is represented by the sensor array.

Historically, the majority of E-nose systems relied on conducting polymers (CP), metal
oxide semiconductors (MOS), metal oxide semiconductor field-effect transistors (MOSFET)
and mass-sensitive (such as quartz microbalance), acoustic and optic sensors.

Among them, MOS sensors are probably the most widely used since the early E-nose
applications, due to their affordability, good performances, low tendency to drift and
good sensitivity to various volatiles. Their principle of operation relies on the change in
conductivity brought by the reactions between the detected volatile and adsorbed oxygen.
However, they are poorly selective and quite prone to being poisoned by weak acids. On
the other hand, MOSFET sensors are based on the variations in the electrostatic potential.
They are considered to be particularly robust to environmental conditions, although a
fine control of surrounding temperature is desirable for data interpretation. Commonly,
mass-sensitive devices, such as piezoelectric sensors, take advantage of the piezoelectricity
phenomenon to translate a mechanical variation due to the mass of the ligands into a
change in resonance frequency. They are particularly selective, even if their stability to
changes in temperature and humidity is quite poor. Finally, when it comes to CP sensors,
they are considered particularly sensitive and resistant to the poisoning effects, different
from MOS devices, but also feature a limited reproducibility.

Therefore, in order to maximize the positive characteristics of all those principles of
operation, reducing their associated drawbacks, thanks to the technological advances in the
field, mainly in terms of device miniaturization, many hybrid solutions were adopted for a
plethora of applications, even in the food industry, and mainly depending on the biological
matrices to be investigated. This approach goes also far beyond the E-nose principles, as it
is also applied to the synergy between E-nose and E-tongue or, in some instances, E-eye, or
even to the combination between E-nose and analytical instruments to provide for a more
accurate characterization demanded by a given task [53].

The other pivotal functionality of the E-nose tools is represented by the data processing
and interpretation, which is normally performed under the Machine Learning principles.
Normally, clustering actions are carried out, by using both supervised and unsupervised
approaches, depending on the specific tasks demanded. Under this light, methods such as
Support Vector Machines (SVM) or Artificial Neural Networks (ANN), if not more complex
algorithms such as the ones applied for Deep Learning (DL), are to be considered among
the most popular when it comes to use within E-nose systems.

E-nose holds many advantages with respect to traditional sensory analysis: it is more
accurate and reliable, it is less time consuming and it is less influenced by environmental
factors. Furthermore, if compared with analytical methods, it does not require strong
expertise to be used and interpreted as gas chromatography does. As such, the application
of the E-nose in various fields, including the food and pharmaceutical industries, as well as
in health and well-being, is expanding rapidly [54].

As the olfactory fingerprint provides important information regarding the characteris-
tics, origin and processing methods of food, the E-nose systems have been widely studied
and used in the agri-food sector (Table 1).



Appl. Sci. 2021, 11, 8453 7 of 20

Table 1. Main applications of the electronic nose in the agro-food sector.

Category Application Sensor Arrays Chemometrics
Approach

Classical Methods for
Comparison Reference

Discrimination of
variety and

ripening stage

Discrimination of two varieties of
galangal (Alpinia officinarum) MOS PCA GC-MS [55]

Dogfruit (Pithecellobium jiringa) and
stink bean (Parkia speciosa) ripening

stages
Chemical sensors PCA, HCA GC-FID [56]

Discrimination of three varieties of
garlic (Allium sativum L.) MOS PCA GC-MS [57]

Discrimination between mango (cv
Chokanan) ripening stages

MS based
(piezoelectric
quartz crystal)

PCA, HCA GC-FID [58]

Identification of five Piper nigrum L.
genotypes MOS PCA HS-SPME GC-MS

Sensory analysis [59]

Identification of three mango
varieties (Manguifera indica L.) and

ripening stage
MOS DFS GC [60]

Discrimination of two tomato
(Lycopersicum esculentum) ripening
stages (i.e., green stages and ripe)

MOS PCA, LDA and
DFA

Fruit quality
characteristics such as:
soluble solids content,

pH and maximum
puncture force

[61]

Discrimination of eight varieties of
apricot (Prunus armeniaca) MOS PCA and FDA LLE-SPME GC-MS

Sensory analysis [62]

Freshness
evaluation, flavor

and aroma

Monitoring volatile constituents of
cocoa (Theobroma cacao) during the

refining process
MOS PCA HS GC-MS [63]

Evaluation of freshness of broccoli
during storage (Brassica oleracea L.) MOS PCA, CDA HS GC-MS, FTIR [64]

Characterization of volatile
compounds in soybean seeds

(Glycine max L.)
MOS PCA HS-SPME GC-MS [65]

Monitoring the hardness of litchi
under different storage conditions MOS LDA, CCA,

BPNN-PLSR

Physicochemical index
parameters (i.e., soluble

solids content,
titratable acidity and

pH value)

[66]

Evaluation of banana maturity
MS based

(piezoelectric
quartz crystal)

PCA, MLR

Respiratory quotient,
total soluble solids,

firmness and moisture
content

[67]

Monitoring of pineapple (Ananas
comosus) shelf life during storage at

different temperatures
MOS PCA, CA [68]

Aroma development during
ripening and storage of apricots MOS PCA

Firmness, total soluble
solids, pH, GC-MS and

sensory analyses
[69]

Evaluation of maturity and shelf life
of tomatoes (Lycopersicum

esculentum)
MOS PCA, LDA, PLS Firmness [70]

Apple and orange post-harvest
quality, e.g., detection of defects of

apples and oranges
MOS PCA, PLS-DA Amount of mealiness

and skin damage [71]

Classification of 90 different
blended and roasted coffee samples MOS DFA, MANOVA [72]
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Table 1. Cont.

Category Application Sensor Arrays Chemometrics
Approach

Classical Methods for
Comparison Reference

Spoilage
evaluation

Identification of early infestation of
Bactrocera dorsalis in citrus

(Citrus reticulate)
MOS PCA, LDA [73]

Detection of pathogen (Salmonella,
Erwinia, Streptococcus and

Staphylococcus) contamination
of apples

MOS PCA, HCA HS-GC-MS [74]

Decay detection of peach
(Prunuspersica L. Batsch) during

storage
MOS PLSR, LS-SVM,

MFRG Visual evaluation of rot [75]

Detection of diseased blueberry
fruit inoculated with grey mold

(Botrytis cinerea), anthracnose
(Colletotrichum gloeosporioides) and

Alternaria rot (Alternaria sp.)

CP PCA [76]

Identification of spoiled tomatoes
(inoculated with Aspergillus and

Penicillium spp.)
MOS PCA DHS-GC-MS [77]

Classification of damaged and
infested apples (Malus domestica)

CP and MS based
(piezoelectric
quartz crystal)

CMAES, PCA,
PNN [78]

Wine evaluation

Early detection of smoke taint in
wine grapes, while not perceivable

by sensory evaluation

MS based (quartz
microbalance) PCA [79]

Discrimination between fermented
and unfermented musts

MS based (quartz
microbalance) PCA GC-MS [80]

Comparison of threshold detection
performance and concentration

quantification with a trained human
sensory panel

MOS PCA Sensory analysis [81]

Monitoring postharvest controlled
partial dehydration

MS based (quartz
microbalance) PCA GC-MS [82]

Calibration transfer applied to the
analysis of wine aroma using

synthetic wine prepared from the
most common wine aromas

MS based PLS [83]

Classification of Tempranillo wines
according to geographic origin MS based PCA, PLA, SLDA [84]

Identification of geographical origin
of Sauvignon Blanc wines, with

GC-MS that was then used to train
an LDA

MOS and MS
based LDA GC-MS [85]

Discrimination of beer and wines
tainted with off-flavors MOS PCA, DFA [86]

Five different wines elaborated with
the major varieties from the DO
vinos de Madrid were used for

testing the discrimination capability
of the developed system

MOS PCA GC-MS [87]

Characterization of different wine
fruits (blackberry, cherry, raspberry,
blackcurrant, elderberry, cranberry,

apple and peach) based on their
odor profiles

MOS PCA and DFA GC-FID [88]

Monitoring of aroma production
during wine must fermentation CP PCA HPLC, GC-MS [89]
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E-nose finds application in different steps of the agri-food production chain, such as
process monitoring, harvesting time evaluation, storage condition and SL evaluation. The
latter includes the assessment of freshness or decay degree, microbial contamination and
off-flavor formation [90]. The odor constituents of fruits vary greatly during ripening and
storage (mainly in terms of terpenes, alcohols and esters); therefore, the aromatic compo-
sition at a specific moment can provide important information about the maturity level
and can be efficiently discriminated through E-nose tools [58,60,61]. An important shift in
the VOCs profile, indeed, can occur with different storage or processing protocols, such as
roasting applied to coffee or cocoa [63,72] or partial controlled dehydration of grapes [82].
Additionally, food pathogens produce specific off-flavors from their metabolism and often
lead to significant decay of the organoleptic features of the products, resulting in economic
loss, consumer rejection and risks for consumers’ health. Many studies have proved that
such VOCs can be studied to assess for an early bacterial and fungi contamination of fresh
or minimally processed agri-food products during storage [63]. As for every approach
discussed herein, the need for a rapid, reliable and affordable method for early screening of
contaminated agri-food is nowadays particularly important, not just to protect consumers’
health, but also to avoid economic losses. In this context, the capability of some E-nose
tools to discriminate among infected and healthy fruits and vegetables is often declared to
reach classification rates up to 99.9% [64,70]. Behind that, defects such as over-ripening,
damage on product surface and biochemical and physiological post-harvest mechanisms
can lead to changes in aroma. E-nose is reliable and sensitive enough to correctly predict
different common changes naturally occurring in post-harvest [64,91,92].

E-nose tools can possibly be replaced, in some instances, by specific sensors for the
quantitative assessment of the presence of a given volatile compound or a small group of
them. Indeed, in some cases, the degradation of food quality can be controlled through the
production of one, or few waste products, as occurring, for example, in the case of ripened
pork salami, where flavor deterioration is associated with abnormal levels of 2-heptenal and
methyl esters of heptanoic, pentanoic and hexanoic acids [93]. Another common example
is that related to nuts, where the rancid flavor associated with the deterioration of walnut
oils can be associated with the production of 2-octenal, hexanal, 2-heptenal, 1-octen-3-ol,
hexanoic acid and nonanal, different from the almond oils, where lipid oxidation is more
related to 1-pentanol, hexanal and hexanoic acid, and from the peanuts, whose degradation
is marked by octanal, nonanal, hexanal and 2-pentylpyridine [94].

5. Case Study: Panel Test and E-Nose for the Determination of VOOs’ Shelf Life
5.1. EVOO Quality and Main Stability Issues

The term virgin olive oil (VOO) shall be taken to mean “the oil extracted from the fruit
of the olive tree (Olea europaea), solely by means of physical or mechanical process”.

Therefore, in order to produce a VOO, olives must be subjected only to washing, de-
canting, centrifugation, and filtration; oils produced by chemical extraction, re-esterification
or oil blending processes do not fall within this definition [7,95]. VOO quality, in terms
of chemical features and sensory profiles, is affected by several elements, such as genetic
features, pedoclimatic conditions, training system, harvest period, extraction procedure
and storage conditions [96–101].

It is therefore possible to classify VOOs into three main categories according to their
chemical and sensory parameters (Table 2): (i) extra virgin olive oil (EVOO), recognized
as the highest grade of olive oil with beneficial health effects, (ii) VOO and (iii) lampante
olive oil (LOO), which is destined for technical uses or refining processes only.
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Table 2. Quality standards of virgin olive oil as requested by current legislation (EU Reg. (EEC)
2568/91 as amended, that also establish the official methods for their determination [7]).

Free Acidity Peroxide Index
K232 K270 ∆K Fruity

Median
Defects’
Median% Oleic Acid mEq O/kg

EVOO ≤0.8 ≤20 ≤2.50 ≤0.22 ≤0.01 >0 =0
VOO ≤2.0 ≤20 ≤2.60 ≤0.25 ≤0.01 >0 <3.5
LOO >2.0 - - - - - >3.5

A VOO is composed essentially of triglycerides (98–99%, distributed as follows: mo-
nounsaturated fatty acids (MUFAs = 65–83%), polyunsaturated fatty acids (PUFAs = n − 6:
6–15%; n − 3: 0.2–1.5%) and saturated fatty acids (SFAs = 8–14%)), with minor constituents
such as phenols (i.e., phenolic alcohols, such as hydroxytyrosol and tyrosol; secoiridoids
such as oleocanthal and oleuropein derivatives; lignans such as pinoresinol), tocopherols,
terpenic acids, sterols, 4-methylsterols, carotenoids, chlorophylls, mono and diglycerides,
free fatty acids, esters and volatiles, which give peculiar sensory properties and several
bioactive functions [102–104]. Water is also present in very small, but essential amounts as
micro-droplets, which are associated with polar or amphipathic substances belonging to
the minor constituent’s group [102].

The volatile molecules constituted by five or six carbon atoms, produced in the
lipoxygenase pathway, represent the biggest part of volatile compounds in VOOs and exert
an essential role in the expression of the green attributes of VOO [105,106].

Among these, worthy of particular attention for their desirable effects, are hexanal
(cut grass), guaiacol (soapy, olive paste), octanal (citrus, lemon), (E)-2-decenal (soapy, fatty),
1-penten-3-ol (green plants, grassy), (Z)- 3-hexenyl acetate (fruity), (E)-2-hexenal (green)
and 6-methyl-5-hepten-2-one (nutty) [95]. Nevertheless, there are also several compounds
responsible for negative organoleptic perception and belonging to the class of “off-flavor”
(i.e., rancid, winey, fusty, vinegary, frozen), generally caused by the oxidation process [95].

Moreover, due to the high content of MUFAs and PUFAs, along with the presence
of enzymes such as lipase and peroxidase, VOO lipids are susceptible to oxidation and
enzymatic hydrolysis, which promote autoxidation [107]. This degradative process reduces
VOO’s nutritional and healthy effects, together with its economic value, since it is the main
cause of VOOs downgrading to a lower quality classification (i.e., EVOO in VOO or LOO).

Many factors influence the lipid oxidation process during production and storage:
artificial light exposure, sunlight, storage temperature, humidity and air exposition, as well
as packaging features, together with the oil chemical composition [97,98,108–113].

As reported in Figure 1, VOO compounds (i.e., fatty acids or liposoluble vitamins) are
oxidized and turned into unstable products which ultimately trigger further degradation
reactions, forming off-flavors and toxic compounds [6,114].

In this context, VOO SL could be defined as the storage time during which safety,
sensory and quality parameters are within accepted limits for the specific commercial
category (see Table 2) [107].

Since VOOs produced in one crop season are usually consumed before the next crop
season [115,116], it is necessary to minimize oil deterioration during the storage period. The
assurance of the stability of EVOOs is a matter of great concern for the olive industry [115].
In this context, it is mandatory for the olive oil industry to monitor oil quality throughout
the production line and to be able to provide realistic information about the stability and
the SL.
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5.2. Virgin Olive Oil Shelf Life Assessment

Nowadays, different methods are available to monitor the quality decay of VOOs
as a function of oxidation process; for many of them, the current legislation defines the
acceptability limits based on instrumental and/or sensory methods. Besides the conven-
tional parameters (Table 2) in the literature, many examples of stability and SL studies are
available, both in accelerated or real-time conditions, based on the VOO aromatic traits as
well as on the loss of bioactive compounds [117] (Table 3).

Table 3. Non-compulsory indices which can be assumed as markers to track the evolution of the
oxidative degradation of virgin olive oils during storage and relevant analytical methodologies [6,96].

Quality Indicator Method

Tocopherols HPLC

Polyphenols COI/T.20/Doc No. 29

Oleuropein aglycon content HPLC

Hydroxytyrosol content UNI 11702:2018

Tyrosol content UNI 11702:2018

Carotenoids Spectrophotometer

Degradation products of chlorophyll a ISO 29841:2009

Vocs analysis HS-SPME-GC/MS; sensor arrays

Hexanal HS-SPME-GC/MS

In vitro antioxidant activity Spectrophotometry

Color
Spectrophotometry

Image analysis
Color analysis
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According to the main focus of this review, only papers dealing with sensory analysis
and sensor arrays for the VOO SL assessment will be taken into account.

According to EU legislation, the panel test still represents the only official method
(EEC 702/2007) to detect the increase in off-flavor in VOO for the quality classification of
VOO samples, based on the organoleptic detection or not of the fruity attribute, together
with the indication of the median value of the predominant defect [118].

Starting from this point, it seems extremely important that the accredited laboratories
perform panel tests of VOO in compliance with a well-established quality system by
applying the laboratory organization and technical conditions of analysis requirements
(COI/T.20/Doc. No. 15/Rev. 8, 2015), together with the guidelines fixed in the Norm ISO
17,025 (COI/T.28/Doc. No 1, 2007—revised in 2017) [7].

As described in these guidelines, an accredited laboratory is asked to correctly monitor
the panel proficiency and to periodically check the validity of its entire quality system, in
terms of reproducibility and repeatability of the tests, to individuate and solve possible
systematic errors early. With this aim, certified reference materials are available to support
laboratories for both the correct training of panelists as well as to provide a useful tool to
give a measure of the accuracy evaluations carried out during the panel test.

Genovese and co-workers [105] recently published an interesting review about VOO
flavor, with particular emphasis on the mechanisms affecting its production and release
during tasting. Interestingly, the authors highlighted that the differences in VOO organolep-
tic characterization during storage, as reported by different panels, can be explained by
the interaction among positive (i.e., bitter, pungent, fruity, green) and negative (i.e., rancid,
fusty, moldy, winery) attributes during VOO tasting. For example, the high concentration
of phenolic compounds that generally characterize fresh VOOs can completely mask the
“fusty” character of the sample. In this case, the “fusty” defect cannot be detectable by
panelists until the phenolic concentration decreases because of oil oxidation during storage.

Although the panel test still represents the most effective and complete tool for the
quality classification of a VOO [119,120] during production and storage, the correct appli-
cation of VOO sensory assessment appears time consuming and difficult to apply during
routine operations, especially considering small- and medium-sized enterprises [121,122].

Consequently, the development of instrumental methods for rapid screening could
support the sensory analysis in discriminating samples close to the quality border (EVOO/VO
and VO/LO). To this end, several promising analytical instrumental techniques, especially
based on the detection of VOC markers, have been developed [123], and many E-nose tools
with different chemical sensors, system designs and methods of data analysis have been
tested for olive oil analysis.

In this context, owing to its quickness, the flash gas-chromatography E-nose in com-
bination with chemometrics is being revealed as one of the most encouraging and useful
screening methods to support the sensory analysis [123].

E-nose equipped with QCM sensors was used to discriminate between different VOO
categories (i.e., edible and non-edible olive oils) [124]. MOS and piezoelectric sensors
were also used to discriminate over 140 samples of olive oil (VOO, non-virgin and seed
oil) [125,126], whereas CP sensors were used to distinguish between olive oils of different
qualities. This technique has been found to provide a good degree of selectivity and
also the identification of specific features, considered as a quality fingerprint [127]. Eight
compounds were identified by using an E-nose (i.e., 4-methyl-2-pentanol, (E)-2-hexenal,
1-tridecene, hexyl acetate, (Z)-3-hexenyl acetate, (E)-2-heptenal, nonanal and a-farnesene)
to study the aroma fingerprint of 15 different EVOOs [128].

As far as SL evaluation is concerned, the degree of oxidation of volatiles is a key point
for the use of E-nose. As discussed above, storage conditions (especially temperature and
light) play a key role in maintaining olive oil quality over time. Many studies reported
that it is indeed possible to discriminate between oils stored in different conditions. An
E-nose based on 32 CP sensors was used to determine the rancidity of EVOO caused by the
auto-oxidation process during storage [129]. The results obtained from the measurements
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of different Italian olive oils by an E-nose with EC sensors show that oils can be easily
distinguished between them. Additionally, changes in the aromatic profile due to the
handling of the sample itself can be monitored. This aspect is of particular interest, con-
sidering the possibility to monitor changes during the ageing of the olive oil and whether
it has been properly stored [130]. In a different study, a commercially available E-nose
(equipped with MOS-FET sensors) was used to assess the oxidation degree of olive oil
samples: EVOO was stored at 40 ◦C in the dark for two months and volatile compounds
(by E-nose) and peroxide value (for comparison) were evaluated. The E-nose was able to
discriminate among the different storage conditions and the results correlate well with
peroxide values [11,131]. Furthermore, other authors [132] used the E-nose equipped with
10 MOS sensors to distinguish oil samples characterized by different degrees of rancidity
and fruitiness. The results obtained agree with those found during the intensity rating test
carried out by a traditional panel test. Furthermore, the study demonstrated the capability
of the E-nose in the monitoring of the evolution of oil flavor during storage. Marchal
et al. (2021) [133] utilized a commercial E-nose (10 MOS sensors) to predict the intensity of
the fruity attribute and off-flavors in VOOs, proposing to apply it for a fast screening of
VOO quality.

The authors of [134] compared the degree of oxidation in olive oil stored for up to
2 years in various lighting conditions. The results obtained using an E-nose equipped
with MOSFET sensors are as precise as those obtained using reference methods (Reg EU
2568/1991). Lerma-García et al. (2010) [131] were able to detect aromatic defects in olive oil
(namely fusty, moldy, muddy, rancid and winey) and their value with MOS sensors. The
sensory analysis performed by trained panelists was shown to be more robust if associated
with the E-nose. The authors of [135] demonstrated that, thanks to a combination of an
E-nose, an E-tongue and an E-eye, the analysis of olive oil bitterness can be successfully
performed. As such, many applications of E-nose have been tested for olive oil authenticity
assessment and SL monitoring in recent years, and are summarized in Table 4. Of course,
further research is still needed to develop advanced sensors with superior capabilities
and sensitivity for olive-oil-specific traits; thus, making the evaluation faster and more
accurate [117]. This topic is increasingly earning attention, since there is the necessity to
develop and refine the existing analytical techniques to make them more reliable, fast and
inexpensive. In particular, it is crucial to guarantee high quality traits over time, accessible
to all the players of the olive oil production chain. In this sense, the applications of the
E-nose, such as those discussed above, represent a promising opportunity to overcome the
many limitations which still characterize the traditional techniques.

Table 4. Main applications of the electronic nose in the olive oil discrimination and evaluation.

Category Application Sensor Arrays Chemometrics
Approach

Quantitative
Classification
Performances

Classical Methods
for Comparison Reference

Discrimination

Discrimination of
edible and

non-edible VOO
QCM PCA 99%

Acidity, peroxide
value, content of

oxidation
compounds and

panel test

[123]

Classification of
vegetable oils MOS LDA 95.8–100% [124]

Discrimination
between VOO,
non-virgin and

seed oil

MOS and MS based
(piezoelectric
quartz crystal)

PCA, RBF 95–99% [125]

Discrimination of
quality, variety of

olive and
geographic origin

CP PCA
96.3% of variance
explained by the

first 3 PCs

Acidity, peroxide
value, content of

oxidation
compounds and

panel test

[126]
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Table 4. Cont.

Category Application Sensor Arrays Chemometrics
Approach

Quantitative
Classification
Performances

Classical Methods
for Comparison Reference

Flavor
evaluation

Identification of
different aromatic

fingerprints
MOS PLS-DA, PCA 84.6–99.5% GC-MS [127]

Analysis of olive oil
bitterness MOX PCA

Around 0.9
correlation between
electronic methods
and sensory panels

HPLC and panel
test [134]

Shelf life
evaluation

Evaluation of
EVOO rancidity
and oxidation

CP PCA, MDA Up to 98.6% of
variance explained Panel test [128]

Evaluation of
aromatic changes

during ageing and
storage

EC PCA N/A [129]

Monitoring of OO
oxidation during

storage
MOS and MOSFET PCA >90% Peroxide value [11]

Evaluation of
oxidation degree of

VOO stored in
different conditions

MOSFET LDA, ANN >99.1% Peroxide value and
panel test [130]

Evaluation of
rancidity in VOO
and monitoring of

bottled VOO
shelf life

Chemical sensors PCA 78–78.7% of
variance explained GC-MS [131]

Evaluation of
different degree of

rancidity and
fruity flavor

MOS PCA 88%
Acidity, peroxide

value, content and
panel test

[132]

Evaluation of flavor
evolution during

storage
MOSFET LDA 100%

Acidity, peroxide
value, content of

oxidation
compounds and

panel test

[133]

6. Conclusions

Among the legal standards for identity (chemical composition) and quality (free
acidity, peroxide value, UV absorbency and sensory evaluation) discrimination, sensory
evaluation is one of the most important methods to differentiate high-quality from low-
quality olive oil [7]. Sensory assessment, however, needs many resources and time, as well
as specialized panelists, which are not always available to small/medium-sized enterprises
and cooperative companies, and should not be used for routine operations [121,122].

In this context, there is a need for the development of accurate instrumental techniques
able to perform real-time measurements and generate the same information as a panel,
in a reproducible and stable way, aiming to rapidly and efficiently achieve the correct
VOOs classification [136]. The development of easy-to-use E-noses, designed for directly
equipping the process line, appears extremely appealing in this field. E-nose tools are more
and more used in the food industry concerning tasks related to the SL assessment of various
edible products, and are partially replacing human panelists in such characterizations.

However, the main limitation for the use of the E-nose in the agri-food sector concerns
sample preparation and sampling methods. Some of the E-nose sensors are extremely
sensitive to environmental conditions (such as temperature, humidity, pressure and va-
por). These factors also greatly affect the amount of volatiles released by the samples;
therefore, preparation and method of sampling can deeply affect the output [137]. For this
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reason, albeit being controllable even during the post-processing and signal analysis phase,
accurately controlled conditions are preferable for samplings, and therefore, it is quite
difficult, or imprecise, to use the E-nose in the outdoor setting [63]. Another limitation
for such an approach is that, to have a reliable result, a good sample set (typically not
less than 10) is generally required. Additionally, other samplings (with a sample set often
even greater than 10) are required to train and validate the classification algorithms [63].
Other steps, which can represent a limitation, include post-acquisition analysis, such as
PCA and HCA, which require time and expertise. The comparison between the data
reported in the literature represents another challenge. Hence, the great differences in
sensor type, sample type and preparation, sampling methods, recognition algorithm and
training system often result in unreproducible approaches. Therefore, the direction for
future E-nose approaches is mainly to minimize sample preparation methods and optimize
sampling stability conditions. As such, there is a requirement for new sensing materials
less sensitive to environmental conditions, but with great affinity to volatile compounds.
Another possible study direction is represented by the creation of an online library to
store data from all users, to make the E-nose’s application more universal, repeatable and
user-friendly [63].

In conclusion, especially when it comes to the punctual assessment of the quality of
olive oil, one of the main pillars of the well-known “Mediterranean diet”, a synergistic
approach, merging the advantages of objective characterization enabled by the E-nose
tools (and possibly also the use of E-Tongues/E-Eyes) with those derived from the huge
experience and ultra-fine sensory profiles of human panelists, appears to produce the best
results. With fast improvements in the technological fields of material sciences (concerning
the sensing parts) and in the Machine/Deep Learning algorithms (concerning data analy-
sis), the E-nose-based tools will likely soon be able to completely replace human beings
in this complex task, assuring superior performance, higher reliability and, ultimately,
cost savings.
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