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Abstract: In this paper, argon was used in radio frequency (13.56 MHz) dielectric barrier discharge
(rf-DBD) at atmospheric pressure. The IV curve was recorded after gas breakdown, and discharge
photos were captured by ICCD camera. Discharges of α mode and γ mode were observed based on
IV curve and ICCD photos. As the existence of negative glow in γ mode, the luminescence intensity
of different position of the discharge gap was analyzed. It was found that in the α mode, the electron
avalanche occurs from negative to positive and negative glow appeared after the discharge changed
into γ mode. In every half cycle, the peak position of negative glow is 13 ± 1 ns later than that of
electron avalanche on cathode surface.

Keywords: atmospheric pressure; dielectric barrier discharge; discharge mode

1. Introduction

Atmospheric pressure glow discharge (APGD) is now a fascinating area of research in
low temperature plasma physics. It provides a chamber-free and low cost route for indus-
trial applications, such as surface modification, functional film deposition, and biological
purification [1–5]. Compared with bare electrodes, dielectric barrier discharge (DBD) allow
plasma to retain its large volume without constriction [6].

On the other hand, radio frequency DBD is now a popular source used to achieve a
stable and large-gap atmospheric pressure glow discharge with lower breakdown voltage
and avoid emergence of arc discharge and filamentary discharge, compared with DC glow
discharge and low and medium frequency DBD at atmospheric pressure [6–11]. Therefore,
a lot of study has been done on the discharge mechanism, simulation, and speckle pattern
of radio-frequency dielectric barrier discharge (rf-DBD) at atmospheric pressure [12–23].

Many experiments demonstrated that there are α mode and γ mode in rf-DBD [6,8,10].
The mechanism of discharge in α mode is volume ionization, electron avalanche occurs
under the acceleration of electric field. In every current cycle, there are two volume
ionization process of opposite direction in the first half cycle and the second half cycle. The
change from α mode to γ mode happens when the electric field intensity reach a certain
value to give the positively charged ions a certain speed in half a cycle, so they could break
the sheath binding and bombard the dielectric on cathode, thus producing a large number
of secondary electrons.

Therefore, an important mark to distinguish the two discharge modes is the negative
glow. Kong’s team has earlier used ICCD camera (Andor i-Star DH720, Belfast, UK) to
capture photos of negative glow at 1/4 t and 3/4 t of the discharge cycle (current) as
evidence for mode transition of rf-DBD. The time characteristics, including the time and
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duration of occurrence of electron avalanche (volume ionization) and negative glow in
one cycle have not been reported. In this paper, the ICCD camera was used to capture
36 photos in a radio frequency cycle (73.7 ns). The temporal characteristics of electron
avalanche and negative glow were studied based on changes of the luminous intensity of
different plasma position in one cycle under different discharge modes.

2. Materials and Methods
2.1. Experimental Facility

As shown in Figure 1, two square copper electrodes shaped 10 × 10 cm2 were used,
both of which were covered by quartz sheet as barrier layers (14 × 14 × 1 mm3). The
discharge gap was fixed as 4.4 mm. The bottom electrode was connected to rf power
with the maximum power of 2 kW (13.56 MHz) through an automatic matching net and
the upper electrode was grounded. The current and voltage were measured by a wide
band current probe (Tektronix 6021AC, Beaverton, OR, USA) and a wide band voltage
probe (Tektronix P6015A, Beaverton, OR, USA), respectively, and the probe signal was
collected by oscilloscope (Tektronix DPO 4104, Beaverton, OR, USA). Discharge photos
were captured by an ICCD camera (Princeton Instrument-PI-MAX2), which was placed
to aim at the middle of discharge gap. The optical emission spectrum was obtained by a
spectroscope (Avantes Avaspec 2048, Apeldoorn, The Netherlands) with a resolution of
0.12 nm.

Figure 1. Schematic diagram of experimental set-up.

2.2. Experimental Method

First, the valve was opened and argon gas passed through the discharge gap at a fixed
rate of 2.0 L per minute (SLM), and the input power was increased. After the argon gas
was broken down, the input power was continuously increased, and the RMS voltage and
RMS current of the discharge were recorded at each power. At the same time, the plasma
photos were captured at each power by the ICCD camera. The photos were t captured
using two different exposure times of 100 µs and 2 ns. In a current cycle (73.7 ns), current
curve passes zero in the direction of positive value at 0 T, and passes zero in the direction of
negative value at 1/2 T. In the experiment, oscilloscope was connected with ICCD camera,
which could be triggered to take photos by the signal of action of current curve passes zero
in the direction of positive value. Therefore, by calculating the delay caused by the electric
wires and the shooting distance, and setting the shooting delay time, a photo of plasma at
a certain time in one cycle could be captured. In this paper, 36 photos with exposure time
of 2 ns were captured at intervals of 2 ns.
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2.3. Optical Diagnostics with ICCD Photos

The photos captured by ICCD are grayscale bitmaps with resolution of 1024 × 1024,
in which the plasma region is about 952 pixel (transverse) times 44 pixel (longitudinal), and
each pixel has its own intensity value. By analyzing the changes of intensity at different
positions of plasma region at different times within one cycle, spatiotemporal characteristics
of the discharge were studied.

3. Results and Discussion
3.1. ICCD Diagnostics with Exposure Time of 100 µs

IV curve of 4.4 mm rf-DBD at atmospheric pressure is shown in Figure 2. The voltage
from point 1 to point 2 (138–208 W) basically remained unchanged, because the plasma
area increased during this process. From point 2 (208 W) when the plasma filled the
discharge gap, the voltage and current show a linear relationship. From point 8 to point 9
(624–686 W), the linear relationship suddenly changed, which is preliminarily assumed to
be due to the change of plasma impedance after the switch from α mode to γ mode [6,18].

Figure 2. IV curve of 4.4 mm DBD.

Figure 3 shows photos of two discharge modes. In α mode at 138 W (Figure 3a), the
luminous intensity seems to be distributed evenly along the gap. At the highest power
(836 W, Figure 3b), it is possible to observe longitudinal luminous intensity profile typical
for γ mode, with dark spaces and strongly shining negative glow near surfaces [6,13].

Figure 3. ICCD photos: (a) and (b) correspond to point 1 and point 12 in Figure 2 (exposure time:
100 µs).

In order to obtain the relationship between the luminescence intensity at different lon-
gitudinal positions of the plasma and the discharge power, ICCD photos were analyzed and
the relational graph is shown in Figure 4. The coordinates represent the position between
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the gaps (0–4.4 mm), discharge power (100–900 W) and luminous intensity (0–40,000), re-
spectively. As we can see, the luminous intensity of the plasma increases with the power at
all positions. At the beginning, the luminous intensity at different positions of the discharge
gap is basically the same. As the power increased, the intensity of plasma on dielectric
surface is obviously higher than that at the middle position. However, throughout the
process, there is no obvious turning point from which it can be considered as the change of
discharge mode. Therefore, the spatiotemporal characteristics within one cycle (73.7 ns) of
rf-DBD were studied.

Figure 4. Three-dimensional view of the emission intensity vary with gap position and power of
4.4 mm argon DBD.

3.2. ICCD Diagnostics of Plasma in One Cycle with Exposure Time of 2 ns

In total, 36 photos were captured with a single exposure time of 2 ns within a current
cycle of 73.7 ns, each photo was spaced 2 ns apart. As the existence of negative glow, we
analyzed the average intensity of 8 lines of pixels (basically covering the negative glow
region) at the top, the middle 8 lines of pixels at the middle and 8 lines of pixels at the
bottom of plasma region (952 × 44 pixels) (952 × 44 pixels). Therefore, the relation curves
represent the average emission intensity of different longitudinal positions varies with
time in one cycle were obtained. The results are shown in Figures 5–7.

Figure 5. The curves of luminescence intensity on surface of the upper electrode in 4.4 mm argon
DBD in one current cycle at different power.
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Figure 6. The curves of luminescence intensity of middle part in 4.4 mm argon DBD in one current
cycle at different power.

Figure 7. The curves of luminescence intensity on surface of the nether electrode in 4.4 mm argon
DBD in one current cycle at different power.

As we can see from Figures 5–7 the luminous intensity increases with the power at
all times and all positions in one cycle, the 12 curves from bottom to top correspond to
points 1–12 in Figure 2. At the power of the point 1 to point 8 (138–624 W) in Figure 2, the
intensity of the three longitudinal positions of the plasma has two peaks in one cycle, which
match the two peaks of the current. However, it can be seen from Figures 5–7 that the
three peaks are different in time. The first peak of intensity appears first on the dielectric
surface of the upper electrode (cathode), the following is the middle position, and finally,
the dielectric surface of the lower electrode. Three peaks from top to bottom appeared
at 17.7 ± 1 ns, 20.1 ± 1 ns and 20.5 ± 1 ns, respectively. In the second half of the cycle,
the second peak appears first on the dielectric surface of the lower electrode (cathode),
followed by the middle position, and finally on the dielectric surface of the upper electrode.
Three peaks from bottom to top were 54.5 ± 1 ns, 56.9 ± 1 ns and 57.3 ± 1 ns, respectively,
which means the generation of electron avalanche on anode surface is about 3 ns later than
that on cathode surface. The time intervals reflect the process of electron avalanche from
cathode to anode in every half cycle.

It can be seen from the curves at the four maximal powers in Figures 5–7 (686–836 W)
that a third peak appears obviously on the upper electrode surface in the first half cycle and
the lower electrode surface in the second half cycle, and the intensity increases rapidly with
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power (686–836 W). In Figure 8, voltage and current waveforms are shown with emission
intensity curves from Figures 5–7 (836 W), from which we can see the upper electrode in
the first half is cathode, same as the lower electrode in the second half cycle, the new peak
is identified as cathode luminescence caused by secondary electrons, which is an important
characteristic of γ mode. Thus, it can be judged that the discharge has changed from α

mode (624 W, point 8 in Figure 2) to γ mode (686 W, point 9 in Figure 2) [6,13].

Figure 8. The voltage and current waveforms with emission intensities curves from Figures 5–7
(836 W).

3.3. Optical Emission Spectroscopy Diagnostics and the Charge Dynamics

The optical emission spectra were measured at each power in Figure 2. Figure 9 shows
the emission spectra at 138 W, corresponding to the first point in Figure 2, Figure 10 and
Table 1 show the spectral lines and parameters of the argon we studied. The variation of
atomic argon lines at 706, 738, 751, 794 nm with power is shown in Figure 11.

Figure 9. Emission spectra of plasma at 138 W.
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Figure 10. Species calibration of emission spectra in Figure 9.

Table 1. Parameters of Ar spectrum lines studied in the experiment.

λ/nm Configurations Aki/107s−1 Ei −Ek (cm−1)

ArI 706 3s23p5(2P◦
3/2)4s-

3s23p5(2P◦
1/2)4p

0.38 93,143.7600–107,289.7001

ArI 738 3s23p5(2P◦
3/2)4s-

3s23p5(2P◦
1/2)4p

0.847 93,750.5978–107,289.7001

ArI 751 3s23p5(2P◦
3/2)4s-

3s23p5(2P◦
3/2)4p

4.02 93,750–107,054.2720

ArI 794 3s23p5(2P◦
1/2)4s-

3s23p5(2P◦
1/2)4p

1.86 94,553.6652–107,131.7086

Figure 11. Variation of intensities of each spectral line in Table 1 with power.

Variation of intensities of each spectral line in Table 1 with power are shown in
Figure 11. The first 8 points of each line (138–624 W) represent discharge in α mode,
and the last 4 points (686–836 W) represent discharge in γ mode. It can be seen that the
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intensities of each curve increase with power, and after the mode transformation, the
intensities of each spectral line increase quicker with power obviously. Among them,
turning points (624–686 W) could be found from curves of 751 nm and 794 nm. This is
considered to be caused by the apparent increase in electron density after the mode shift,
which makes the concentration of various active species increase more rapidly with power.

In every half cycle, electrons and argon ions were accelerated at the same time. Elec-
trons were accelerated from cathode to anode and the avalanche happened, which leads
to the first peak. In γ mode, positively charged argon ions were accelerated from an-
ode to cathode. When the argon ions achieved a certain speed to break the sheath and
bombarded the surface of the medium directly, a large number of secondary electrons
yielded [6–8,10,11], which leads to the second peak on cathode surface.

Additionally, we can see, in the every half cycle, the luminescence caused by the
secondary electrons on the cathode surface is obviously later than the volume ionization,
and the time interval between the peaks is 13 ± 1 ns, which is thought to be caused by two
reasons. The first is that argon ions are much heavier than electrons. The other reason is that
the ions move farther than the electrons. In Figure 5, the value of the middle peak-valley
and the third peak increased significantly, and the position of the peak-valley shift to the
right. This is due to the large number of secondary electrons.

Comparing Figures 5 and 7, it can be seen that the waveforms are essentially the same
with interval of exactly half cycle, so the discharge characteristics on the surface of the
two dielectrics are consistent. Although in Figure 6, there are always two peaks in the
waveforms, the interval of which is about 36.7 ± 1 ns, very close to half cycle of the current
which is 36.87 ns.

4. Conclusions

The study based on ICCD camera shows that there are two discharge modes in 4.4 mm
argon double dielectric barrier discharge (13.56 MHz) at atmospheric pressure. In α mode,
electron avalanche occurs from cathode to anode. After the discharge turned into γ mode,
negative glow appeared, and the intensity of negative glow increased significantly with
the power. On the surface of cathode, the emergence of negative glow and the electron
avalanche have a certain interval, which is 13 ± 1 ns estimated by the positions of two
peaks. It must be added that error may exists in relationship between curves and time
due to the calculation of the circuit and the ICCD shooting distance, but this error is all
the same to the curves in Figures 5–7, which does not influence the results of temporal
relations between electron avalanche and negative glow.
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