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Abstract: Model-inspired signal processing approaches with an enhanced detectability of flow
separation on thermographic images are presented. Flow separation causes performance loss,
structural loads and increasing acoustic emissions on wind turbine rotor blades. However, due to the
low thermal contrast between turbulent and separated flow regions, the non-invasive thermographic
visualisation of flow separation is currently only possible for wind tunnel measurements, which
are characterised by a high thermal contrast and a small measuring distance. The state-of-the-art
signal processing approaches evaluate the surface temperature fluctuation of thermographic image
series. However, understanding of the signal measurement chain with a distinct consideration of the
influences on the dynamic surface temperature is incomplete. Therefore, designing model-inspired
signal processing approaches which provide a high interpretability and a maximum contrast is an
open task. The proposed signal processing approaches evaluate the surface response selectively, by
using the amplitude information of the surface temperature response to an oscillating input signal or
gradient-based for a transient input signal. The approaches are applied to wind tunnel measurements
on a rotor blade profile at a near thermodynamic steady state and a transient thermodynamic
behaviour at Reynolds numbers that are representative for operational wind turbines. The gradient-
based evaluation shows an improved contrast for the detection of flow separation, but is only
applicable to profiles with transient thermodynamic behaviour. The amplitude evaluation provides a
high degree of interpretability of the processed images based on flow-dependent features and enables
for an unambiguous identification of flow separation by a global amplitude minimum close to the
separation point. Additionally, an increased spatial resolution for surface modifications is shown,
while the contrast between flow regions is significantly decreased. Hence, the proposed approaches
allow for an improved identifiability of flow separation with regard to future applications on wind
turbines in operation.

Keywords: IR thermography; thermographic flow visualisation; thermographic boundary layer
measurements; turbulent flow separation; flow separation

1. Introduction

For wind turbines with pitch control, turbulent flow separation is an undesirable
phenomenon [1]. It induces a sudden decrease in torque-producing lift and an increase in
drag [2,3]. Additionally, aerodynamic performance loss, structural loads and increasing
acoustic emissions occur. Structural loads result from vibrations and can cause a reduced
plant operating lifetime [4]. Acoustic emissions lead to a decrease in social acceptance of
wind energy turbines and complicate the siting. To be able to investigate the origin of these
effects as close as possible to a real wind turbine in operation, a contactless, non-invasive
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imaging measurement method with in-process capability is required for the detection and
localisation of flow separation on wind turbine rotor blades.

Long-established methods to detect and localise flow separation are tufts [5], stall
flags [6], or oil solutions [7]. These methods are suitable for in-process measurements
and are technologically easy to apply. However, the installation and precise positioning
are time-consuming and costly. The techniques are also invasive, influence the boundary
layer flow, and suffer from a poor spatial resolution along the rotor blade [8]. Thus, the
available methods do not meet the requirements of a non-invasive, contactless, and imaging
measurement system.

A measurement method with the potential to meet all requirements for measuring
flow separation on wind turbines, even in process, is infrared (IR) thermographic flow
visualisation [9]. The measuring principle of thermographic flow visualisation is based on
the relation between the convective heat flux density and the boundary layer flow region.
Under the condition of the presence of convective heat flow, i.e., a temperature difference
between the incoming flow and the blade, different convective heat flux densities cause
different surface temperatures on the rotor blade. The surface temperature differences are
non-invasively measurable by detecting the IR radiation with a respective camera [10]. As
a result, the visualisation of different boundary layer flow regions on the rotor blade is
possible with a high image resolution.

In wind tunnel experiments, the measurement objects are usually actively, externally
or internally, heated or cooled, to increase the necessary heat flux between the fluid and
the rotor blade and, thus, to maximise the contrast of the thermographic images [8,11].
Since limiting measurement conditions exist for free-field measurements on distant wind
turbines, active heating of the rotor blade is here excluded. The naturally available thermal
difference between the rotor blade and the incoming flow exist solely due to solar radiation,
which can be estimated to 175 W m−2 during summer on a cloud-free day [8]. Hence, the
resulting low thermal contrast, together with the large distance between the rotor blade of
a wind turbine and the thermographic camera on the ground, leads to the requirement of a
thermographic measuring approach with enhanced sensitivity.

The thermographic detection and characterisation of the laminar-turbulent transition
in wind tunnel tests is a well known technique for wind tunnel experiments [12–15]. A
distinct difference in convective heat transfer exists between the laminar and turbulent
flow, so that an evaluation of steady state temperature fields enables a distinction of the
different flow regions [16,17]. This measurement approach in a thermodynamic steady state
was successfully transferred to free-field measurements. First, Dollinger et al. localized the
laminar-turbulent transition on wind turbines in operation to quantify flow disturbances
caused by the contamination or erosion of the leading edge [18]. They also investigated
the effects on the measurement uncertainty for the distinction of different boundary layer
flow regions [19]. Furthermore, Gleichauf et al. [20] proposed to evaluate the time series
of thermographic images using the non-negative matrix factorisation in order to increase
the ability to distinguish between different boundary layer flow regions by reducing tem-
perature gradients inside each flow region. Another approach for the thermographic
localisation of the laminar-turbulent transition is to consider the transient thermodynamic
behaviour on the rotor blade surface. Possible measurement setups to distinguish flow
regions by heating rate are pitching rotor blades where the location of the different bound-
ary layer flow regions changes [11,21] or non-pitching rotor blades with transient internal
or external heating intensities [22]. Both measurement setups can increase the thermal
contrast between different boundary layer flow regions and enable the investigation of the
transient behaviour of the laminar-turbulent transition [11,22]. A transfer to wind turbines
in operation with pitching airfoils or transient absorbed solar radiation seems feasible, but
a study of the transient thermodynamic behaviour for localisation in particular separated
flow regions is pending.

In contrast to the laminar-turbulent transition, a thermographic distinction between the
turbulent boundary layer and the turbulent-separated flow, as well as the interpretation of
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the turbulent-separated flow signature on IR thermograms, is still a challenging subject for
wind tunnel experiments [12]. The heat transport mechanisms of the turbulent boundary
layer and the turbulent-separated boundary layer flow are different [23] but have the same
order of magnitude in the region of beginning separation [17]. Thus the thermal contrast, in
the case of flow separation, is significantly lower compared to laminar-turbulent transitions.

First, Gartenberg and Roberts [12] detected stall on an airfoil with internal heating by
evaluating temperature fields on single frames. Gardner et al. [24] reported a statistical
approach for stall detection on an intensively heated airfoil. They proposed creating stall
maps for helicopter rotor blades by evaluating an increase in the spatial temperature vari-
ation. Dollinger et al. [8] published an alternative thermography measurement method
for stall detection on non-heated static airfoils, i.e., for low thermal contrast conditions.
By evaluating the dynamic behaviour of the surface temperature by means of a standard
deviation or Fourier amplitudes of the temperature time series, an increase in the distin-
guishability of the boundary layer flow regions was shown. Note that the common aim of
both recent approaches is to identify characteristics in the behaviour of the spatiotemporal
surface temperature. However, the understanding of the signal measurement chain is
incomplete, since a distinct consideration of the different influences of the boundary layer
flow characteristics (desired sensitivity) and the incoming flow temperature fluctuation as
influencing quantity (cross-sensitivity) is missing. Additionally, a separate evaluation of
the harmonic and transient components of the surface temperature is not conducted. For
this reason, the question of how to design a signal processing schema that is robust and
effectively visualises regions of flow separation cannot be answered. As a result, the ther-
mographic stall visualisation by evaluating the dynamic behaviour of the thermodynamic
fluid–structure interaction seems promising, but designing a signal-processing scheme that
provides a high degree of interpretability and maximum contrast is an open task.

For this reason, the aim of the article is at first to model the rotor blade surface tempera-
ture response with respect to boundary layer flow characteristics and temporal temperature
fluctuations of the external flow using system theory. Finally, two measurement principles
for different measurement conditions are derived on the basis of the system modelling
to provide thermographic stall visualisation with enhanced interpretability and contrast.
In particular, a harmonic analysis of temporal temperature fluctuations around prede-
fined operating points is investigated, considering the amplitude information. In addition,
a temporal gradient-based evaluation of the transient thermodynamic blade behaviour
is studied.

First, the measurement chain of thermographic flow visualisation is analysed, and the
measurement principles based on the dynamic response of the surface temperature around
an operating point (small-signal behaviour) and for a transient input signal (large-signal
behaviour), respectively, are derived in Section 2. The experimental setup for the wind
tunnel experiments with measurements for different flow velocities on a wind turbine
airfoil is presented in Section 3. Note that the chosen flow conditions are similar to the
conditions of in-process wind turbines. The experimental results regarding interpretability
and distinguishability of the different flow regions are presented for both dynamic thermo-
graphic flow visualisation principles in Section 4. In particular, the achievable enhancement
of image interpretability and contrast for stall detection is discussed. The article closes with
a summary and outlook in Section 5.

2. Principle of Measurement

In case of temperature differences between the rotor blade surface of wind turbines
and the incoming fluid, the thermographic measurable surface temperature correlates with
the fluid–surface interaction in the boundary layer flow. However, the detected surface
temperature is also influenced by other quantities. In order to derive novel measurement
concepts with enhanced interpretability and contrast, the current understanding of the
classical measurement chain of thermographic flow visualisation, including all influencing
quantities is first presented.
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For a differential volume element on the surface of a rotor blade—see Figure 1—the
temperature Ts can be calculated using a heat balance, as follows

ρ · cP ·
∂Ts

∂t
= −∇ · q̇. (1)

As a result, spatial differences of the temperature on airfoils are influenced by spatial
changes in density ρ and specific heat capacity cP, as well as the following contributions to
the heat flux density q̇:

• Convective heat transfer q̇c;
• Heat conduction q̇cond;
• Absorbed radiant heat flux q̇r.
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Figure 1. Schematic illustration of the different boundary layer flow regions on the suction side of an
airfoil with trailing edge turbulent flow separation. A differential volume element with heat input
and output normal to the surface by absorbed radiant heat flux q̇r,y, convective heat transfer q̇c,y and
heat conduction q̇cond,y are also shown. In the direction of flow, the lateral heat conduction q̇cond,x.

For incompressible flows, the convective heat transfer q̇c depends on the flow-dependent
heat transfer coefficient α as well as the temperature difference between the fluid tempera-
ture Tfl and the surface temperature Ts, and can be calculated by

q̇c = α · (Ts − Tfl). (2)

Since the intensity of the heat transfer depends on the fluid–surface interaction, the
heat transfer coefficient α contains information about the amount and the dynamic of the
convective heat transfer for each flow region [25]. Thus, according to Equation (2), different
flow conditions lead to different surface temperatures.

In contrast, heat conduction q̇cond, non-isotropic absorbed solar radiation q̇r and local
changes in shape and material M lead to flow-independent spatial temperature gradients.
In addition, the dynamic behaviour of the radiation intensity and the temperature of the
incoming flow, as well as the initial surface temperature T0, influence the distribution
and dynamics of the measured surface temperature field. Due to these cross-sensitivities,
the different flow regions are not always visible, which means that the thermal contrast
between the different flow regions is decreased. Regardless of these influences, the classical
concept of thermographic flow visualisation is the evaluation of surface temperature fields
as a function of the heat transfer coefficient α as the input signal—see Figure 2a. The new
approach aims to use the thermal response of the surface temperature to dynamic changes
in the flow temperature or the radiation intensity, respectively—see Figure 2b. As a result,
the flow-dependent heat transfer coefficient α is considered as a parameter that determines
the thermal response of the surface. The visualisation of different flow regions (and, in
particular, stall condition) has a higher contrast and interpretability, because the influence
of the convective heat transfer is considered after reducing the influence of the heat input
variations so that the former cross-sensitivity is reduced.
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Figure 2. Model function of the surface temperature with input and output quantities and cross-
sensitivities, (a): Flow-dependent heat transfer coefficient α as input quantity, (b): Analysis of the
response behaviour for changing heat inputs, the flow properties in α are considered as a parameter
of the system’s input–output relation (cross-sensitivity).

Concerning field measurement conditions on operating wind turbines, the external
heat input can have the form of oscillating or transient signals. Oscillating input signals
result, e.g., from temporal fluctuations in the temperature of the incoming flow. In contrast,
transient changes in radiation intensity and the fluid temperature over the airfoil can
induce transient external heat inputs. Therefore, two signal processing approaches are
proposed to realise a higher contrast and interpretability of different flow regions by means
of a differential evaluation of the surface temperature response to oscillating and transient
input signals.

2.1. Thermodynamic Response around an Operating Point

The signal processing approach around an operating point considers the surface tem-
perature response to temporal oscillations in the temperature of the incoming flow. The
aim is to identify boundary layer flow regions on the processed thermographic images by
means of unambiguous relations between the features of the evaluated surface tempera-
ture oscillations and the flow-dependent heat transfer coefficient. Therefore, the surface
temperature response behaviour to oscillating input signals is analysed.

Small-scale oscillations in the input signal around an operating point induces ther-
modynamic oscillations in the output signal. Considering small-scale oscillations around
an operating point, the system‘s input–output relation corresponds to that of a linear
time-invariant system. For this reason the input–output relation indicated in Figure 2b is
describable with a transfer function and can be evaluated with the powerful methods of
linear system theory.

One method for the evaluation of linear systems with harmonic input signals is the
analysis of amplitude and phase information for selected frequency components of the
output signal. With increasing heat transfer coefficients α, the intensity of the convective
heat transport increases and the system‘s input–output relation has a reduced amplitude
attenuation and phase shift [25]. As a result, the amplitude and phase information depends
on the heat-transfer coefficient, and thus enables distinguishing between different boundary
layer flow regions. Furthermore, the harmonic signal processing approach around an
operating point provides two desirable features. First, assuming a negligible dependence
of the heat transfer coefficient and the material properties on the surface temperature within
the measurement range, the operating point has, on first approximation, no influence of
the linear system behaviour around the operating point. Therefore, the amplitudes are
independent of the initial temperature field T0. Second, due to the harmonic behaviour of
the output signal, the influence of the heat conduction is reduced. Thus, spatial differences
in amplitude and phase information can only result from different flow properties, i.e.,
from different heat-transfer coefficients α, or material inhomogeneities M.

Note that the amplitude and phase information depends on the amplitude and the
frequency of the available harmonic components in the input signal. In particular, the
amplitude response signal and, thus, also the signal-to-noise ratio decreases for increasing
frequencies, due to the thermal inertia of the surface [25]. For this reason, the proposed
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signal processing approach around an operating point is limited to low-frequency heat
input oscillations.

2.2. Transient Thermodynamic Response

In the case of transient input signals, the output signal is also in a transient form
and the temporal gradient of the surface temperature field is used to distinguish between
different boundary-layer flow regions.

The temperature field of the entire measured object can be described analytically by
coupling energy balances and kinetics of heat conduction. For measuring objects with
constant thermal conductivity λ, the temperature field T depends on the location, the time
t as well as the material properties summarised in the thermal conductivity coefficient a
and can be calculated by solving the heat equation [25]

∂T
∂t

= a∇2T. (3)

Thus, the general solution of this differential equation depends on the initial tempera-
ture distribution as well as the shape and material parameters denoted as cross-sensitivities
T0 and M, respectively. In addition, the following boundary condition applies to the surface

−λ ·
(

∂T
∂n

)
s
= α · (Ts − Tfl) + q̇r, (4)

where ∂/∂n means a normal differentiation on the surface. As a result, the surface temper-
ature response to a transient step-like input signal converges over the time to a steady state
temperature. The transient signal processing approach is thus to evaluate the temporal
gradient of the surface temperature response. Since transient heat inputs cause enhanced
temperature differences between the surface and the fluid temperature, the flow-dependent
convective heat flow is the dominant mechanism for the local response behaviour. As a
result, the evaluation of temporal temperature gradients leads to a high thermal contrast
between the different flow regions. Since the temporal gradient of the surface temperature
decreases over time, the measurement will take place at the beginning of the transient
input signal.

2.3. Criteria for Flow Region Identification and Distinguishability

Independent of the signal processing approach, the flow regions can only be identified
by comparing the processed thermographic images with the flow-dependant heat transfer
coefficient α. Therefore, the first criteria for the evaluation of the proposed signal-processing
approaches is the unambiguous identification of flow regions by means of flow-dependent
heat transfer features on the processed thermographic images. As a result, an estimation of
the local heat transfer coefficient is needed.

In order to estimate the qualitative behaviour of the local heat transfer coefficient,
the well-known heat transfer behaviour on a smooth circular cylinder with supercritical
cross-flow is used as a reference. The following features of the heat transfer coefficient are
available to realize an identification of different flow regions [23,26]:

• Laminar flow region: α decreases as a result of the decreasing wall shear stress.
• Laminar-turbulent flow transition: α increases sharply as a result of the increased

turbulent mixing in the turbulent flow region.
• Turbulent flow region: α decreases as a result of the decreasing wall shear stress.
• Separated flow region: α increases, due to the increased transverse exchange of fluid in

the turbulent separated flow region induced by grown vortices. In contrast to attached
flow regions, large-scale vortices are the dominant mechanism for convective heat
transfer in separated flow regions.
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The result of the harmonic signal processing approach around an operating point
corresponds directly to the presented features of the heat transfer coefficient and enables a
subsequent identification of flow regions. In contrast, the gradient-based evaluation for
transient input signals requires a consideration of the initial surface temperature T0 in
order to be able to detect flow-dependent features and identify the different flow regions.
Note that the mentioned qualitative local heat transfer features are approximately expected
for the flow velocities and rotor blade profiles at wind turbines, due to the underlying
boundary layer mechanisms. However, a precise estimation of the local heat transfer
behaviour requires a more detailed consideration of the geometry and surface properties
of the measurement object as well as the incoming flow conditions.

As second evaluation criteria, the contrast-to-noise ratio (CNR) is calculated, which
is a common approach in order to quantify the distinguishability between a pair of flow
regions. The CNR between the flow regions a, b is calculated by

CNR =

∣∣Ca − Cb
∣∣√

( 1
Na

∑Na
i=1 sa,i)2 + ( 1

Nb
∑Nb

j=1 sb,j)2
. (5)

The spatial image dimension is M x N pixel, where M represents the model span and
N the chord length. Ca, Cb are the spatial mean of the pixels within a flow region. While
sa,i, sb,j describes the corresponding standard deviation transverse to the flow direction.
The standard deviation is calculated transverse to the flow direction in order to reduce the
influence of gradients on the processed images along the flow direction.

3. Experimental Setup
3.1. Wind Tunnel Setup and Experimental Procedures

In order to investigate the potential of the presented signal-processing approaches,
measurements at Deutsche WindGuard’s aeroacoustically optimized wind tunnel (DWAA)
in Bremerhaven, Germany are conducted. The Göttinger-type wind tunnel operates with
a closed test section with turbulence intensities of less than 0.3% at wind speeds of up
to 100 m s−1.The test section has a dimension of 1.25 m × 2.7 m × 5 m. The aerodynamic
models, with a maximal chord length of up to 0.9 m, are vertically mounted between two
turntables at the ceiling and the floor of the test section, which allows for adjusting different
angles of attack. The thermographic camera is positioned on the side of the wind tunnel
test section, facing the measurement object through a window made of calcium fluoride.
Figure 3 illustrates the experimental setup. Note that the friction in the wind tunnel due
to operation is the only external heat source and leads to an increasing fluid temperature
during the measurements. In addition to the large-scale fluid temperature gradient, there
are small-scale fluid temperature oscillations that are probably a result of variations in
the fan power. Due to the inertia of the power control, the oscillations are mainly in a
low-frequency range from 0 to 0.2 Hz.

For the presented measurements, a wind turbine airfoil of type DU96W180 is selected.
The wind tunnel model has a chord length of 0.6 m, height of 1.25 m and is made out of
carbon reinforced plastic with a polyurethane topcoat which is typical for rotor blades
of wind turbines [8]. Figure 4 shows the mounted airfoil profile inside the wind tunnel
measuring section. Note that the profile does not have a homogeneous surface, since a
mylar band covers a flap-gap at the 0.82 normalised chord position. Piezo pressure sensors
are attached to the upper and lower side of the airfoil as a reference measuring system
for the detection and localisation of laminar-turbulent transition and flow separation. The
92 pressure sensors along the chord length in flow direction are connected to pressure tabs
in the surface of the airfoil and provide a sampling rate of 10 Hz. The tabs are located not
behind each other but with a spanwise offset, in order to avoid impacts on the boundary
layer flow and subsequently the downstream pressure measurements.
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Figure 3. Schematic overview of the measurement setup in the closed test section of the Deutsche
WindGuard’s aeroacoustic wind tunnel in Bremerhaven, Germany, adapted from [20].

Version July 22, 2021 submitted to Appl. Sci. 2 of 2

FOV
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Flow

Figure 4. Suction side of the mounted DU96W180 profile in the test section with marked field of view
(FOV) of the thermographic camera.

In order to characterise the proposed signal processing approaches, the experiments
are designed for two free-field similar measurement conditions. Firstly, measurements
with a low thermal contrast on a measurement object in a near thermodynamic steady state
are conducted. Here, the focus is on the harmonic evaluation of the surface temperature
response to small-scale oscillations of the input signal (thermodynamic response around an
operating point). Secondly, the flow velocity is increased in order to increase the heating
rate of the wind tunnel. Consequently, the fluid temperature is considered as a transient
input signal and the gradient-based signal processing approach is characterised (transient
thermodynamic response). Note that the harmonic signal processing approach around an
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operating point evaluates the surface temperature oscillations which occur independent of
the large-scale behaviour of the surface temperature. Therefore, the harmonic approach is
applicable for both measurement conditions, while the gradient-based approach is limited
to transient input signals.

The adjusted test parameters are the incoming flow velocity, the compensation time
before starting the experiments and the angle of attack of the measurement object. In order
to achieve a near thermodynamic steady state the mean flow velocity is set to 49 m s−1

and the measurement starts after a compensation time of 10 min. The measurement with a
transient input signal is conducted for a flow velocity of 74 m s−1, the measurement starts
directly after the wind tunnel start-up phase. The flow velocities result in the Reynolds
numbers Re = 2 · 106 and Re = 3 · 106, respectively, and emulate realistic flow velocities
for rotor blades of wind turbines [27]. With respect to the defined flow velocities, the
angle of attack is set to AoA = 14◦ for both experiments, which leads to the existence of
laminar, turbulent and separated boundary layer flow regions. Note that the maximum
flow velocity of 74 m s−1 leads to a Mach number of about 0.22. Considering the chosen
angle of attack, as well as the resulting surface pressure gradient, weak compressibility
effects of the flow are possible, but have only a negligible influence on the evaluated
boundary layer properties.

Figure 5 shows the averaged profile temperature of the surface over the measurement
time for both measurement conditions. Aside from the large scale behaviour depending on
the flow velocity, small-scale oscillations are visible.

Version July 22, 2021 submitted to Appl. Sci. 2 of 2
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Figure 5. Linear regression of the averaged profile surface temperature over the measurement period
for Re = 2 · 106 and Re = 3 · 106. The small-scale oscillations of the surface temperature are visible by
dashed lines.

For Re = 2 · 106, the wind tunnel heating rate is about 0.01 K min−1, which leads
to a low thermal contrast and short compensation time to achieve the desired near-
thermodynamic steady state of the measurement object. For a Re = 3 · 106, a transient input
signal is realised by a fluid temperature ramp with a heating rate of about 0.1 K min−1.

3.2. Thermographic Image Acquisition

The thermographic camera, type imageIR8300, from the manufacturer InfraTec is
used. The camera is sensitive for wavelengths between 2–5.7 µm, works with an actively
cooled InSb focal plane array and a global shutter, has a pixel size of 15 µm and provides a
dynamic range of 14 bit. The noise equivalent temperature difference (NETD) is less than
25 mK at 30 ◦C. Furthermore, the curved object geometry causes a non-uniform temperature
distribution as a consequence of the angle-dependent emissivity. The thermographic
camera is equipped with a 12 mm wide-angle lens. At the viewing distance of 1.52 m,
the instantaneous field of view has a spatial resolution of 1.9 mm on the object surface
represented by one pixel and 312 measurement points over the chord length.
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As a result of the surface curvature of the airfoil and the camera lens, the image is
distorted both in perspective and optically. With the aim to reduce the distortion effects
and to reach straight edges of the measuring object, a correction of optical distortion is
conducted. For the presented measurements, with measurement times of 100 s, the camera
integration time is set to 1600 µs. The sampling rate is 300 Hz, which is the maximum value
for the presented camera setup.

3.3. Image Processing

The evaluation of the dynamic surface temperature response of the resulting image
series is based on the temporal evaluation of single pixels with image series consisting of
J images. The spatial dimension of each image is M×N = 151× 386 pixels, and for the
region of interest, i.e., without background, 151× 312 pixels. According to the different
signal processing approaches, two different evaluation methods are used.

The evaluation of the surface temperature response to transient input signals is based
on time-averaged temporal temperature gradients dTs,mn, which are calculated by

dTs,mn =
1

J − 1

J−2

∑
j=0

(Ts,mn(j + 1)− Ts,mn(j)). (6)

where, j denotes the time step and m, n pixel row and pixel column, respectively.
In order to analyse the surface temperature response around predefined operating

points, firstly the temporal temperature gradients are deducted from the measured data
using a linear regression function. As a result, evaluation around an operating point only
takes place for the oscillating part of the input signal and is independent of the input
signals’ large-scale behaviour. Subsequently, the surface temperature response is evaluated
by harmonic amplitudes. For this reason, a pixelwise discrete Fourier transformation is per-
formed in order to calculate the Fourier coefficients Pmn(k) for each frequency component
k, according to

Pmn(k) =
1
J

J−1

∑
j=0

exp
(
−2πi

jk
J

)
Ts,mn(j) , k = 0, · · · , J − 1. (7)

With the aim to evaluate the surface temperature response to fluid temperature oscil-
lations, the Fourier coefficients are filtered for the frequency range of the fluid temperature
oscillation. Therefore, the frequency range is limited to 0–0.2 Hz in order to achieve the
maximum signal-to-noise ratio. Finally, an averaging over the K filtered Fourier coefficients
is conducted, in order to attain the mean amplitude

Pmn =
1
K

K

∑
k=1

Pmn(k), (8)

as the evaluation quantity of the harmonic signal processing approach around an operating point.
In addition, the classical approach of calculating time-averaged temporal surface

temperatures Ts,mn is used as reference method. The temporal mean surface temperatures
are calculated by

Ts,mn =
1
J

J−1

∑
j=0

Ts,mn(j). (9)

The aim is to evaluate improvements in the proposed dynamic signal processing
approaches compared to the classical approach regarding identifiability and distinguisha-
bility of flow regions. Comparison criteria are the identifiability of flow regions using
flow-dependent features and the calculated contrast-to-noise ratio between different flow
regions according to Equation (5).
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4. Results
4.1. Near Thermodynamic Steady State Condition

In order to compare the different signal processing approaches for a measurement ob-
ject in a near thermodynamic steady state, the location of the turbulent boundary separation
for Re = 2 · 106 is identified at first. Surface pressure measurements on the suction side of
the airfoil serve as a reference, and the dimensionless pressure coefficient cp is calculated by:

cp =
p− p∞

0.5ρ∞U2
∞

, (10)

where p denotes the static pressure on the airfoil surface, p∞ and U∞ are the static pres-
sure and the flow velocity of the undisturbed incoming flow, respectively, and ρ∞ is the
fluid density.

Figure 6 shows the experimental values of the dimensionless pressure coefficient cp,
including the 99% confidence interval as error bars over the normalized chord position x/c
for different angles of attack AoA, where c is the chord length. In addition to the pressure
distributions of the presented experiment with AoA = 14◦, the pressure distributions
for experiments without flow separation, i.e., with lower angles of attack of 2◦, 6◦ and
10◦, are plotted for comparison. For the presented experiment, the turbulent boundary
layer separation is detected at x/c = 0.46 due to the constant values of the dimensionless
pressure coefficient induced by the constant static pressure in separated flow regions [2,28].
For comparison, at lower angles of attack without flow separation, positive pressure
gradients are visible in the region from x/c = 0.46 to x/c = 1.

In order to estimate the position of the laminar-turbulent flow transition for the
presented experiment with AoA = 14◦, the thermographic detectable movement of the
transition position for the measurements with the angle of attack of 2◦, 6◦ and 10◦ is used
as a reference. As shown in Figure 7, the transition position moves from x/c = 0.55 for
AoA = 2◦ to x/c = 0.15 for AoA = 10◦. As a result, the position of the laminar-turbulent
transition is expected to be near the leading edge for AoA = 14◦.

The subsequent respective comparison of the thermographic flow visualization with
the different signal processing concepts is performed on the basis of the evaluation criteria
introduced in Section 2.3:

• Identifiability of flow regions on the basis of characteristic flow-dependent features;
• Distinguishability between flow regions using the contrast-to-noise ratio.

For this purpose, the image processing results of the mean temperature (classical
approach) as well as the novel gradient-based and the around-an-operating-point signal
processing approach are shown in Figure 8 for the flow condition Re = 2 · 106. Figure 8a–c
show the output images in order to analyse the distinguishability between the different
flow regions. The averaged profiles over the normalized chord position are shown in
Figure 8d–f with the aim of identifying flow-dependent features.
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parameters: Re = 2 · 106, AoA = 14◦.

4.1.1. Identifiability

Considering the evaluation criteria of the identifiability of flow regions on the basis of
flow-dependent features, the mean temperature signal-processing approach as a classical
concept is analysed at first. The mean temperature course over the normalized chord
position in Figure 8d shows the estimated signal behaviour for the transition regions and
enables distinguishing different flow regions. However, the temperature course within
the single flow regions is mainly influenced by lateral heat conduction, see Section 2.1. In
consequence, an unambiguous feature-based identification of flow regions is impossible.
In particular, the identifiability of flow separation is reduced, as the temperature gradient
along the chord position is similar in turbulent and separated flow regions.

Since the measurement object is in a near thermodynamic steady state, the gradient-
based evaluation in Figure 8e shows small absolute values of the temporal gradients. Within
the laminar and the turbulent flow region, the convective heat input q̇c is higher than the
heat emission by radiation q̇r, which explains the positive gradient. For the normalized
chord position (0.6–0.85) within the separated flow region, the surface of the measurement
object is already approximately in a thermodynamic steady state. The increasing gradient
and the local maximum at the normalized chord position (0.85–1) are explained by the
increasing heat transfer coefficient, as well as a heat input by heat conduction from the
pressure side of the airfoil. As a result, the different flow regions are only identifiable under
a complex consideration of the cross-sensitivities.
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In contrast, the result of the harmonic signal processing approach around an operating
point reflects the qualitative estimations of the heat transfer coefficient and enables the
localisation of the flow regions, as follows:

• Laminar boundary layer flow: 0≤ x/c ≤ 0.02;
• Laminar-turbulent transition: 0.02< x/c ≤ 0.04 (dashed lines);
• Turbulent-boundary layer flow: 0.04< x/c ≤ 0.46;
• Turbulent separation point: about 0.46 (dashed lines);
• Turbulent separated boundary layer flow: 0.46< x/c ≤ 1.

The evaluation of the amplitude course in Figure 8f shows a continuously decreasing
amplitude over the normalized chord position as a result of a decreasing wall shear stress
within the attached flow regions. In contrast, the evaluated amplitude increases within the
separated flow region due to the increasing heat transfer coefficient. Furthermore, sharp
transitions are detectable as a result of the reduced influence of lateral heat conduction.
In addition, the capability to detect surface modifications, which is a beneficial property
of the harmonic signal processing approach around an operating point, is shown at the
0.82 normalized chord position with a clearly visible local amplitude maximum. Thus,
the signal processing approach around an operating point provides a high degree of
interpretability and enables an unambiguous feature-based identification of flow regions.
In particular, the aim of an improved identifiability of flow separation is realised.

4.1.2. Distinguishability

In order to compare the measurement approaches in terms of the quantitative distin-
guishability of the different flow regions, the CNR between the flow regions is presented in
Table 1. The highest CNR between laminar-turbulent and turbulent-separated flow regions
is achieved with the classical mean temperature approach. As expected, the gradient-based
signal processing approach provides less distinguishability of the flow regions for a mea-
surement object at near thermodynamic steady state. However, a distinction between the
turbulent and the separated flow region is possible. For the presented measurement, the sig-
nal processing approach around an operating point provides a reduced CNR of about−54%
and −35% between laminar-turbulent and turbulent-separated flow regions, respectively,
compared to the classical mean temperature approach. One reason for the reduced contrast
is the small-signal behaviour of the surface temperature oscillation with a magnitude of
about 5 mK which is smaller than the NETD of the camera for a single image. Accordingly,
the harmonic signal processing approach around an operating point takes place for signals
with a low signal-to-noise ratio, which explains the reduced distinguishability between the
flow regions.

Table 1. Comparison of the contrast-to-noise ratio for the proposed signal processing approaches for
a measuring object at near thermodynamic steady state: mean temperature CNRT , gradient-based
CNRdT , harmonic signal processing approach CNRP.

Pair of Flow Regions CNRT CNRdT CNRP

laminar–turbulent 2.1 0.46 0.97
turbulent–separated 2.46 1.12 1.6

In consequence, the proposed signal processing approaches do not enhance the distin-
guishability of the flow regions for measuring objects at a near thermodynamic steady state
under the studied flow conditions. However, an improvement in the distinguishability
between flow regions using the harmonic signal processing approach around an operating
point can occur for measurement conditions with a further reduced convective heat input.

4.2. Transient Thermodynamic State Condition

In order to characterise the proposed signal processing approaches for a transient
input signal, the image processing result for the measurement with Re = 3 · 106 is shown
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in Figure 9. In detail, Figure 9a–c show the resulting images for each signal processing
approach, while Figure 9d–f show the averaged profiles over the chord position and the
location of the different flow regions. The location of the boundaries was validated again
by surface pressure measurements as a reference .
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Figure 9. Comparison of the evaluation of thermographic image series by the mean temperature (a,d), gradient-based
(b,e) and the harmonic signal processing approach (c,f) for a transient input signal. Left side (a–c): processed thermographic
images; right side (d–f): averaged profiles over the normalized chord position. Experimental parameters: Re = 3 · 106,
AoA = 14◦.

4.2.1. Identifiability

Comparing the identifiability of the flow regions for the classical mean temperature
signal processing approach in Figure 9d, with the result for a measurement object near a
thermodynamic steady state in Figure 8d, the influence of heat conduction on the tempera-
ture course is reduced as a result of the enhanced convective heat input for the measurement
with Re = 3 · 106. However, characteristic features within the single flow regions are not
detectable, despite the enhanced convective heat input.

Evaluating the surface temperature response to a transient input signal with the
gradient-based signal-processing approach in terms of identifiability of flow regions, Fig-
ure 9e shows an improved result compared to the mean temperature signal processing
approach. As a result of the dominant influence of the flow-dependent convective heat
transfer for the local response behaviour, flow-dependent features are partly within the
single flow regions visible and even the surface modification at 0.82 normalized chord
position is detectable. For a complete interpretation of the gradient course over the nor-
malized chord position, however, a separate consideration of the influences of the surface
temperature distribution and the heat conduction is required. For example, the parabolic
shape of the gradient in the turbulent and the separated flow region contradicts the esti-
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mation of a continuous signal decrease and increase, respectively, over the chord position,
see Section 2.3. As a result, the gradient-based signal processing approach is also for a
transient input signal, but is not suitable for an unambiguous feature-based identification
of flow regions.

In contrast, the harmonic signal processing approach around an operating point enables
a complete interpretation of the evaluated amplitude course over the normalized chord
position in Figure 9f on the basis of the estimated flow-dependent features. In particular, the
separation point is clearly identifiable by means of a subsequent local amplitude maximum
followed by a global amplitude minimum at approximate 0.45 and 0.55 normalised chord
positions, respectively. As a result, the harmonic signal processing approach around an
operating point improves the identifiability of the flow regions, independent of the large
scale behaviour of the surface temperature.

4.2.2. Distinguishability

For the comparison of the signal processing approaches in terms of distinguishability
between the different flow regions for a transient input signal, the respective CNR is
calculated and summarized in Table 2.

Table 2. Comparison of the contrast to noise ratio for the proposed signal processing approaches
for a transient input signal: mean temperature T, gradient-based dT, harmonic signal process-
ing approach P. Additionally, a comparison of the respective CNR change for the different
measurement conditions.

Approach Pair of Flow Regions CNR Change

T
laminar–turbulent 6.88 227.62%

turbulent–separated 3.39 37.8%

dT
laminar–turbulent 2.39 419.57%

turbulent–separated 6.88 514.29%

P
laminar–turbulent 0.67 −30.93%

turbulent–separated 1.33 −16.88%

Firstly, the enhanced convective heat input for the measurement with Re = 3 · 106 causes
an increasing CNR of the mean temperature and the gradient-based signal processing
approach. In contrast, the harmonic signal processing approach around an operating point
provides a reduced CNR, compared to the near thermodynamic steady state condition
at Re = 2 · 106, as a result of the enhanced heat transfer coefficients in the laminar and
separated flow region. Therefore, the harmonic signal processing approach around an
operating point is for measurements with a high convective heat input not suitable to
increase the distinguishability between flow regions.

Regarding the distinguishability of different flow regions, the gradient-based signal
processing approach provides the highest CNR between turbulent-separated flow regions.
Compared to the mean temperature approach, a significant improvement in the CNR of
about 103 % is achieved. For the distinction between laminar and turbulent flow regions,
the mean temperature signal processing approach provides a higher CNR than the gradient-
based approach as a result of the relationship between the convective heat input and the
surface temperature distribution. According to Equation (2), the convective heat input
depends on the heat transfer coefficient α as well as the temperature difference between
the fluid temperature Tf and the surface temperature Ts. In the presented case of a
low CNR between laminar-turbulent flow regions when using the gradient-based signal
processing approach, flow-dependent differences in convective heat input are reduced due
to the high temperature difference between the considered flow regions. However, the
aim to enhance the contrast for stall detection is realised with the gradient-based signal
processing approach.
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5. Conclusions and Outlook

Two signal processing approaches were proposed to achieve an enhanced detectability
of flow separation using thermographic image series: a harmonic analysis of the small sig-
nal behaviour and a gradient-based evaluation of the large signal behaviour. By rigorously
deriving both signal-processing approaches from an analysis of the signal measurement
chain and evaluating the surface temperature response according to the dynamic behaviour
of the incoming flow temperature, a higher degree of interpretability and distinguishability
between the different flow regions is obtained.

The amplitude information of the proposed harmonic signal processing approach
around an operating point is shown to contain only the surface temperature response
to the oscillating parts of the incoming flow temperature. Subsequently, the amplitude
information provides a direct correlation with the flow-dependent mean value of the
heat transfer coefficient. As a result, the harmonic signal-processing approach around
an operating point enables an unambiguous identification of flow regions on the basis of
flow-dependent features. In particular, the identifiability of flow separation is increased by
a global minimum in the amplitude curve over the chord position near the separation point.
In addition, the harmonic signal processing approach around an operating point leads to
an increased spatial resolution for surface modifications. However, the contrast between
the flow regions is significantly decreased compared to the classical signal processing
approach, i.e., when evaluating the mean value of the surface temperature. Therefore,
the harmonic signal processing approach around an operating point can be considered
as a reference method for the identification of flow regions and is especially useful for
measurement objects at near thermodynamic steady state, i.e., in applications with a low
thermal contrast between the different flow regions.

The second proposed signal processing approach, which evaluates the surface tem-
perature response to a transient input signal (from the incoming flow temperature) on
the basis of the temporal temperature gradient, provides an improved contrast for the
thermographic detection of flow separation. However, the applicability of the approach is
limited to measurement objects with a transient thermodynamic behaviour. As a result, the
gradient approach provides an improved distinguishability and location of flow transitions
on the basis of the CNR in case of a transient input signal. Instead, the harmonic approach
enables an unambiguous distinction between attached and separated flow regions. There-
fore, both proposed signal processing approaches are a supplement to the established
evaluation of temporal mean temperatures.

In the present work, the suitability of the novel signal processing approaches for the
detection of flow separation in wind tunnel experiments was proven. Further research will
focus on the method transfer to free-field measurements. The next aim is to detect flow
separation on rotor blades of wind turbines in operation.
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